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Abstract

This paper presents a parameter-free integer-programming based algorithm for the global resolution
of a linear program with linear complementarity constraints (LPEC). The cornerstone of the algorithm
is a minimax integer program formulation that characterizes and provides certificates for the three
outcomes—infeasibility, unboundedness, or solvability—of an LPEC. An extreme point/ray generation
scheme in the spirit of Benders decomposition is developed, from which valid inequalities in the form
of satisfiability constraints are obtained. The feasibility problem of these inequalities and the carefully
guided linear programming relaxations of the LPEC are the workhorse of the algorithm, which also
employs a specialized procedure for the sparsification of the satifiability cuts. We establish the finite
termination of the algorithm and report computational results using the algorithm for solving randomly
generated LPECs of reasonable sizes. The results establish that the algorithm can handle infeasible,
unbounded, and solvable LPECs effectively.

1 Introduction

Forming a subclass of mathematical programs with equilibrium constraints (MPECs) [33, 35, 11], linear
programs with linear complementarity constraints (LPECs) are disjunctive linear optimization problems
that contain a set of complementarity conditions. In turn, a large subclass of LPECs are bilevel lin-
ear/quadratic programs [10] that recently have been proposed as a modeling framework for parameter
calibration in a host of machine learning applications [6, 29, 28]. While there have been significant
recent advances on nonlinear programming (NLP) based computational methods for solving MPECs,
[1, 2, 3, 8, 14, 15, 18, 19, 25, 26, 21, 31, 32, 40, 41], much of which have nevertheless focused on obtaining
stationary solutions [12, 13, 33, 35, 34, 36, 40, 46, 45, 44], the global solution of an LPEC remains elu-
sive. Particularly impressive among these advances is the suite of NLP solvers publicly available on the
neos system at http://www-neos.mcs.anl.gov/neos/solvers/index.html; many of them, such as filter,
are capable of producing a solution of some sort to an LPEC very efficiently. Yet, they are incapable of
ascertaining the quality of the computed solution. This is the major deficiency of these numerical solvers.
Continuing our foray into the subject of computing global solutions of LPECs, which begins with the
recent article [38] that pertains to a special problem arising from the optimization of the value-at-risk, the
present paper proposes a parameter-free integer-programming based cutting-plane algorithm for globally
resolving a general LPEC.

As a disjunctive linear optimization problem, the global solution of an LPEC has been the subject of
sustained, but not particularly focused investigation since the early work of Ibaraki [22, 23] and Jeroslow
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[24], who pioneered some cutting-plane methods for solving a “complementary program”, which is a
historical and not widely used name for an LPEC. Over the years, various integer programming based
methods [4, 5, 20] and global optimization based methods [16, 17, 42, 43] have been developed that are
applicable to an LPEC. In this paper, we present a new cutting-plane method that will successfully resolve
a general LPEC in finite time; i.e., the method will terminate with one of the following three mutually
exclusive conclusions: the LPEC is infeasible, the LPEC is feasible but has an unbounded objective, or
the LPEC attains a finite optimal solution. We also leverage the advances of the NLP solvers and use
one of them to benchmark our algorithm. In addition, we propose a simple linear programming based
pre-processor whose effectiveness will be demonstrated via computational results.

The proposed method begins with an equivalent formulation of an LPEC as a 0-1 integer program
(IP) involving a conceptually very large parameter, whose existence is not guaranteed unless a certain
boundedness condition holds. Via dualization of the linear programming relaxation of the IP, we obtain
a minimax 0-1 integer program, which yields a certificate for the three states of the LPEC, without
any a priori boundedness assumption. The original 0-1 IP with the conceptual parameter provides
the formulation for the application of Benders decomposition [30], which we show can be implemented
without involving the parameter in any way. Thus, the resulting algorithm is reminiscent of the well-
known Phase I implementation of the “big-M” method for solving linear programs, wherein the big-M
formulation is only conceptual whose practical solution does not require the knowledge of the scalar M.

The implementation of our parameter-free algorithm is accomplished by solving integer subprograms
defined solely by satisfiability constraints [7, 27]; in turn, each such constraint corresponds to a “piece”
of the LPEC. Using this interpretation, the overall algorithm can be considered as solving the LPEC
by searching on its (finitely many) linear programming pieces, with the search guided by solving the
satisfiability IPs. The implementation of the algorithm is aided by valid upper bounds on the LPEC
optimal objective value that are being updated as the algorithm progresses, which also serve to provide
the desired certificates at the termination of the algorithm.

The organization of the rest of the paper is as follows. Section 2 presents the formal statement of
the LPEC, summarizes the three states of the LPEC, and introduces the new minmax IP formulation.
Section 3 reformulates the minmax IP formulation in terms of the extreme points and rays of the key
polyhedron Ξ (see (6)) and established the theoretical foundation for the cutting-plane algorithm to be
presented in Section 5. The key steps of the algorithm, which involve solving linear programs (LPs) to
sparsify the satisfiability constraints, are explained in Section 4. The sixth and last section reports the
computational results and completes the paper with some concluding remarks.

2 Preliminary Discussion

Let c ∈ <n, d ∈ <m, f ∈ <k, q ∈ <m, A ∈ <k×m, B ∈ <k×m, M ∈ <m×m, and N ∈ <m×n be
given. Consider the linear program with linear complementarity constraints (LPEC) [37] of finding
(x, y) ∈ <n ×<m in order to

minimize
(x,y)

cT x + dT y

subject to Ax + By ≥ f

and 0 ≤ y ⊥ q + Nx + My ≥ 0,

(1)

where a ⊥ b means that the two vectors are orthogonal; i.e., aT b = 0. It is well-known that the LPEC
is equivalent to the minimization of a large number of linear programs, each defined on one piece of
the feasible region of the LPEC. That is, for each subset α of {1, · · · ,m} with complement ᾱ, we may
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consider the LP(α):
minimize

(x,y)
cT x + dT y

subject to Ax + By ≥ f

( q + Nx + My )α ≥ 0 = yα

and ( q + Nx + My )ᾱ = 0 ≤ yᾱ.

(2)

The following facts are obvious:

(a) the LPEC (1) is infeasible if and only if the LP(α) is infeasible for all α ⊆ {1, · · · ,m};

(b) the LPEC (1) is feasible and has an unbounded objective if and only if the LP(α) is feasible and has
an unbounded objective for some α ⊆ {1, · · · ,m};

(c) the LPEC (1) is feasible and attains a finite optimal objective value if and only if (i) a subset α of
{1, · · · ,m} exists such that the LP(α) is feasible, and (b) every such feasible LP(α) has a finite
optimal objective value; in this case, the optimal objective value of the LPEC (1), denoted LPECmin,
is the minimum of the optimal objective values of all such feasible LPs.

The first step in our development of an IP-based algorithm for solving the LPEC (1) without any a
priori assumption is to derive results parallel to the above three facts in terms of some parameter-free
integer problems. For this purpose, we recall the standard approach of solving (1) as an IP containing a
large parameter. This approach is based on the following “equivalent” IP formulation of (1) wherein the
complementarity constraint is reformulated in terms of the binary vector z ∈ {0, 1}m via a conceptually
very large scalar θ > 0:

minimize
(x,y,z)

cT x + dT y

subject to Ax + By ≥ f

θ z ≥ q + Nx + My ≥ 0

θ(1− z ) ≥ y ≥ 0

and z ∈ { 0, 1 }m,

(3)

where 1 is the m-vector of all ones. In the standard approach, we first derive a valid value on θ by
solving LPs to obtain bounds on all the variables and constraints of (1). We then solve the fixed IP
(3) using the so-obtained θ by, for example, the Benders approach. There are two obvious drawbacks of
such an approach: one is the limitation of the approach to problems with bounded feasible regions; the
other drawback is the nontrivial computation to derive the required bounds even if they are known to
exist implicitly. In contrast, our new approach removes such a theoretical restriction and eliminates the
front-end computation of bounds. The price of the new approach is that it solves a (finite) family of IPs
of a special type, each defined solely by constraints of the satisfiability type. The following discussion
sets the stage for the approach.

For a given binary vector z and a positive scalar θ, we associate with (3) the linear program below,
which we denote LP(θ; z):

minimize
(x,y)

cT x + dT y

subject to Ax + By ≥ f ( λ )

Nx + My ≥ −q ( u− )

−Nx−My ≥ q − θ z ( u+ )

−y ≥ −θ (1− z ) ( v )

and y ≥ 0,

(4)
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where the dual variables of the respective constraints are given in the parentheses. The dual of (4), which
we denote DLP(θ, z), is:

maximize
(λ,u±,v)

fT λ + qT ( u+ − u− )− θ
[
zT u+ + (1− z )T v

]
subject to AT λ−NT ( u+ − u− ) = c

BT λ−MT ( u+ − u− )− v ≤ d

and ( λ, u±, v ) ≥ 0.

(5)

Let Ξ ⊆ <k+3m be the feasible region of the DLP(θ, z); i.e.,

Ξ ≡

{
( λ, u±, v ) ≥ 0 : AT λ−NT ( u+ − u− ) = c

BT λ−MT ( u+ − u− )− v ≤ d

}
. (6)

Note that Ξ is a fixed polyhedron independent of the pair (θ, z); Ξ has at least one extreme point if
it is nonempty. Let LPmin(θ; z) and d(θ; z) denote the optimal objective value of (4) and (5), respec-
tively. Throughout, we adopt the standard convention that the optimal objective value of an infeasible
maximization (minimization) problem is defined to be −∞ (∞, respectively). We summarize some basic
relations between the above programs in the following elementary result.

Proposition 1. The following three statements hold.

(a) Any feasible solution (x0, y0) of (1) induces a pair (θ0, z
0), where θ0 > 0 and z0 ∈ {0, 1}m, such that

the tuple (x0, y0, z0) is feasible to (3) for all θ ≥ θ0; such a z0 has the property that

( q + Nx0 + My0 )i > 0 ⇒ z0
i = 1

( y0 )i > 0 ⇒ z0
i = 0.

(7)

(b) Conversely, if (x0, y0, z0) is feasible to (3) for some θ ≥ 0, then (x0, y0) is feasible to (1).

(c) If (x0, y0) is an optimal solution to (1), then it is optimal to the LP(θ, z0) for all pairs (θ, z0) such
that θ ≥ θ0 and z0 satisfies (7); moreover, for each θ > θ0, any optimal solution (λ̂, û±, v̂) of the
DLP(θ, z0) satisfies (z0)T û+ + (1− z0 )T v̂ = 0.

Proof. Only (c) requires a proof. Suppose (x0, y0) is optimal to (1). Let (θ, z0) such that θ ≥ θ0 and
z0 ∈ {0, 1}m satisfies (7). Then (x0, y0) is feasible to the LP(θ, z0); hence

cT x0 + dT y0 ≥ LPmin(θ, z0). (8)

But the reverse inequality must hold because of (b) and the optimality of (x0, y0) to (1). Consequently,
equality holds in (8). For θ > θ0, if i is such that z0

i > 0, then

( q + Nx0 + My0 ) ≤ θ0 z0
i < θ z0

i ,

and complementary slackness implies (û+)i = 0. Similarly, we can show that z0
i = 0⇒ vi = 0. Hence (c)

follows. �
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2.1 The parameter-free dual programs

Property (c) of Proposition 1 suggests that the inequality constraint zT u++(1−z)T v ≤ 0, or equivalently,
the equality constraint zT u+ + (1 − z)T v = 0 (because all variables are nonnegative and z ∈ {0, 1}m),
should have an important role to play in an IP approach to the LPEC. This motivates us to define two
value functions on the binary vectors. Specifically, for any z ∈ {0, 1}m, define

< ∪ {±∞} 3 ϕ(z) ≡ maximum
(λ,u±,v)

fT λ + qT ( u+ − u− )

subject to AT λ−NT ( u+ − u− ) = c

BT λ−MT ( u+ − u− )− v ≤ d

( λ, u±, v ) ≥ 0

and zT u+ + (1− z)T v ≤ 0

(9)

and its homogenization:

{ 0,∞} 3 ϕ0(z) ≡ maximum
(λ,u±,v)

fT λ + qT ( u+ − u− )

subject to AT λ−NT ( u+ − u− ) = 0

BT λ−MT ( u+ − u− )− v ≤ 0

( λ, u±, v ) ≥ 0

and zT u+ + (1− z )T v ≤ 0.

(10)

Clearly, (10) is always feasible and ϕ0(z) takes on the values 0 or∞ only. Unlike (10) which is independent
of the pair (c, d), (9) depends on (c, d) and is not guaranteed to be feasible; thus ϕ(z) ∈ < ∪ {±∞}. For
any pair (c, d) for which (9) is feasible, we have

ϕ(z) < ∞ ⇔ ϕ0(z) = 0.

To this equivalence we add the following proposition that describes a one-to-one correspondence between
(10) and the feasible pieces of the LPEC. The support of a vector z, denoted supp(z) is the index set of
the nonzero components of z.

Proposition 2. For any z ∈ {0, 1}m, ϕ0(z) = 0 if and only if the LP(α) is feasible, where α ≡ supp(z).

Proof. The dual of (10) is

minimize
(x,y)

0T x + 0T y

subject to Ax + By ≥ f

θ z ≥ q + Nx + My ≥ 0

and θ (1− z ) ≥ y ≥ 0.

(11)

By LP duality, it follows that if ϕ0(z) = 0, then (11) is feasible for any θ > 0; conversely, if (11) is feasible
for some θ > 0, then ϕ0(z) = 0. In turn, it is easy to see (11) is feasible for some θ > 0 if and only if the
LP(α) is feasible for α ≡ supp(z). �

For subsequent purposes, it would be useful to record the following equivalence between the extreme
points/rays of the feasible region of (9) and those of the feasible set Ξ.

Proposition 3. For any z ∈ [0, 1]m, a feasible solution (λp, u±,p, vp) of (9) is an extreme point in this
region if and only if it is extreme in Ξ; a feasible ray (λr, u±,r, vr) of (9) is extreme in this region if and
only if it is extreme in Ξ.
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Proof. We prove only the first assertion; that for the second is similar. The sufficiency is obvious. To
prove the converse, suppose that (λp, u±,p, vp) is an extreme solution of (9). Then this triple must be
an element of Ξ. If it lies on the line segment of two other feasible solutions of Ξ, then the latter two
solutions must satisfy the additional constraint zT u+ + (1 − z)T v ≤ 0. Therefore, (λp, u±,p, vp) is also
extreme in Ξ. �

2.2 The set Z and a minimax formulation

We now define the key set of binary vectors:

Z ≡ { z ∈ { 0, 1 }m : ϕ0(z) = 0 } ,

which, by Proposition 2, is the feasibility descriptor of the feasible region of the LPEC (1). Note that Z
is a finite set. We also define the minimax integer program:

minimize
z∈Z

ϕ(z) ≡



maximum
(λ,u±,v)

fT λ + qT ( u+ − u− )

subject to AT λ−NT ( u+ − u− ) = c

BT λ−MT ( u+ − u− )− v ≤ d

( λ, u±, v ) ≥ 0

and zT u+ + (1− z)T v ≤ 0.


(12)

Since Z is a finite set, and since ϕ(z) ∈ <∪ {−∞} for z ∈ Z, it follows that argmin
z∈Z

ϕ(z) 6= ∅ if and only

if Z 6= ∅. The following result rephrases the three basic facts connecting the LPEC (1) and its LP pieces
in terms of the IP (12).

Theorem 4. The following three statements hold:

(a) the LPEC (1) is infeasible if and only if min
z∈Z

ϕ(z) =∞ (i.e., Z = ∅);

(b) the LPEC (1) is feasible and has an unbounded objective value if and only if min
z∈Z

ϕ(z) = −∞ (i.e.,

z ∈ Z exists such that ϕ(z) = −∞);

(c) the LPEC (1) attains a finite optimal objective value if and only if −∞ < min
z∈Z

ϕ(z) <∞.

In all cases, LPECmin = min
z∈Z

ϕ(z); moreover, for any z ∈ {0, 1}m for which ϕ(z) > −∞, LPECmin ≤ ϕ(z).

Proof. Statement (a) is an immediate consequence of Proposition 2. Statement (b) is equivalent to
saying that the LPEC (1) is feasible and has an unbounded objective if and only if z ∈ {0, 1}m exists
such that ϕ0(z) = 0 and ϕ(z) = −∞. Suppose that the LPEC (1) is feasible and unbounded. Then an
index set α ⊆ {1, · · · ,m} exists such that the LP(α) is feasible and unbounded. Letting z ∈ {0, 1}m be
such that supp(z) = α and ᾱ be the complement of α in {1, · · · ,m}, we have ϕ0(z) = 0. Moreover, the
dual of the (unbounded) LP(α) is

maximize
(λ,uᾱ,u−α )

fT λ + ( qᾱ )T uᾱ − ( qα )T u−α

subject to AT λ− ( Nᾱ• )T uᾱ + ( Nα• )T u−α = c

( B•ᾱ )T λ− ( Mᾱᾱ )T uᾱ + ( Mαᾱ )T u−α ≤ dᾱ

and (λ, u−α ) ≥ 0,

(13)
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which is equivalent to the problem (9) corresponding to the binary vector z defined here. (Note, the •
in the subscripts is the standard notation in linear programming, denoting rows/columns of matrices.)
Therefore, since (13) is infeasible, it follows that ϕ(z) = −∞ by convention. Conversely, suppose that
z ∈ {0, 1}m exists such that ϕ0(z) = 0 and ϕ(z) = −∞. Let α ≡ supp(z) and ᾱ ≡ complement of α
in {1, · · · ,m}. It then follows that (11), and thus the LP(α), is feasible. Moreover, since ϕ(z) = −∞,
it follows that (13), being equivalent to (9), is infeasible; thus the LP(α) is unbounded. Statement (c)
follows readily from (a) and (b). The equality between LPECmin and min

z∈Z
ϕ(z) is due to the fact that the

maximizing LP defining ϕ(z) is essentially the dual of the piece LP(α). To prove the last assertion of
the theorem, let z ∈ {0, 1}m be such that ϕ(z) > −∞. Without loss of generality, we may assume that
ϕ(z) <∞. Thus the LP (9) attains a finite maximum; hence ϕ0(z) = 0. Therefore z ∈ Z and the bound
LPECmin ≤ ϕ(z) holds readily. �

3 The Benders Approach

In essence, our strategy for solving the LPEC (1) is to apply a Benders approach to the minimax IP
(12). For this purpose, we let

{ (
λp,i, u±,p,i, vp,i

) }K

i=1
and

{ (
λr,j , u±,r,j , vr,j

) }L

j=1
be the finite set of

extreme points and extreme rays of the polyhedron Ξ. Note that K ≥ 1 if and only if Ξ 6= ∅. (These
extreme points and rays will be generated as needed. For the discussion in this section, we take them as
available.) In what follows, we derive a restatement of Theorem 4 in terms of these extreme points and
rays.

The IP (12) can be written as:

minimize
z∈Z



maximum
( ρp, ρr )≥0

K∑
i=1

ρp
i

[
fT λp,i + qT (u+,p,i − u−,p,i)

]
+

L∑
j=1

ρr
j

[
fT λr,j + qT (u+,r,j − u−,r,j)

]

subject to
K∑

i=1

ρp
i

[
zT u+,p,i + (1− z)T vp,i

]
+

L∑
j=1

ρr
j

[
zT u+,r,j + (1− z)T vr,j

]
≤ 0

and
K∑

i=1

ρp
i = 1,


(14)

which is the master IP. It turns out that the set Z can be completely described in terms of certain ray
cuts, whose definition requires the index set:

L ≡
{

j ∈ { 1, · · · , L } : fT λr,j + qT (u+,r,j − u−,r,j) > 0
}

.

The following proposition shows that the set Z can be described in terms of satisfiability inequalities
using the extreme rays in L.

Proposition 5. Z =

 z ∈ {0, 1}m :
∑

`:u+,r,j
` >0

z` +
∑

`:vr,j
` >0

( 1− z` ) ≥ 1, ∀ j ∈ L

.

Proof. This is obvious because ϕ0(z) is equal to

maximize
ρr≥0

L∑
j=1

ρr
j

[
fT λr,j + qT ( u+,r,j − u−,r,j )

]

subject to
L∑

j=1

ρr
j

[
zT u+,r,j + (1− z)T vr,j

]
≤ 0
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and the latter maximization problem has a finite optimal solution if and only if

fT λr,j + qT ( u+,r,j − u−,r,j ) > 0 =⇒ zT u+,r,j + (1− z)T vr,j > 0

⇐⇒
∑

`:u+,r,j
` >0

z` +
∑

`:vr,j
` >0

( 1− z` ) ≥ 1.

Therefore, the equality between Z and the right-hand set is immediate. �

An immediate corollary of Proposition 5 is that it provides a certificate of infeasibility for the LPEC.

Corollary 6. If R ⊆ L exists such that z ∈ {0, 1}m :
∑

`:u+,r,j
` >0

z` +
∑

`:vr,j
` >0

( 1− z` ) ≥ 1, ∀ j ∈ R

 = ∅,

then the LPEC (1) is infeasible.

Proof. The assumption implies that Z = ∅. Thus the infeasibility of the LPEC follows from Theo-
rem 4(a). �

In view of Proposition 5, (14) is equivalent to:

minimize
z∈Z



maximum
ρp≥0

K∑
i=1

ρp
i

[
fT λp,i + qT (u+,p,i − u−,p,i)

]

subject to
K∑

i=1

ρp
i

[
zT u+,p,i + (1− z)T vp,i

]
≤ 0

and
K∑

i=1

ρp
i = 1,


. (15)

Note that the LPECmin is equal to the minimum objective value of (15). Similar to the inequality:∑
`:u+,r,j

` >0

z` +
∑

`:vr,j
` >0

( 1− z` ) ≥ 1,

which we call a ray cut (because it is induced by an extreme ray), we will make use of a point cut:∑
`:u+,p,i

` >0

z` +
∑

`:vp,i
` >0

( 1− z` ) ≥ 1,

that is induced by an extreme point (λp,i, u±,p,i, vp,i) of Ξ chosen from the following collection:

K ≡
{

i ∈ { 1, · · · ,K } : fT λp,i + qT ( u+,p,i − u−,p,i ) = ϕ(z) for some z ∈ Z
}

.

Note that K 6= ∅ ⇒ Z 6= ∅, which in turn implies that the LPEC (1) is feasible. Moreover,

min
i∈K

[
fT λp,i + qT ( u+,p,i − u−,p,i )

]
≥ LPECmin.
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For a given pair of subsets P ×R ⊆ K × L, let

Z(P,R) ≡


z ∈ { 0, 1 }m :

∑
`:u+,r,j

` >0

z` +
∑

`:vr,j
` >0

( 1− z` ) ≥ 1, ∀ j ∈ R

∑
`:u+,p,i

` >0

z` +
∑

`:vp,i
` >0

( 1− z` ) ≥ 1, ∀ i ∈ P

 .

We have the following result.

Proposition 7. If there exists P ×R ⊆ K × L such that

min
i∈P

[
fT λp,i + qT ( u+,p,i − u−,p,i )

]
> LPECmin,

then argmin
z∈Z

ϕ(z) ⊆ Z(P,R).

Proof. Let z̃ ∈ Z be a minimizer of ϕ(z) on Z. (The proposition is clearly valid if no such minimizer
exists.) If z̃ 6∈ Z(P,R), then there exists i ∈ P such that∑

`:u+,p,i
` >0

z̃` +
∑

`:vp,i
` >0

( 1− z̃` ) = 0.

Hence, (λp,i, u±,p,i, vp,i) is feasible to the LP (9) corresponding to ϕ(z̃); thus

LPECmin = ϕ(z̃) ≥ fT λp,i + qT (u+,p,i − u−,p,i) > LPECmin,

which is a contradiction. �

Analogous to Corollary 6, we have the following corollary of Proposition 7.

Corollary 8. If there exists P ×R ⊆ K × L with P 6= ∅ such that Z(P,R) = ∅, then

LPECmin = min
i∈P

[
fT λp,i + qT ( u+,p,i − u−,p,i )

]
∈ (−∞,∞ ). (16)

Proof. Indeed, if the claimed equality does not hold, then argmin
z∈Z

ϕ(z) = ∅. But this implies Z = ∅,

which contradicts the assumption that P 6= ∅. �

Combining Corollaries 6 and 8, we obtain the desired restatement of Theorem 4 in terms of the
extreme points and rays of Ξ.

Theorem 9. The following three statements hold:

(a) the LPEC (1) is infeasible if and only if a subset R ⊆ L exists such that Z(∅,R) = ∅;

(b) the LPEC (1) is feasible and has an unbounded objective if and only if Z(K,L) 6= ∅;

(c) the LPEC (1) attains a finite optimal objective value if and only if a pair P ×R ⊆ K×L exists with
P 6= ∅ such that Z(P,R) = ∅.

Proof. Statement (a) follows easily from Corollary 6 by noting that a subset R ⊆ L exists such that
Z(∅,R) = ∅ if and only if Z = Z(∅,L) = ∅. To prove (b), suppose first Z(K,L) 6= ∅. Let ẑ ∈ Z(K,L).
Then ẑ ∈ Z. We claim that ϕ(ẑ) = −∞; i.e., the LP (9) corresponding to ẑ is infeasible. Assume
otherwise, then since ϕ0(ẑ) = 0, it follows that ϕ(ẑ) is finite. Hence there exists an extreme point
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(λp,i, u±,p,i, vp,i) of the LP (9) corresponding to ẑ such that fT λp,i + qT (u+,p,i − u−,p,i) = ϕ(ẑ); thus the
index i ∈ K, which implies ∑

`:u+,p,i
` >0

ẑ` +
∑

`:vp,i
` >0

( 1− ẑ` ) ≥ 1,

because ẑ ∈ Z(K,L). But this contradicts the feasibility of (λp,i, u±,p,i, vp,i) to the LP (9) corresponding
to ẑ. Therefore, the LPEC (1) is feasible and has an unbounded objective value; thus, the “if” statement
in (b) holds. Conversely, suppose LPECmin = −∞. By Theorem 4, it follows that ẑ ∈ Z exists such that
ϕ(ẑ) = −∞; i.e., the LP (9) corresponding to ẑ is infeasible. In turn, this means that

ẑ T u+,p,i + (1− ẑ )T vp,i > 0

for all i = 1, · · · ,K; or equivalently, ∑
`:u+,p,i

` >0

ẑ` +
∑

`:vp,i
` >0

( 1− ẑ` ) ≥ 1,

for all i = 1, · · · ,K. Consequently, ẑ ∈ Z(K,L). Hence, statement (b) holds. Finally, the “if” statement
in (c) follows from Corollary 8. Conversely, if the LPEC (1) has a finite optimal solution, then by (b),
it follows that Z(K,L) = ∅. Since the LPEC (1) is feasible, K 6= ∅ by (a), establishing the “only if”
statement in (c). �

Theorem 9 constitutes the theoretical basis for the algorithm to be presented in Section 5 for resolving
the LPEC. Through the successive generation of extreme points and rays of Ξ, the algorithm searches
for a pair of subsets P ×R such that Z(P,R) = ∅. If such a pair can be successfully identified, then the
LPEC is either infeasible (P = ∅) or attains a finite optimal solution (P 6= ∅). If no such pair is found,
then the LPEC is unbounded. In the algorithm, the last case is identified with a binary vector z ∈ Z
with ϕ(z) = −∞, i.e., the LP (9) is infeasible. Based on the value function ϕ(z) and the point/ray cuts,
the algorithm will be shown to terminate in finite time.

4 Simple Cuts and Sparsification

In this section, we explain several key steps in the main algorithm to be presented in the next section.
The first idea is a version of the well-known Gomory cut in integer programming specialized to the LPEC
and which has previously been employed for bilevel LPs; see [5]; the second idea aims at “sparsifying”
the ray/point cuts to facilitate the computation of elements of the working sets Z(P,R). Specifically, a
satisfiability constraint:∑

i∈I ′
zi +

∑
j∈J ′

( 1− zj ) ≥ 1 is sparser than
∑
i∈I

zi +
∑
j∈J

( 1− zj ) ≥ 1

if I ′ ⊆ I and J ′ ⊆ J . In general, a satisfiability inequality cuts off certain LP pieces of the LPEC;
the sparser the inequality is the more pieces it cuts off. Thus, it is desirable to sparsify a cut as much
as possible. Nevertheless, sparsification requires the solution of linear subprograms; thus one needs to
balance the work required with the benefit of the process.
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4.1 Simple cuts

The following discussion is a minor variant of that presented in [5] for bilevel LPs. Consider the LP
relaxation of the LPEC (1):

minimize
(x,y)

cT x + dT y

subject to Ax + By ≥ f

and 0 ≤ y, w ≡ q + Nx + My ≥ 0,

(17)

where the orthogonal condition yT w = 0 is dropped. Assume that by solving this LP, an optimal solution
is obtained that fails the latter orthogonality condition, say yiwi > 0 in this solution. A basic solution of
the LP provides an expression of wi and yi as follows:

wi = wi0 −
∑

sj :nonbasic
aj sj and yi = yi0 −

∑
sj :nonbasic

bj sj

with min(wi0, yi0) > 0. It is not difficult to show that the following inequality must be satisfied by all
feasible solutions of the LPEC (1) ∑

sj : nonbasic
max(aj ,bj)>0

max
(

aj

wi0
,

bj

yi0

)
sj ≥ 1 (18)

Note that if aj ≤ 0 for all nonbasic j, then wi > 0 = yi for every feasible solution of the LPEC (1). A
similar remark can be made if bj ≤ 0 for all nonbasic j.

Following the terminology in [5], we call the inequality (18) a simple cut. Multiple such cuts can be
added to the constraint Ax + By ≥ f , resulting in a modified inequality Ãx + B̃y ≥ f̃ . We can generate
and add even more simple cuts by repeating the above step. This strategy turns out to be a very effective
pre-processor for the algorithm to be described in the next section. At the end of this pre-processor, we
obtain an optimal solution (x̄, ȳ, w̄) of (17) that remains infeasible to the LPEC (otherwise, this solution
would be optimal for the LPEC); the optimal objective value cT x̄ + dT ȳ provides a valid lower bound
for LPECmin. (Note: if (17) is unbounded, then the pre-processor does not produce any cuts or a finite
lower bound.)

LPEC feasibility recovery

Occurring in many applications of the LPEC, the special case B = 0 deserves a bit more discussion. First
note that in this case, the modified matrix B̃ is not necessarily zero. Nevertheless, the solution (x̄, ȳ, w̄)
obtained from the simple-cut pre-processor can be used to produce a feasible solution to the LPEC (1)
by simply solving the linear complementarity problem (LCP): 0 ≤ y ⊥ q + Nx̄ + My ≥ 0 (assuming
that the matrix M has favorable properties so that this step is effective). Letting ȳ ′ be a solution to
the latter LCP, the objective value cT x̄ + dT ȳ ′ yields a valid upper bound to LPECmin. This recovery
procedure of an LPEC feasible solution can be extended to the case where B 6= 0. (Incidentally, this class
of LPECs is generally “more difficult” than the class where B = 0, where the difficulty is determined by
our empirical experience from the computational tests.) Indeed, from any feasible solution (x̄, ȳ, w̄) to
the LP relaxation of the LPEC (1) but not to the LPEC itself, we could attempt to recover a feasible
solution to the LPEC along with an element in Z by either solving the LP(α), where α ≡ {i : ȳi ≤ w̄i},
or by solving ϕ(z), where zα = 1 and zᾱ = 0. A feasible solution to this LP piece yields a feasible solution
to the LPEC and a finite upper bound. In general, there is no guarantee that this procedure will always
be successful; nevertheless, it is very effective when it works.
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4.2 Cut management

A key step in our algorithm involves the selection of elements in the sets Z(P,R) for various index pairs
(P,R). Generally speaking, this involves solving integer subprograms. Recognizing that the constraints
in each Z(P,R) are of the satisfiability type, we could in principle employ special algorithms for imple-
menting this step (see [7, 27] and the references therein for some such algorithms). To facilitate such
selection, we have developed a special heuristic that utilizes a valid upper bound of LPECmin to sparsify
the terms in the ray/point cuts in a working set. In what follows, we describe how the algorithm manages
these cuts.

There are three pools of cuts, labeled Zwork–the working pool, Zwait–the wait pool, and Zcand–the
candidate pool. Inequalities in Zwork are valid sparsifications of those in Z(P,R) corresponding to a
current pair (P,R). Thus, the set of binary vectors satisfying the inequalities in Zwork, which we denote
Ẑwork, is a subset of Z(P,R). Inequalities in Zcand are candidates for sparsification; the sparsification
procedure described below always ends with this set empty. The decision of whether or not to sparsify
a valid inequality is made according to a current LPEC upper bound and a small scalar δ > 0. In
essence, the sparsification is an effective way to facilitate the search for a feasible element in Ẑwork. At
one extreme, a sparsest inequality with only one term in it automatically fixes one complementarity;
e.g., z1 ≥ 1 fixes w1 = 0; at another extreme, it is computationally more difficult to find feasible points
satisfying many dense inequalities.

We sparsify an inequality ∑
i∈I

zi +
∑
j∈J

( 1− zj ) ≥ 1 (19)

in the following way. Let I = I1 ∪ I2 be a partition of I into two disjoint subsets I1 and I2; similarly,
let J = J1 ∪ J2. We split (19), which we call the parent, into two sub-inequalities:∑

i∈I1

zi +
∑
j∈J1

( 1− zj ) ≥ 1 and
∑
i∈I1

zi +
∑
j∈J2

( 1− zj ) ≥ 1; (20)

and test both to see if they are valid for the LPEC. To test the left-hand inequality, we consider the LP
relaxation (17) of the LPEC (1) with the additional constraints wi = (q + Nx + My)i = 0 for i ∈ I1
and yi = 0 for i ∈ J1, which we call a relaxed LP with restriction. If this LP has an objective value
greater than the current LPECub, then we have successfully sparsified the inequality (19) into the sparser
inequality: ∑

i∈I1

zi +
∑
j∈J1

( 1− zj ) ≥ 1, (21)

which must be valid for the LPEC. Otherwise, using the feasible solution to the relaxed LP, we employ
the LPEC feasibility recovery procedure to compute an LPEC feasible solution along with a binary z ∈ Z.
If successful, one of two cases happen: if ϕ(z) ≥ LPECub, then a new cut can be generated; otherwise,
we have reduced the LPEC upper bound. Either case, we obtain positive progress in the algorithm.
If no LPEC feasible solution is recovered, then we save the cut (21) in the wait pool Zwait for later
consideration. In essence, cuts in the wait pool are not yet proven to be valid for the LPEC; they will be
revisited when there is a reduction in LPECub. Note that every inequality in Zwait has an LP optimal
objective value associated with it that is less than the current LPEC upper bound.

In our experiment, we randomly divide the sets I and J roughly into two equal halves each and adopt
a strategy that attempts to sparsify the root inequality (19) as much as possible via a random branching
rule. The following illustrates one such division:

z1 + z3 + z4 + (1− z2) + (1− z6) ≥ 1
↙ ↘

z1 + z3 + (1− z2) ≥ 1 z4 + (1− z6) ≥ 1.
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We use a small scalar δ > 0 to help decide on the subsequent branching. In essence, we only branch if
the inequality appears strong. Solving LPs, the procedure below sparsifies a given valid inequality for
the LPEC, called the root of the procedure.

Sparsification procedure. Let (19) be the root inequality to be sparsified, LPECub be the current
LPEC upper bound, and δ > 0 be a given scalar. Branch (19) into two sub-inequalities (20), both of
which we put in the set Zcand.

Main step. If Zcand is empty, terminate. Otherwise pick a candidate inequality in Zcand, say the left
one in (20) with the corresponding pair of index sets (I1,J1). Solve the LP relaxation (17) of the
LPEC (1) with the additional constraints wi = (q + Nx + My)i = 0 for i ∈ I1 and yi = 0 for i ∈ J1,
obtaining an LP optimal objective value, say LPrlx ∈ < ∪ {±∞}. We have the following three cases.

• If LPrlx ∈ [ LPECub,LPECub + δ ], move the candidate inequality from Zcand into Zwork and remove
its parent; return to the main step.

• If LPrlx < LPECub, apply the LPEC feasibility recovery procedure to the feasible solution at
termination of the current relaxed LP with restriction. If the procedure is successful, return to the
main step with either a new cut or a reduced LPECub. Otherwise, move the incumbent candidate
inequality from Zcand into Zwait ; return to the main step.

• If δ + LPECub < LPrlx, move the candidate inequality from Zcand into Zwork and remove its parent;
further branch the candidate inequality into two sub-inequalities, both of which we put into the
candidate pool Zcand; return to the main step.

During the procedure, the set Zcand may grow from the initial size of 2 inequalities when the root of
the procedure is first split. Nevertheless, by solving finitely many LPs, this set will eventually shrink to
empty; when that happens, either we have successfully sparsified the root inequality and placed multiple
sparser cuts into Zwork, or some sparser cuts are added to the pool Zwait, waiting to be proven valid for
the LPEC in subsequent iterations. Note that associated with each inequality in Zwait is the value LPrlx.

5 The IP Algorithm

We are now ready to present the parameter-free IP-based algorithm for resolving an arbitrary LPEC
(1). Subsequently, we will establish that the algorithm will successfully terminate in a finite number
of iterations with a definitive resolution of the LPEC in one of its three states. Referring to a return
to Step 1, each iteration consists of solving one feasibility IP of the satisfiability kind, a couple LPs to
compute ϕ(ẑ) and possibly ϕ0(ẑ) corresponding to a binary vector ẑ obtained from the IP, and multiple
LPs within the sparsification procedure associated with an induced point/ray cut.
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The algorithm

Step 0. (Preprocessing and initialization) Generate multiple simple cuts to tighten the complemen-
tarity constraints. If any of the LPs encountered in this step is infeasible, then so is the LPEC (1).
In general, let LPEClb (−∞ allowed) and LPECub (∞ allowed) be valid lower and upper bounds of
LPECmin, respectively. Let δ > 0 be a small scalar. [A finite optimal solution to a relaxed LP pro-
vides a finite lower bound, and a feasible solution to the LPEC, which could be obtained by the LPEC
feasibility recovery procedure, provides a finite upper bound.] Set P = R = ∅ and Zwork = Zwait = ∅.
(Thus, Ẑwork = {0, 1}m.)

Step 1. (Solving a satisfiability IP) Determine a vector ẑ ∈ Ẑwork. If this set is empty, go to Step 2.
Otherwise go to Step 3.

Step 2. (Termination: infeasibility or finite solvability) If P = ∅, we have obtained a certificate of
infeasibility for the LPEC (1); stop. If P 6= ∅, we have obtained a certificate of global optimality for
the LPEC (1) with LPECmin given by (16); stop.

Step 3. (Solving dual LP) Compute ϕ( ẑ ) by solving the LP (9). If ϕ(ẑ) ∈ (−∞,∞), go to Step 4a.
If ϕ(ẑ) =∞, proceed to Step 4b. If ϕ(ẑ) = −∞, proceed to Step 4c.

Step 4a. (Adding an extreme point) Let (λp,i, u±,p,i, vp,i) ∈ K be an optimal extreme point of Ξ. There
are 3 cases.

• If ϕ(ẑ) ∈ [ LPECub, LPECub + δ], let P ← P ∪ {i} and add the corresponding point cut to Zwork;
return to Step 1.

• If ϕ(ẑ) > LPECub + δ, let P ← P ∪ {i} and add the corresponding point cut to Zwork. Apply the
sparsification procedure to the new point cut, obtaining an updated Zwork and Zwait, and possibly
a reduced LPECub. If the LPEC upper bound is reduced during the sparsification procedure, go to
Step 5 to activate some of the cuts in the wait pool; otherwise, return to Step 1.

• If ϕ(ẑ) < LPECub, let LPECub ← ϕ(ẑ) and go to Step 5.

Step 4b. (Adding an extreme ray) Let (λr,j , u±,r,j , vr,j) ∈ L be an extreme ray of Ξ. Set R←− R∪{j}
and add the corresponding ray cut to Zwork. Apply the sparsification procedure to the new ray cut,
obtaining an updated Zwork and Zwait, and possibly a reduced LPECub. If the LPEC upper bound
is reduced during the sparsification procedure, go to Step 5 to activate some of the cuts in the wait
pool; otherwise, return to Step 1.

Step 4c. (Determining LPEC unboundedness) Solve the LP (10) to determine ϕ0(z). If ϕ0(z) = 0,
then the vector z and its support provide a certificate of unboundedness for the LPEC (1). Stop. If
ϕ0(z) =∞, go to Step 4b.

Step 5. Move all inequalities in Zwait with values LPrlx greater than (the just reduced) LPECub into
Zwork. Apply the sparsification procedure to each newly moved inequality with LPrlx > LPECub +
δ. Re-apply this step to the cuts in Zwait each time the LPEC upper bound is reduced from the
sparsification procedure. Return to Step 1 when no more cuts in Zwait are eligible for sparsification.

We have the following finiteness result.

Theorem 10. The algorithm terminates in a finite number of iterations.

Proof. The finiteness is due to several observations: (a) the set of m-dimensional binary vectors is finite,
(b) each iteration of the algorithm generates a new binary vector that is distinct from all those previously
generated, and (c) there are only finitely many cuts, sparsified or not. In turn, (a) and (c) are obvious;
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and (b) follows from the operation of the algorithm: whenever ϕ(ẑ) ≥ LPECub, the new point cut or
ray cut will cut off all binary vectors generated so far, including ẑ; if ϕ(ẑ) < LPECub, then ẑ cannot be
one of previously generated binary vectors because its ϕ-value is smaller than those of the other vectors.
�

5.1 A numerical example

We use the following simple example to illustrate the algorithm:

minimize
(x,y)

x1 + 2 y1 − y3

subject to x1 + x2 ≥ 5

x1, x2 ≥ 0

0 ≤ y1 ⊥ x1 − y3 + 1 ≥ 0

0 ≤ y2 ⊥ x2 + y1 + y2 ≥ 0

0 ≤ y3 ⊥ x1 + x2 − y2 + 2 ≥ 0.

(22)

Note that the LCP in the variable y is not derived from a convex quadratic program; in fact the matrix

M ≡

 0 0 −1
1 1 0
0 −1 0


has all principal minors nonnegative but is neither a R0-matrix nor copositive [9].

Initialization: Set the upper bound as infinity: LPECub = ∞. Set the working set Zwork and the
waiting set Zwait both equal to empty.

Iteration 1: Since Ẑwork = {0, 1}3, we can pick an arbitrary binary vector z. We choose z = (0, 0, 0)
and solve the dual LP (9):

maximize
(λ,u±,v)

5 λ + u+
1 + 2u+

3 − u−1 − 2 u−3

subject to λ − u+
1 + u−1 − u+

3 + u−3 ≤ 1

λ − u+
2 + u−2 − u+

3 + u−3 ≤ 0

−u+
2 + u−2 − v1 ≤ 2

−u+
2 + u−2 + u+

3 − u−3 − v2 ≤ 0

u+
1 − u−1 − v3 ≤ −1

v1 + v2 + v3 ≤ 0

( λ, u±, v ) ≥ 0,

(23)

which is unbounded, yielding an extreme ray with u+ = (0, 10/7, 10/7) and v = (0, 0, 0) and a corre-
sponding ray cut: z2 + z3 ≥ 1. (Briefly, this cut is valid since z2 = z3 = 0 implies both x2 + y1 + y2 = 0
and x1 + x2 − y2 + 2 = 0, which can’t both hold for nonnegative x and y.) Add this cut to Zwork and
initiate the sparsification procedure. This inequality z2 + z3 ≥ 1 can be branched into: z2 ≥ 1 or z3 ≥ 1.
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To test if z2 ≥ 1 is a valid cut, we form the following relaxed LP of (22) by restricting x2 + y1 + y2 = 0:

minimize
(x,y)

x1 + 2 y1 − y3

subject to x1 + x2 ≥ 5

x1 − y3 + 1 ≥ 0

x2 + y1 + y2 = 0

x1 + x2 − y2 + 2 ≥ 0

x, y ≥ 0.

(24)

An optimal solution of the LP (24) is (x1, x2, y1, y2, y3) = (5, 0, 0, 0, 6) with the optimal objective value
LPrlx = −1. This is not a feasible solution of the LPEC (22) because the third complementarity is
violated. The inequality z2 ≥ 1 is therefore placed in the waiting set Zwait. We then use (x1, x2) = (5, 0)
to recover an LPEC feasible solution by solving the LCP in the variable y. This yields y = (0, 0, 0) and
w = (6, 0, 7), and hence a corresponding vector z = (1, 0, 1). Using this z in (9), we get another dual
problem:

maximize
(λ,u±,v)

5 λ + u+
1 + 2u+

3 − u−1 − 2 u−3

subject to λ − u+
1 + u−1 − u+

3 + u−3 ≤ 1

λ − u+
2 + u−2 − u+

3 + u−3 ≤ 0

−u+
2 + u−2 − v1 ≤ 2

−u+
2 + u−2 + u+

3 − u−3 − v2 ≤ 0

u+
1 − u−1 − v3 ≤ −1

u+
1 + v2 + u+

3 ≤ 0

( λ, u±, v ) ≥ 0,

(25)

which has an optimal value 5 that is smaller than the current upper bound LPECub. So we update
the upper bound as LPECub = 5. Note that this update occurs during the sparsification step. A
corresponding optimal solution to (25) is u+ = (0, 1, 0) and v = (0, 0, 1). Hence we can add the point
cut: z2 + (1− z3) ≥ 1 to Zwork.

When we next proceed to the other branch: z3 ≥ 1, we have a relaxed LP:

minimize
(x,y)

x1 + 2 y1 − y3

subject to x1 + x2 ≥ 5

x1 − y3 + 1 ≥ 0

x2 + y1 + y2 ≥ 0

x1 + x2 − y2 + 2 = 0

x, y ≥ 0

(26)

Solving (26) gives an optimal value LPrlx = −1, which is smaller than LPECub, and a violated comple-
mentarity with w2 = 12 and y2 = 7. Adding z3 ≥ 1 to Zwait, we apply the LPEC feasibility recovering
procedure to x = (0, 5), and get a new LPEC feasible piece with z = (1, 1, 1). Substituting z into (9), we
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get another LP:
maximize

(λ,u±,v)
5 λ + u+

1 + 2u+
3 − u−1 − 2 u−3

subject to λ − u+
1 + u−1 − u+

3 + u−3 ≤ 1

λ − u+
2 + u−2 − u+

3 + u−3 ≤ 0

−u+
2 + u−2 − v1 ≤ 2

−u+
2 + u−2 + u+

3 − u−3 − v2 ≤ 0

u+
1 − u−1 − v3 ≤ −1

u+
1 + u+

2 + u+
3 ≤ 0

( λ, u±, v ) ≥ 0

(27)

which has an optimal objective value 0. So a better upper bound is found; thus LPECub = 0. A point
cut: 1− z3 ≥ 1 is derived from an optimal solution of (27). This cut obviously implies the previous cut:
z2 + (1− z3) ≥ 1. In order to reduce the work load of the IP solver, we can delete z2 + (1− z3) ≥ 1 from
Zwork and add in 1 − z3 ≥ 1 instead. So far, we have the updated upper bound: LPECub = 0 and the
working set Zwork defined by the two inequalities:

z2 + z3 ≥ 1 and 1− z3 ≥ 1. (28)

This completes iteration 1. During this one iteration, we have solved 5 LPs, the LPECub has improved
twice, and we have obtained 2 valid cuts.

Iteration 2: Solving a satisfiability IP yields a z = (0, 1, 0) ∈ Ẑwork. Indeed, any element in Ẑwork, which
is defined by the two inequalities in (28), must have z2 = 1 and z3 = 0; thus it remains to determine z1.
As it turns out, z1 is irrelevant. To see this, we substitute z = (0, 1, 0) into (9), obtaining

maximize
(λ,u±,v)

5 λ + u+
1 + 2u+

3 − u−1 − 2 u−3

subject to λ − u+
1 + u−1 − u+

3 + u−3 ≤ 1

λ − u+
2 + u−2 − u+

3 + u−3 ≤ 0

−u+
2 + u−2 − v1 ≤ 2

−u+
2 + u−2 + u+

3 − u−3 − v2 ≤ 0

u+
1 − u−1 − v3 ≤ −1

u+
2 + v1 + v3 ≤ 0

( λ, u±, v ) ≥ 0.

(29)

The LP (29) is unbounded and has an extreme ray where u+ = (0, 0, 10/7) and v = (0, 10/7, 0). So we
can add a valid ray cut: (1− z2) + z3 ≥ 1 to Zwork.

Termination: The updated working set Zwork consists of 3 inequalities:
z2 + z3 ≥ 1

1 − z3 ≥ 1

(1− z2) + z3 ≥ 1

 ,

which can be seen to be inconsistent. Hence we get a certificate of termination. Since there is one point
cut in Zwork, the LPEC (22) has an optimal objective value 0, which happens on the piece z = (1, 1, 1).
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(This termination can be expected from the fact that z2 = 1 and z3 = 0 for elements in the set Ẑwork

prior to the last ray cut; these values of z imply that y2 = w3 = 0, which are not consistent with the
nonnegativity of x. This inconsistency is detected by the algorithm through the generation of a ray cut
that leaves Ẑwork empty.) �

6 Computational Results

To test the effectiveness of the algorithm, we have implemented and compared it with a benchmark
algorithm from neos, which for the purpose here was chosen to be the filter solver implemented and
maintained by Sven Leyffer. We coded the algorithm in Matlab and used Cplex 9.1 to solve the
LPs and the satisfiability IPs. The experiments were run on a Dell desktop computer with 3.20GHz
Pentium 4 processor.

Our goal in this computational study is threefold: (A) to provide a certificate of global optimality
for LPECs with finite optimal solutions; (B) to determine the quality of the solutions obtained using the
simple-cut pre-processor; and (C) to demonstrate that the algorithm is capable of detecting infeasibility
and unboundedness for LPECs of these kinds. All problems are randomly generated. One at a time, a
total of bm/3c simple cuts are generated in the pre-processing step for each problem. To test (A) and (B),
the problems are generated to have optimal solutions; for (C), the problems are generated to be either
infeasible or have unbounded objective values. The algorithm does not make use of such information in
any way; instead, it is up to the algorithm to verify the prescribed problem status.

All problems have the nonnegativity constraint x ≥ 0. The computational results for the problems
with finite optima are reported in Figures 1, 2, and 3 and Table 1. The vertical axis in the figures refer
to objective values and the horizontal axis labels the number of iterations as defined in the opening
paragraph of Section 5. Each set of results contains 10 runs of problems with the same characteristics.
The three figures have m = 100, 300, and 50, respectively; the objective vectors c and d are nonnegative.
For Figures 1 and 2, the matrix B = 0, and the matrix M is generated with up to 2,000 nonzero entries
and of the form:

M ≡

[
D1 ET

−E D2

]
, (30)

with D1 and D2 being positive diagonal matrices of random order and E being arbitrary (thus M is
positive definite, albeit not symmetric). For Figure 3, B 6= 0 and the matrix M has no special structure
but has only 10% density. The rest of the data A, f , q, and N are generated to ensure LPEC feasibility,
and thus optimality (because c and d are nonnegative and the variables are nonnegative). Table 1 reports
the total number of LPs solved, excluding the bm/3c relaxed LPs in the pre-processor, in the results of
the three figures.

The computational results for the infeasible and unbounded LPECs are reported in Table 2, which
contains 3 sub-tables (a), (b), and (c). The first two sub-tables (a) and (b) pertain to feasible but
unbounded LPECs. For the problems in (a), we simply maximize the single x-variable whose A column
is positive. For the problems in (b), the objective vectors c and d are both negative. For the unbounded
problems, we set B = 0, q is arbitrary, and we generate A with a positive column and M given by (30).
The third sub-table (c) pertains to a class of infeasible LPECs generated as follows: q, N , and M are all
positive so that the only solution to the LCP: 0 ≤ y ⊥ q +Nx+My ≥ 0 for x ≥ 0 is y = 0; Ax+By ≥ f
is feasible for some (x, y) ≥ 0 with y 6= 0 but Ax ≥ f has no solution in x ≥ 0.

The main conclusions from the experiments are summarized below.

• The algorithm successfully terminates with the correct status of all the LPECs reported. (In fact, we
have tested many more problems than those reported and obtained similar success; there is only one
single unbounded LPEC for which the algorithm fails to terminate after 6,000 iterations without the
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definitive conclusion, even though the LPEC objective is noticeably tending to −∞. We cannot explain
this unique exceptional problem.)

• There is a significant set of LPECs for which the filter solutions are demonstrably suboptimal; in
spite of this expected outcome, filter is quite robust and efficient on all tested problems with finite
optima.

• Except for a handful of problems, the solutions obtained by the simple-cut pre-processor for all LPECs
with finite optima are within 6% of the globally optimal solutions, with the remaining few within 15%
to 20%, thereby demonstrating that very high-quality LPEC solutions can be produced efficiently by
solving a reasonable number of LPs.

• The sparsification procedure is quite effective; so is the LPEC feasibility recovery step. Indeed without
the latter, there is a significant percentage of problems where the algorithm fails to make progress after
3,000 iterations. With this step installed, all problems are resolved satisfactorily.

Concluding remarks. In this paper, we have presented a parameter-free IP based algorithm for the
global resolution of an LPEC and reported computational results with the application of the algorithm
for solving a set of randomly generated LPECs of moderate sizes. Continued research on refining the
algorithm and applying it to realistic classes of LPECs, such as the bilevel machine learning problems
described in [6, 28, 29] and other applied problems, is currently underway.
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Problem (comp100) # LPs (comp300) # LPs (comp50) # LPs
1 684 1890 7912
2 75 622 16469
3 292 1083 4098
4 275 0 13567
5 0 13 218
6 183 18 154
7 0 15 211
8 284 838 8
9 0 400 106
10 248 0 1321

Table 1: Total number of LPs solved, excluding the bm/3c relaxed LPs in the pre-processing step.

Problem # iters # cuts # LPs # iters # cuts # LPs # iters # cuts # LPs
1 2 2 7 3 2 11 2 1 1
2 3 3 11 321 254 701 1 1 3
3 2 2 7 3 2 11 3 4 7
4 2 1 6 513 372 1173 5 13 32
5 5 5 20 6 5 20 6 15 35
6 2 2 10 317 249 743 2 1 1
7 2 1 6 2 1 8 8 11 22
8 3 3 10 3 2 11 6 8 14
9 2 1 6 2 1 8 2 1 1
10 2 2 9 2 1 8 3 6 15

(a) (b) (c)

Table 2: Infeasible and unbounded LPECs with 50 complementarities.

# iters = number of returns to Step 1 = number of IPs solved
# cuts = number of satisfiability constraints in Zwork at termination
# LPs = number of LPs solved, excluding the bm/3c relaxed LPs in the pre-processing step
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Figure 1: Special LPECs with B = 0, A ∈ <90×100, and 100 complementarities.

Remark: The top value in the left vertical axis is the objective value of the LPEC feasible solution obtained at
termination of the pre-processor with the LPEC feasibility recovery step. The bottom value is verifiably LPECmin,
which coincides with the value from Filter, except in the second run of the left-hand column where the Filter

value is slightly higher. The horizontal axis labels the number of iterations (with the -1 added for the sake of
symmetrizing the axis). In several cases, the solution obtained from the pre-processor is immediately verified to be
globally optimal. The circles refer to the LPECub values and they are plotted each time the upper bound improves,
which may happen more than once during the sparsification step of an iteration; see the example in Subsection 5.1.
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Figure 2: Special LPECs with B = 0, A ∈ <200×300, and 300 complementarities.

Remark: The explanation for the figure is similar to that of Figure 1. In this set of problems, the Filter solutions
are shown to be suboptimal in 2 out of the 10 problems; for these two problems (the first two in the left-hand
column), the Filter value is the middle one on the left vertical axis.
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Figure 3: General LPECs with B 6= 0, A ∈ <55×50 and 50 complementarities

Remark: The LPEC feasibility recovery procedure is not employed in the pre-processor; thus there are only 2 values
on the left vertical axis: the Filter value and LPECmin. The Filter solutions are demonstrably suboptimal in all
these runs. There are several problems for which the number of iterations to verify global optimality is considerably
more than others, suggesting that further improvement to the algorithm is possible and that the case B 6= 0 is
considerably more challenging to solve than the case B = 0.
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