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Abstract The successful application of Support Vector Machines (SVMs), kernel methods and other
statistical machine learning methods requires selection of model parameters based on estimates of
the generalization error. This paper presents a novel approach to systematic model selection through
bilevel optimization. We show how modelling tasks for widely used machine learning methods can
be formulated as bilevel optimization problems and describe how the approach can address a broad
range of tasks — among which are parameter, feature and kernel selection. In addition, we also discuss
the challenges in implementing these approaches and enumerate opportunities for future work in this
emerging research area.

1 Introduction

Currently, Support Vector Machines (SVM) [12] and kernel methods enjoy enormous popularity in the
machine learning community. There are several reasons: theoretically, their foundations are rooted in
Structural Risk Minimization (SRM) [55], which leads to excellent generalization capabilities; practi-
cally, they are very flexible owing to the fact that they are modular and can be “kernelized” to capture
highly nonlinear relationships [52]; and computationally, they are tractable and can be applied to large
high-dimensional data sets which contain several thousand points. The kernel framework can be read-
ily adapted to many learning tasks, e.g. regression, classification, ranking, and novelty detection. One
other reason why SVMs may be considered one of the pre-eminent methods is because, with regard to
applicability, they have had wide ranging success on a variety of real-world applications. However, the
many papers reporting the success of such methods frequently gloss over an important issue: model
selection.

In kernel methods, the root learning task is to construct a linear function that minimizes a
regularized convex loss function. Nonlinear functions can then be constructed using the so-called “kernel
trick”. The resulting optimization problem is convex, but it typically contains hyper-parameters that
must be selected by the user. For example, in SVMs, the appropriate kernel function and tradeoff
parameter between error and regularization must both be selected. Certain loss functions, such as
the ε-insensitive loss, require the selection of additional hyper-parameters. There have been many
interesting attempts to pick these hyper-parameters; notable among these are approaches that use
bounds [10] or attempt to trace the complete regularization path of the SVM [32]. However, the most
systematic, commonly used and widely accepted method for selecting these hyper-parameters is still
T -fold cross validation (CV).
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The focus of this chapter is to demonstrate how T -fold cross-validation model selection for many
different learning tasks can be formulated as bilevel optimization problems. We begin with a review
of the cross-validation problem. We illustrate the bilevel programming model using support vector
regression as an example. Then, we introduce the generic T -fold CV formulation and discuss many
possible variations. We briefly review possible methods for solving the models and direct the reader to
references that present computational results for one approach applied to support vector regression and
classification. Solution of the other resulting problems is left as a significant and compelling challenge
to mathematical programming researchers.

1.1 Model Selection

The general predictive learning task is to construct a function using present data that performs well
on future data. A loss function specific to the learning tasks is used to measure how well the function
is performing. Cross validation (CV) is a method of estimating the out-of-sample generalization error
of the model for given hyper-parameters. Cross validation leaves out subsets of the training data,
trains models on the reduced sets of data, and then tests the resulting models on the left-out data.
Cross validation can be applied to arbitrary machine learning problems, gives a very good estimate of
generalization error (even for small data sets) which shows a strong correlation with the test error [20].
The CV step is typically followed by a post processing step in which the final model is trained on all
the available data, using the “optimal” hyper-parameters given by CV, to build the final model. The
efficacy is this model may further be examined by observing its performance on a hold-out test set.

To perform model selection, CV must be embedded within an optimization algorithm. In the
most common approach, Grid Search, CV is performed over a grid that discretizes the hyper-parameter
space of interest and involves, for T folds, training T models at each grid point. As the number of
hyper-parameters grows, so does the number of problems to be solved and cross validation becomes
prohibitively expensive. Efficiency can only be achieved at the expense of grid refinement and coarser
grids inevitably yield poor models. In fact, even for a small number of parameters, cross validation can
still be expensive for high-dimensional data sets. For example, feature selection for high-dimensional
data sets leads to a combinatorial explosion of grid points. Such problems are ubiquitous in machine
learning e.g., in feature selection [5,30], kernel construction [38,49], and multi-task learning [9,21]. For
such high-dimensional problems, greedy strategies such as stepwise regression, backward elimination,
filter methods, or genetic algorithms are used. Yet, these heuristic methods, including grid search,
have a fundamental deficiency in addition to their practical inefficiency; namely, they are incapable of
assuring the overall quality of the produced “solution”.

Another drawback in grid search is that the discretization is restricted to examining only a
finite set of points. Recent work on determining the full regularization path of support vector machines
underscores the fact that regularization parameter is continuous. In particular, the paper [32] argues
that the choice of the single regularization parameter, C, is critical and shows that it is quite tractable
to compute the SVM solution for all possible values of the regularization parameter C. But as it
is well known in optimization, this parametric programming approach for a single parameter is not
extendable to models with multiple parameters and certainly is not possible for models with a large
number of parameters. Bayesian methods can treat model parameters as random variables but then
the challenge becomes the choice of appropriate priors. In the end, out-of-sample testing is still the
gold standard for selecting parameters values. From the standpoint of “optimizing model selection”
using out-of-sample estimates, there is an urgent need for improved methodologies that combine sound
theoretical foundation and robust computational efficiency. This paper proposes one such methodology
that is based on the methods of bilevel optimization.

In addition to model selection for support vector machines through continuous cross validation,
the bilevel approach can also be applied to a wide variety of problems like semi-supervised learning,
predicting missing values in the data, kernel selection, multi-task learning and complexity minimiza-
tion. This is because each of these problems can be formulated as a bilevel program where the overall
testing/generalization objective is minimized in the “outer” (or upper) level subject to the learning
functions which are optimized in the “inner” (or lower) level. For example, in cross validation, training
is performed in the inner level and validation in the outer level. Prior bilevel approaches have been
developed and successfully used for inner-level problems with closed form solutions and a single para-
meter, e.g. the generalized cross-validation method for selecting the ridge parameter in ridge regression
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[29]. Still, these approaches are limited to a single hyper-parameter and inner-level function with a
closed-form solution.

Bilevel model selection offers several advantages over prior approaches. The most obvious
advantage is the ability to deal with multi-parametric model selection and deal with them in continuous
rather than discrete space. This is possible because of recent advances in bilevel programming in the
optimization community, which permit the systematic treatment of models based on different loss and
regularization functions and kernels. In addition to being able to incorporate existing methods, the
bilevel approach offers a broad framework in which novel regularization methods and generalization
measures can be developed. Most significantly, these advantages allow for improved model selection.

1.2 Bilevel Programming

In this subsection, we introduce the bilevel methodology by means of a brief historical perspective.
Succinctly, bilevel programs are a class of hierarchical optimization problems in variables x and y,
with the optimal x being chosen by solving a constrained optimization problem whose constraints
themselves are optimization problems in y, or possibly both x and y. In operations research literature,
the class of bilevel optimization problems was introduced by Bracken and McGill [6], and applied to
defense problems like minimum-cost weapon mix and economic problems like optimal production and
marketing decision making models. Their work is closely related to the extensively studied economic
problem of the Stackelberg game [54], whose origin predates the work of Bracken and McGill.

Stackelberg used a hierarchical model to describe the market situation where different decision
makers try to optimize their decisions based on individually different objectives according to some
hierarchy. The Stackelberg game can be considered an extension of the well-known Nash game. In the
Nash game, there are T players, each of whom has a strategy set, Yt, and the objective of player t is
chose a strategy, yt ∈ Yt, given that the other players have already chosen theirs, to minimize some
utility function. Thus, each player chooses a strategy based on the choices of the other players and
there is no hierarchy.

In contrast, in the Stackelberg game, there is a hierarchy where a distinctive player, called the
leader is aware of the choices of the other players, called the followers. Thus, the leader, being in a
superior position with regard to everyone else can achieve the best objective while forcing the followers
to respond to this choice of strategy by solving the Stackelberg game. Consider the case of a single
leader and follower. Let X and Y denote the strategy sets for the leader and follower; let F (x, y) and
f(x, y) be their utility functions respectively. Based on the selection, x, of the leader, the follower can
select the best strategy y(x) ∈ Y such that f(x, y) is maximized i.e.,

y(x) ∈ Ψ(x) = arg max
y∈Y

f(x, y). (1)

The leader then computes the best strategy x ∈ X as (see Figure 1),

x ≡ max
x∈X

{F (x, y) | y ∈ Ψ(x)} . (2)

Equations (1) and (2) can be combined to express the Stackelberg game compactly as

max
x∈X, y

F (x, y)

s.t. y ∈ arg max
η∈Y

f(x, η). (3)

Bilevel programs are more general than Stackelberg games in the sense that the strategy sets, also
known as admissible sets, can depend on both x and y. This leads us to the general bilevel program
formulated by Bracken and McGill:

max
x∈X, y

F (x, y) outerlevel

s.t. G(x, y) ≤ 0,

y ∈

{
arg max

y∈Y
f(x, y)

s.t. g(x, y) ≤ 0

}
. innerlevel

(4)
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Fig. 1 The Stackelberg game (left), showing the hierarchy between the leader and the follower; Cross validation
modelled as a bilevel program (right), showing the interaction between the parameters, which are optimized
in the outer level and the models which are trained in the inner level.

The bilevel program, (4), is a generalization of several well-known optimization problems as noted
in [18]. If F (x, y) = −f(x, y), we have the classical minimax problem; if F (x, y) = f(x, y), we have a
realization of the decomposition approach to optimization problems; if the dependence of both problems
on y is dropped, we have bicriteria optimization.

Now, a given model selection problem can be recast in the bilevel framework by optimizing
the generalization criteria in the outer level while performing the required machine learning task in
the inner level (see Figure 1). This reformulation gives rise to a significant difficulty: most machine
learning problems are convex and differentiable, while the bilevel program is non-convex and functions
like Ψ(x), which are not even Fréchet differentiable in general, occur in the constraints — for example,
in (1). There exist techniques to convert bilevel programs into solvable optimization problems such
as using implicit function theorems. However, we will restrict our attention to the approach where
the inner-level problems are replaced by their Karush-Kuhn-Tucker conditions, a semi-infinite system
of inequalities or finite-dimensional variational inequalities. Such an optimization problem is called a
Mathematical Program with Equilibrium Constraints (MPEC).

The systematic study of the bilevel optimization problem and its MPEC extension attracted
the intensive attention of mathematical programmers about a decade ago with the publication of a
focused monograph [39], which is followed by two related monographs, [50] and [18]. During the past
decade, there has been an explosion of research on these optimization problems. See the annotated bib-
liography [19] which contains many references. In general, bilevel programs/MPECs provide a powerful
computational framework for dealing with hyper-parameter identification problems in an optimization
setting. As such, they offer a novel paradigm for dealing with the model selection problems described
in this chapter. We illustrate the bilevel paradigm on a specific learning task — linear SV regression
— and then proceed with the more general formulation.

2 Parameter Selection for Linear SV Regression

Cross validation for support vector regression was the first problem to reformulated as a bilevel program
that can perform parameter selection [3]. The learning task is to construct a linear regression function
that minimizes the ε-insensitive error regularized by the 2-norm of the weights of the linear function.
Thus, SV regression has two hyper-parameters to be picked by T -fold cross validation. More specifically
the goal is to find a function, f(x) = x′w, such that the the function generalizes well on future data
e.g. f(x) ≈ y and, typically the generalization error is estimated by cross validation.
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2.1 Cross validation

We start with a few words about our notation. The training set consists of ` pairs of data and labels,
{(xi, yi)}`

i=1 ⊂ Rn+1, denoted by Ω; thus, |Ω| = `. Let the set of indices for the points in Ω be
N = {1, . . . , `}. Since we are interested in performing T -fold cross validation, Ω is partitioned into
T pairwise disjoint subsets, Ωt, the validation sets within each fold. The sets Ωt = Ω \ Ωt are the
training sets within each fold. The corresponding index sets for the validation and training sets are
Nt and N t respectively. The t-th training set, Ωt is used to train the linear function wt ∈ Rn. For
simplicity of presentation, we ignore the bias term for now. For compactness of notation, the vectors
wt are collected, column-wise, into the matrix W ∈ Rn×T . Also, given two vectors r, s ∈ Rn, the
complementarity condition r ⊥ s is equivalent to r ′s = 0. A vector of ones of arbitrary dimension is
denoted 1.

The support vector regression (SVR) problem contains two hyper-parameters: the regulariza-
tion constant, C, and the tube width, ε, for the ε-insensitive loss function, which are to be selected
by cross validation. This is typically accomplished using grid search. Grid search involves discretizing
the C-ε space, typically on a logarithmic scale of base 2 or 10 (see Figure 2). At each grid point, the
parameters of the regression functions, {wt}T

t=1, are trained on the corresponding training sets, Ωt,
using the quadratic program

wt ∈ arg min
w∈Rn

1
2
‖w ‖22 +

C

|N t|

∑
j∈N t

max
(
|x ′jw − yj | − ε, 0

) . (5)

Equation (5) represents the regression problem of finding a function, f? : Rn → R, among a given class
that minimizes the regularized risk functional,

R[f ] ≡ P[f ] +
C

`

∑̀
j=1

L (yj , f(xj)) . (6)

where L is the ε-insensitive loss function and P is the classic SVR `2-norm regularization operator.
The regression functions are validated at each grid point by computing the generalization error, such
as the mean average deviation (MAD), on the validation sets, Ωt:

Θ(W) =
1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

|x ′iw − yi|, (7)

or alternatively the mean squared error (MSE),

Θ(W) =
1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

(x ′iw − yi)2. (8)

The grid point with the smallest estimate of the generalization error, Θ(W), yields the choice of
“optimal” hyper-parameters; this choice may be further refined by a local search. Assuming that each
parameter is discretized to take on d distinct values, T -fold cross validation involves solving O(Td2)
problems, a number that grows quickly as more accuracy is desired or if the number of parameters
increases. This, combined with other issues described in Section 1.1, leads us to formulate the bilevel
cross-validation model.
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Fig. 2 T -fold cross validation at a particular grid point, (Ck, εk), on a base-10 logarithmic grid.

2.2 Bilevel Cross validation

In a fairly general formulation in which we list only the essential constraints, the model selection bilevel
program is to find the hyper-parameters ε and C and the hyperplanes, wt in order to

minimize
C,ε,wt

Θ(W)

subject to ε, C ≥ 0,

and for t = 1, . . . , T,

wt ∈ arg min
w∈Rn

1
2
‖w ‖22 +

C

|N t|

∑
j∈N t

max
(
|x ′jw − yj | − ε, 0

) ,

(9)

where the outer-level objective function, Θ(W), is an estimate of the generalization error and a perfor-
mance measure as described in (7) and (8). Thus, the hyper-parameters are optimized in the outer level
while the learning is performed in the inner level. It should be noted that the inner- and outer-level
loss functions do not need to match. The inner-level optimization problem is the classic SV regression
machine which uses ε-insensitive loss because it produces robust solutions that are sparse in the dual
space. The ε-insensitive loss is not typically used for the generalization estimate in cross validation
since it contains an unknown parameter ε; instead, we will use the MAD, (7), in the analysis below.
The bilevel program that uses MSE can easily be formulated with only minor changes.

To solve (9), we rewrite each of the T inner-level problems, assuming that the hyper-parameters,
C and ε, are fixed. In particular, for the t-th problem, we introduce slack variables, ξt ≥ 0, to refor-
mulate the max function in the inner level using the standard trick from linear programming, to give
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the following convex, quadratic program:

min
wt,ξt

1
2
‖w ‖22 +

C

|N t|

∑
j∈N t

ξt
j

s. t. ξt
j ≥ yj − x ′jw − ε,

ξt
j ≥ x ′jw − yj − ε,

ξt
j ≥ 0,

 ∀j ∈ N t.

(10)

This is the SV regression problem that trains wt using the training set, Ωt, within the t-th fold. Let αt,+
j ,

αt,−
j ≥ 0 be the Lagrange multipliers for the upper and lower hyperplane constraints respectively. Using

these multipliers, we can write down the primal and dual feasibility and complementarity slackness
conditions of (10) as follows.

0 ≤ αt,+
j ⊥ yj − x ′iw

t + ε + ξt
j ≥ 0,

0 ≤ αt,−
j ⊥ x ′jw

t − yj + ε + ξt
j ≥ 0,

0 ≤ ξt
j ⊥ C

|N t|
− αt,+

j − αt,−
j ≥ 0,

 ∀j ∈ N t. (11)

There also exists the following first-order condition:

wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj = 0. (12)

Equations (11) and (12) together constitute the well-known Karush-Kuhn-Tucker first-order optimality
conditions for (10). The outer-level objective also needs to be rewritten as it contains the absolute
value function, which is not everywhere differentiable. This is easily achieved by introducing additional
variables zt and the constraints,

− zt
i ≤ x ′iw

t − yi ≤ zt
i , ∀ i ∈ Nt, (13)

into the outer level. Here, zt measures the mean absolute deviation of each point in the validation
set, Ωt, from the hyperplane, wt, trained on Ωt. Thus, the overall two-level regression problem can be
converted to a one-level problem as shown below.

min
C,ε,wt,zt,

αt,±,ξt

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

zt
i

s. t. ε, C ≥ 0,

and for t = 1, . . . , T,

−zt
i ≤ x ′iw

t − yi ≤ zt
i , ∀ i ∈ Nt

0 ≤ αt,+
j ⊥ yj − x ′iw

t + ε + ξt
j ≥ 0,

0 ≤ αt,−
j ⊥ x ′jw

t − yj + ε + ξt
j ≥ 0,

0 ≤ ξt
j ⊥ C

|N t|
− αt,+

j − αt,−
j ≥ 0,

 ∀j ∈ N t,

wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj = 0.

(14)

The optimization problem (14) is an instance of a Linear Program with Equilibrium Constraints
(LPEC); it is a nonlinearly constrained problem and is non-convex in general because of the pres-
ence of the complementarity constraints. Several approaches can be used to solve (14) including exact
penalty methods, integer programming approaches and nonlinear programming techniques, to name a
few. We defer a discussion of these techniques until Section 8.
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3 Generalized Bilevel Cross validation

The number of machine learning tasks that can be cast into the bilevel cross-validation framework is
virtually limitless. These learning tasks determine the objective and constraints used in the inner-level
problems and the outer-level objective. The resulting cross-validation problem can be re-formed as a
bilevel optimization problem as long as the inner-level problems can be replaced by their correspond-
ing KKT conditions, and the outer-level objective and constraints can be replaced by differentiable
counterparts. Keeping this in mind, T -fold cross validation for some general machine learning problem
can be written as

minimize
ft, λ

Θ(f1|Ω1 , . . . , fT |ΩT
; λ)

subject to λ ∈ Λ,

and for t = 1, . . . , T,

f t ∈ arg min
f∈F

P(f, λ) +
∑

j∈N t

L (yj , f(xj), λ)

 .

(15)

Here, f t : (Rn × R) ∩ F → R is the learning function trained within the t-th fold, λ ∈ Λ is the set of
model selection parameters for the machine learning problem, P is the regularization operator and L is
the inner-level loss function. This definition admits many variations and well-known machine learning
problems. We provide some more examples below.

4 Parameter Selection for Linear SV Classification

In linear SV classification (SVC), the learning task is to construct a decision function that distinguishes
one class from another. In this section, we extend the parameter selection idea introduced in the
previous section to support vector classification and show how the bilevel formulation can handle a
large number of hyper-parameters; this is a review of work that was first introduced in [37]. The inner-
level problem is the standard SVC model [12] augmented with additional feature selection constraints.
The outer-level objective minimizes the number of points misclassified in each of the T folds.

We again consider a labelled data set, Ω = {(xi, yi)}`
i=1 ⊂ Rn+1, containing ` training exam-

ples. However, the labels yi are restricted to ±1 as we are interested in binary classification. We also
introduce the bias into the decision rule: the hyperplane, x′wt−bt = 0, is to be represented by the pair
(wt, bt). If x′wt > 0, then x is predicted to be in class 1 by decision rule t, otherwise x is predicted to
be in class −1. As before, the vectors, wt, are collected column-wise into the matrix W ∈ Rn×T . The
scalars, bt, are collected into the vector b ∈ RT .

Using this additional notation, the formulation of cross validation for SV classification as a
bilevel program [37] is shown below.

minimize
C, w, wt, bt

Θ(W, b)

subject to C lb ≤ C ≤ C ub,

w lb ≤ w ≤ w ub ,

and for t = 1, . . . , T,

(wt, bt) ∈ arg min
−w≤w≤w

b∈R

1
2
‖w ‖22 +

C

|N t|

∑
j∈N t

max
(
1− yj(x ′jw − b), 0

) .

(16)

It should be noted that the T inner-level problems are nearly identical to the classical support vector
classification problem except for the introduction of the additional constraints −w ≤ w ≤ w. These
constraints can be thought of as a weighted `∞-norm on w and provide additional regularization while
also performing feature selection. To intuitively see how the box-constrained SV classifier (BoxSVC)
performs feature selection, consider the following. An irrelevant feature would induce the corresponding
weight in w to be small, which, in turn, forces the respective weights in each fold, wt, to be small.
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Therefore, in addition to ensuring consistency across the folds, the box constraint performs capacity
control leading to potentially improved overall generalization.

As a consequence, w ∈ Rn enters the outer level as a n-dimensional feature selecting hyper-
parameter, with the box constraint entering each inner-level problem. Here, n is the dimension of the
input space. The bilevel program (16) contains n + 1 hyper-parameters that need to be optimized and
model selection entails simultaneous parameter and input-space feature selection. In addition to the
box constraints, bounds, 0 < Clb ≤ Cub and 0 < wlb ≤ wub, have also been introduced on the hyper-
parameters in the outer level. This is to cut-off degenerate stationary points that are meaningless in
the machine learning context.

4.1 The Inner-level Problems

Just as in the regression case, we can replace the inner-level problems with their corresponding con-
straints in order to convert the bilevel program to an MPEC. First, slack variables, ξt ≥ 0, are
introduced to reformulate the non-differentiable max function in the inner-level objective giving the
following quadratic program to train a decision rule within the t-th fold:

min
wt, bt, ξt

1
2
‖wt‖22 +

C

|N t|

∑
j∈N t

ξt
j

s. t. −w ≤ wt ≤ w,

yj(x ′jw
t − bt) ≥ 1− ξt

j ,

ξt
j ≥ 0,

}
∀ j ∈ N t.

(17)

In addition to the Lagrange multipliers, αt, for the hyperplane constraints and ηt for the non-negativity
of ξt constraints, we introduce γt,+ and γt,− for the lower and upper box constraints. Thus, the KKT
complementarity conditions for (17) are

0 ≤ αt
j ⊥ yj(x ′jw

t − bt)− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥ C

|N t|
− αt

j ≥ 0,

 ∀ j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

(18)

and the KKT first order conditions are

wt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑
j∈N t

yjα
t
j = 0.

(19)

We now look at various outer-level objectives.

4.2 The Outer-level Objective

The standard performance measure used to validate classification models is the average misclassification
error on the validation sets, i.e.,

Θ(W,b) =
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

[
−yi(x ′iw

t − bt)
]
?
, (20)
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where the inner summand counts the number of misclassifications of points in the validation set within
each fold and the outer summand sums the averaged misclassification error over each fold. The objec-
tive, (20), is formulated in terms of the step function, which, for a vector, r?, is defined as

(r?)i =
{

1 ri > 0,
0 ri ≤ 0.

(21)

The step function, unlike the absolute value or the max functions, is not even continuous. This poses
a problem, since now, the outer-level objective is not differentiable. However, the step function can be
characterized as the solution to a linear program [42]:

r? = arg min
ζ

{−ζ ′r | 0 ≤ ζ ≤ 1}. (22)

Thus, in order to count the number of misclassifications in the T validation sets, it is necessary to
introduce T additional inner-level problems of the type (22),

ζt ∈ arg min
0≤ζ≤1

{ ∑
i∈Nt

ζiyi

(
x ′iw

t − bt

)}
. (23)

Then, as in the case of the inner-level problems (17), we can replace (22) with linear complementarity
conditions. This necessitates the introduction of additional Lagrange multipliers, z, for the constraints
ζ ≤ 1. Thus, any solution to (22) also satisfies

0 ≤ ζ⊥−r + z ≥ 0,

0 ≤ z⊥ 1− ζ ≥ 0.
(24)

Thus, combining (18–19), and (23–24), we can replace the bilevel program with a single-level pro-
gram, which is also an instance of an MPEC. Note that the variables, zt, measure the distance of the
misclassified validation points from the trained hyperplane within each fold.

min
C,w,wt,bt,z

t,
ξt,ζt,αt,γt,±

1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

ζt
i

s. t. C lb ≤ C ≤ C ub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T,

0 ≤ ζt
i ⊥ yi (x ′iw

t − bt) + zt
i ≥ 0,

0 ≤ zt
i ⊥ 1− ζt

i ≥ 0,

}
∀ i ∈ Nt,

0 ≤ αt
j ⊥ yj(x ′jw

t − bt)− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥ C

|N t|
− αt

j ≥ 0,

∀ j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

wt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,∑

j∈N t

yjα
t
j = 0,

(25)

The outer-level objective, Θ(W,b), can be treated not just as performance measure that can estimate
the generalization error but also as a loss function. This observation combined with the flexibility of
the bilevel approach allows us to formulate several different approaches to model selection.
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The most straightforward variation is to use the average distance of the misclassified validation
point from the trained decision rule within each fold i.e.,

Θ(W,b) =
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

zt
i . (26)

Alternately, the hinge loss could be used in the outer-level objective. The hinge loss is a relaxed
overestimate of the misclassification loss. Using this loss in the outer level effectively matches the
inner- and outer-level loss functions.

Θ(W,b) =
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

max
(
1− yi(x ′iw

t − bt), 0
)
. (27)

4.3 `1-norm Regularization

Different norms can be used to regularize the inner-level problem. It is well-known that `1-norm
regularization produces sparser solutions than its `2 counterpart, hence performing better feature
selection if used for regularization. This can easily be incorporated into, say, the classification bilevel
formulation (16) by replacing 1

2‖w‖
2
2 with ‖w‖1, yielding the following inner-level problems:

arg min
−w≤wt≤w

bt∈R

‖w ‖1 +
C

|N t|

∑
j∈N t

max
(
1− yj(x ′jw

t − bt), 0
) . (28)

Since the ‖wt‖1 is not differentiable at 0, we introduce two new variables, wt,±, such that wt =
wt,+ −wt,−. If we choose to retain the box constraints as well, then the bounds, 0 ≤ wt,± ≤ w, must
also hold. Since the inner-level problems are simply LPs, all the KKT conditions can be simplified to
complementarity constraints,

0 ≤ αt
j ⊥ yj(x ′j(w

t,+ −wt,−)− bt)− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥ C

|N t|
− αt

j ≥ 0,

 ∀ j ∈ N t,

0 ≤ γt,+ ⊥ w −wt,+ ≥ 0,

0 ≤ γt,− ⊥ w −wt,− ≥ 0,

0 ≤ wt,+ ⊥ 1−
∑

j∈N t

yjα
t
jxj + γt,+ ≥ 0,

0 ≤ wt,− ⊥ 1+
∑

j∈N t

yjα
t
jxj + γt,− ≥ 0,

(29)

except for the equality constraints that are dual to bt,∑
j∈N t

yjα
t
j = 0. (30)

If the box constraint in the inner-level problems was to be dropped, then their corresponding dual
variables, γ±, would disappear from the complementarities above. Many other regularization schemes
could also be incorporated into (15) such as ones which use hinge loss combined with the so-called lasso
penalty, µ1‖w‖22 + µ2‖w‖1 (elastic nets, [57]), `∞-norm regularization [2,58] or the modified support
vector machine which uses 1

2 (‖w‖22 + b2) for regularization [45]. The last regularization operator is
nearly identical to classical SVMs except that the equality constraint, (30), vanishes from the dual
(and subsequently from the first order conditions of the inner-level problems). This is useful if it is
desired that all equality constraints be removed in order to apply solution techniques such as successive
over-relaxation or linear programming chunking [8].
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4.4 `0-norm Regularization

Let us assume that it was known a priori for the given n-dimensional data set, that at most nmax features
are desired. This can be incorporated into the model by introducing the constraint, ‖w‖0 ≤ nmax,
into the outer-level problem, where ‖ · ‖0 is the so-called zero-norm1, or the cardinality of a vector,
i.e., it counts the number of non-zero elements in its argument. This constraint bounds the number
of allowable features and causes the smallest feature weights to be dropped from the model. Since
‖w‖0 = 1

′w?, the constraint can be reformulated using the ()? function and its LPEC conditions,
(22). Thus, the following complementarity constraints are added to (25), with δ counting the selected
features of w and d being the multipliers to the constraints 1− δ ≥ 0.

n∑
m=1

δm ≤ nmax,

0 ≤ δ ⊥ −w + d ≥ 0,

0 ≤ d ⊥ 1− δ ≥ 0.

(31)

If the resulting LPEC can be solved efficiently, then the optimal value of nmax can be found using a
line search or an scheme similar to recursive feature elimination [30], i.e., by successively decreasing
nmax as long as the error rate continues to decrease. Alternately, the ‖w‖0 term can be moved into the
inner-level objective as the regularization operator [7],

arg min
−w≤wt≤w

bt∈R

λ‖w ‖0 +
1− λ

`

∑
j∈N t

max
(
1− yj(x ′jw

t − bt), 0
) . (32)

This, however, converts the overall cross-validation problem into a trilevel problem, since the ()?

function, which is used to rewrite ‖ · ‖0, adds a nested inner-level problem of its own to (32).

5 Kernel Bilevel Cross Validation

The SVMs considered thus far have all been linear machines and as such are unable to handle non-
linear data sets effectively; this severly limits their usefulness to real data sets. We now demonstrate
how one of the most powerful features of SVMs — their ability to deal with high-dimensional, highly
nonlinear data using the kernel trick — can be incorporated into the bilevel model.

We continue this discussion using the bilevel classification example, (16), though the results
below can easily be generalized to other kernel methods. The classification model was formulated
to perform parameter and feature selection, taking advantage of the ability of the bilevel framework
to handle multiple parameters. However, a glance at the first-order conditions, (19), shows that wt

depends, not only on the training data, but also on the multipliers, γt,±, of the box constraints. In
order to apply the kernel trick and construct RKHS spaces for the kernel methods to operate in, it
is essential that the hyperplane, wt, be expressed solely as a linear combination of the training data.
This is a fundamental assumption that is at the heart of all kernel methods through the representer
theorem. In order to make this so, we temporarily set aside feature selection, drop the box constraints
(effectively causing γt,± to drop out of the program) and work with the classical SV classifier. The
resulting first order conditions within each fold include the following constraints:

wt =
∑

j∈N t

yjα
t
jxj , ∀ t = 1, . . . , T. (33)

Now, we can eliminate wt within each fold of (25) using (33) and then apply the kernel trick, i.e., the
resulting linear inner-product terms, x ′ixj , are replaced with symmetric, positive semi-definite kernel

1 It should be noted that the zero-norm is not really a norm because, the positive homogeneity condition
does not hold except for very special cases, i.e., ‖aw‖0 6= |a| ‖w‖0, in general. However, the term has found
widespread use in both the optimization and machine learning communities.
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functions, κ(xi, xj). The final bilevel cross-validation model for SV classification when the kernel is
fixed can be computed if we

min
C,bt,z

t,
ζt,αt,ξt

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

ζt
i

s. t. C ≥ 0,

and for t = 1 . . . T,

0 ≤ ζt
i ⊥ yi

 ∑
k∈N t

ykαt
kκ(xi, xk)− bt

 + zt
i ≥ 0,

0 ≤ zt
i ⊥ 1− ζt

i ≥ 0,

∀ i ∈ Nt,

0 ≤ αt
j ⊥ yj

 ∑
k∈N t

ykαt
kκ(xj , xk)− bt

− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥

C

|N t|
− αt

j ≥ 0,


∀ j ∈ N t,

∑
j∈N t

yjα
t
j = 0.

(34)

While it may not appear so at first glance, the optimization problem above is still an instance
of an LPEC. Unfortunately, it is usually unreasonable to expect ready-made kernels for most machine
learning tasks; in fact, most kernel families are parameterized, and the kernel parameters are typi-
cally determined via cross validation. Also, unlike its linear counterpart, this model is not capable of
performing feature selection.

The issues of parameter selection (for regularization and the kernel) and feature selection can
be combined as in the linear model if we use a parameterized kernel of the form κ(xi, xk; p,q). The
nonnegative vector, p ∈ Rn

+, is the feature selection or scaling vector, and q ≥ 0 is a vector of kernel
parameters. Let P = diag(p). The parameterized versions of some commonly used kernels are shown
below.

Linear kernel κ(xi, xk; p) = x ′iP xk,

Polynomial kernel κ(xi, xk; p, c, d) = (x ′iP xk + c)d,

Gaussian kernel κ(xi, xk; p) = exp (−(xi − xk) ′P (xi − xk)) .

(35)

Other kernels can be similarly extended and used in the model. Consequently, the new kernel parame-
ters, p and q, enter the outer level of the kernel model as variables in the problem. The introduction of
the parameterized kernel is a very powerful extension to the linear model (25) as it is capable of picking
the regularization parameters, kernel parameters and features leaving only the choice of kernel family
to the user. The optimization problem, (34), is an MPEC with non-linear complementarity constraints
and in general is a very difficult problem to solve.

5.1 Generalized Radial Basis Function Networks

We can rewrite the Gaussian kernel in (35) as shown below in order to weight the variances in each
feature differently, and drive the irrelevant features down to zero.

κ(xi, xk; βm) = exp (−(xi − xk) ′diag(β1, . . . , βn) (xi − xk)) . (36)

Alternately, taking advantage of the ability of the bilevel model to deal with a large number of hyper-
parameters, the following kernel can be used:

κ(xi, xk;βi,k) = exp
(
−βi,k‖xi − xk‖22

)
, βi,k = βk,i ≥ 0. (37)
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This is a generalization of the commonly used Gaussian kernel in that it contains a different width
parameter, βi,k, for each pair of training points which has to be determined. Kernels of this type are
useful for time-series analysis and function approximations owing to the excellent fitting properties of
the Gaussian.

6 Semi-supervised Learning and Transduction

We have, thus far, focussed on model selection for supervised learning tasks such as classification
and regression, with the label information available for all training points. Frequently, however, in
applications like text classification, drug design, medical diagnosis, and graph and network search,
the training set consists of a large number of unlabelled data points and a relatively small number of
labelled training points. This necessitates semi-supervised learning, where training is performed using
both the labelled and unlabelled data. If all the training data is unlabelled, the problem becomes one
of unsupervised learning, e.g., clustering.

The concept of semi-supervised learning is closely related to that of transductive learning,
which can be contrasted with the more typically performed inductive learning. In induction, the given
labelled data is used to construct a robust decision rule that is valid everywhere. This rule is fixed
after training and can subsequently be applied to the future test data. In transduction, the labelled
training data and the unlabelled test data are both given. All available data is used to construct the
decision rule in order to avoid overfitting. The learning task in transduction is to only predict the labels
for the specific test points and not for all future data. Performing transductive learning may result in
improvement in generalization error bounds [55], thus reducing the number of labelled data required
for good generalization.

Some additional notation is now introduced. As before, Ω = {xi, yi}`
i=1 represents the set

of labelled data, with ` = |Ω|. Let Ψ = {xi}u
i=1 represent the unlabelled training data, with the

corresponding labels (to be determined) being zi, and u = |Ψ |. The sets, Ω and Ψ , are indexed by N
and M respectively.

6.1 Semi-supervised Regression

In bilevel semi-supervised regression, the labels of the unlabelled training data are treated as control
variables, z. The general bilevel model for semi-supervised machine learning problems can be formulated
as

minimize
f, z, λ

Θ(f, z; Ω, Ψ, λ)

subject to λ ∈ Λ,

f ∈ arg min
f∈F

P(f, λ) +
∑
j∈N

Ll (yj , f(xj), λ) +
∑
j∈M

Lu (zj , f(xj), λ)

 .

(38)

In the model above, the loss functions, Ll and Lu, are applied to the labelled and unlabelled data
respectively, while P performs regularization. All the appropriate parameters, λ, are optimized in the
outer level; these parameters can include the regularization constant, tube width (for regression) and
feature selection vectors among others. Optimizing the unknown labels, z in the outer level corresponds
to inductive learning, while optimizing them in the inner level corresponds to transductive learning.
An interesting variant that combines both types of learning occurs if z is optimized in both levels.

For semi-supervised support vector regression, we can choose both loss functions to be ε-
insensitive and `2-norm regularization. For the case of one labeled training set, one unlabeled training
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set, and one test set, this yields the following bilevel program [35]:

minimize
C,D,ε,w,b,z

∑
i∈N

|x ′iw − b− yi|

subject to ε, C, D ≥ 0,

(w, b) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|N |
∑
j∈N

max
(
|x ′jw − b− yj | − ε, 0

)
+

D

|M|
∑
j∈M

max
(
|x ′jw − b− zj | − ε, 0

)
 .

(39)

The outer-level objective is simply the mean average deviation (MAD) on all the labelled data. The
inner-level objective uses both the labelled and unlabelled data sets making this an instance of trans-
ductive learning. The labels, z, are used in the inner-level loss function but are optimized as outer-level
variables along with the hyper-parameters ε, C, and D. Additional upper and lower bounds can be
imposed on these parameters if desired. This program can be converted to an LPEC as before. It should
be noted that in typical semi-supervised learning problems, the number of unlabelled examples, u is
far greater than the number of labelled examples, `. This means that (39) will have a large number of
outer-level variables (z) and complementarity constraints arising from the unlabelled data points.

The model (39) performs simultaneous transductive learning and parameter selection. The
quality of the “optimal” parameters can potentially be improved by combining semi-supervised learning
with T -fold cross validation. This can be achieved if we

minimize
C,D,ε,wt,bt,z

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

|x ′iw − b− yi|

subject to ε, C, D ≥ 0,

and for t = 1, . . . , T,

(wt, bt) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|Nt|
∑
j∈Nt

max
(
|x ′jw − b− yj | − ε, 0

)
+

D

|M|
∑
j∈M

max
(
|x ′jw − b− zj | − ε, 0

)
 ,

(40)

so that the resultant program is again a novel combination of inductive and transductive learning.
Here, the unlabelled data is used to train the decision rule for each fold. As there are T inner level
problems, the complementarity conditions containing the unlabelled data will occur T times, though
each time with a different (wt, bt) in the constraints.

6.2 Semi-supervised Classification

Turning our attention to classification problems, we encounter several choices for both the inner- and
outer-level loss functions. As always, we use the hinge loss for the labelled points. We look at three
loss functions that were introduced in [16] for the unlabelled points in the inner level. The first is the
so-called hard-margin loss,

Lu(w, b) =
{
∞, for − 1 < x′w − b < 1,
0, otherwise. (41)



16 Bilevel Model Selection for Support Vector Machines

This can be introduced into the inner level through the very hard constraint max(1−|x′w− b|, 0) = 0,
resulting in the following inner-level optimization problem:

min
w,b,ξ,z+,z−

1
2
‖w‖22 + C

∑
j∈N

ξt
j

s. t. yi(x ′iw − b) ≥ 1− ξi, ξi ≥ 0, ∀ i ∈ N
−(x ′jw − b) ≥ 1− z+

j , z+
j ≥ 0,

(x ′jw − b) ≥ 1− z−j , z−j ≥ 0,

z+
j z−j = 0

 ∀ j ∈M.

(42)

This results in a non-convex, quadratically-constrained quadratic program (QCQP) which is hard to
solve in general. Furthermore, the hard-margin condition might be too strong to allow for feasible
solutions, leading us to consider soft-margin variants: the quadratic-margin penalty,

Lu(w, b) = max(1− (x′w − b)2, 0), (43)

and the non-convex hat-loss function,

Lu(w, b) = max(1− |x′w − b|, 0). (44)

These loss functions arise from the relaxing the hard constraint z+
j z−j = 0 in (42) by moving it into the

inner-level objective; if the product, z+
j z−j , is used directly, a quadratic penalty function, (43), results,

and if the minimum error, min(z+
j , z−j ) is used, the hat loss function results. Using the quadratic

penalty function for the unlabelled data is precisely the transductive idea proposed by Vapnik [55].
The “optimal” labels on the unlabelled data can be calculated as sign(z+

j − z−j ).
Finally, we can use the step function to formulate loss functions that use the number of mis-

classifications for both the labelled and unlabelled data sets if we

minimize
C, D, w, b,ζ,z

1
| N |

∑
i∈N

ζi

subject to C,D ≥ 0,

ζ ∈ arg min
0≤ζ≤1

{∑
i∈N

ζiyi (x ′iw − b)

}
,

z ∈ arg min
0≤z≤1

{∑
i∈M

− zi (x ′iw − b)

}
,

(w, b) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|N |
∑
j∈N

max
(
1− yj(x ′jw − b), 0

)
+

D

|M|
∑
j∈M

max
(
1− zj(x ′jw − b), 0

)
 .

(45)

The outer-level objective performs misclassification minimization on the labelled data, with the first
inner-level problem counting the number of misclassifications. The second inner-level problem computes
the labels on the unlabelled data which are used to perform learning in the third inner-level problem.
As in the regression case, the problem (45) and its variants that use the various loss functions above
can be combined with cross validation to perform more effective parameter selection. Feature selection
can also be incorporated into these models by adding extra constraints on w or by changing the
regularization as discussed in Section 3. It is also relatively straightforward to kernelize the models
discussed above as per the discussion in Section 5, as long as care is taken in dealing with the labelled
and unlabelled kernels.
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7 Incorporating Multitask Learning

We return to the problem of cross validation to demonstrate that multitask learning concepts can
easily be incorporated in the bilevel setting. Multitask learning [9] is defined as learning multiple
related tasks simultaneously. This type of learning is an instance of inductive transfer, otherwise called
transfer learning, where the knowledge learned from some tasks may be applied to learning a related
task more efficiently.

In the T -fold bilevel cross validation setting, each of the T inner-level problems attempts to
construct a decision rule on subsets of the same training sample, which, by statistical learning theory
assumptions, are drawn i.i.d. from the same distribution. Thus, the tasks of training within each fold are
related and amenable to incorporating multitask principles. We do this by introducing new variables,
(w0, b0), into the inner-level problems. For example, consider the following SV regression inner level,
(5) with added multi-task terms (and including the bias term):

(wt, bt) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|N t|

∑
j∈N t

max
(
|x ′jw − yj | − ε, 0

)
+

λw

2
‖w −w0‖22 +

λb

2
(b− b0)2

 . (46)

The variables (w0, b0) enter the bilevel model as outer-level variables as do the parameters λw and
λb. The multitask terms provide variance control by making each of the individual hyperplanes less
susceptible to variations within their respective training sets. They also provide additional regulariza-
tion. Finally, they ensure fold consistency because of the enforced task relatedness. We can replace
(46) with its corresponding KKT conditions:

0 = ( 1 + λw )wt − λw w0 +
∑

i∈N t

( αt,+
i − αt,−

i )xi,

0 = λb(bt − b0) +
∑

i∈N t

( αt,+
i − αt,−

i ),

0 ≤ ξt
i ⊥ C

|N t|
− αt,+

i − αt,−
i ≥ 0,

0 ≤ αt,+
i ⊥ ξt

i + ε− x′iw
t + bt + yi ≥ 0,

0 ≤ αt,−
i ⊥ ξt

i + ε + x′iw
t − bt − yi ≥ 0,

 ∀ i ∈ N t.

(47)

From (47), we deduce

wt =
1

1 + λw

λw w0 −
∑

i∈N t

( αt,+
i − αt,−

i )xi

 ,

bt = b0 −
1
λb

∑
i∈N t

(αt,+
i − αt,−

i ),

(48)

where it is understood that if λb = 0, then the latter expression for bt reduces to∑
i∈N t

(αt,+
i − αt,−

i ) = 0, (49)

which does not involve bt. In the interest of kernelizing (47), we postulate that

w0 ≡
∑
j∈N

βj xj , (50)

for some scalars, βj , to be determined. We obtain

wt ≡ 1
1 + λw

λw

∑
j∈N

βj xj −
∑

j∈N t

( αt,+
j − αt,−

j )xj

 . (51)
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This last expression can be substituted into the complementarities in (47) to give

0 ≤ ξt
i ⊥ C

|N t|
− αt,+

i − αt,−
i ≥ 0,

0 ≤ αt,+
i ⊥ ξt

i + ε− 1
1 + λw

λw

∑
j∈N

βjx′ixj −
∑

j∈N t

(αt,+
j − αt,−

j )x′ixj

 + b t + yi ≥ 0,

0 ≤ αt,−
i ⊥ ξt

i + ε +
1

1 + λw

λw

∑
j∈N

βjx′ixj −
∑

j∈N t

(αt,+
j − αt,−

j )x′ixj

− b t − yi ≥ 0.

(52)

The “kernel trick” can now be applied to (52); see Section 5 for details.

8 Optimization Methods for Bilevel Models

The bilevel and mutlilevel model selection models proposed here require the solutions of LPECs/MPECs.
There exist several approaches that can deal with the complementarity constraints that arise in and
LPECs/MPECs. Some of these are: penalty methods, which allow for the violation of the complemen-
tarity constraints, but penalize them through a penalty term in the outer-level objective; smoothing
methods, that construct smooth approximations of the complementarity constraints; and relaxation
methods, that relax the complementarity constraints while retaining the relaxations in the constraints.

LPECs (or MPECs) are difficult to solve since they contain linear (or nonlinear) complementar-
ity constraints; it is known that linear complementarity problems belong to the class of NP-complete
problems [11]. Furthermore, the complementarity constraints cause the feasible region of a bilevel
program to lack closedness and convexity or, even possibly, be disjoint [39]. Aside from these obvi-
ous sources of intractability, stationary points for MPECs always fail to satisfy linear independence
constraint qualification (LICQ) or Mangasarian-Fromovitz constraint qualification (MFCQ) in the
nonlinear programming sense. There is yet another consideration, that of local optimal points, which
is particularly important in the machine learning context. Machine learning problems lead to well-
posed complementarity problems, in general, that have multiple local minima [42] which can be useful,
especially if it is hard to construct globally optimal solutions

8.1 Stationarity and Constraint Qualification for MPECs

In this subsection, we introduce some standard assumptions and definitions from MPEC theory in
order to better understand the properties of MPECs at optimality. We consider bilevel programs of
the type shown below, which is slightly different from the Bracken and McGill formulation, (4),

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

y ∈

{
arg min

y
f(x, y)

s.t gi(x, y) ≥ 0, ∀i = 1 . . .m

}
.

(53)

Introducing Lagrange multipliers, λi ≥ 0, for the inner-level constraints, (53) can be rewritten using
either the first-order KKT conditions or a variational inequality as follows:

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

∇f(x, y)−
m∑

i=1

λi∇gi(x, y) = 0,

0 ≤ λi ⊥ gi(x, y) ≥ 0, ∀i = 1 . . .m.

⇐⇒

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

(u− y) ′∇f(x, y) ≥ 0, for some y,

u ∈ { y | gi(x, y) ≥ 0, ∀i = 1 . . .m} .

(54)
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The two formulations above are equivalent nonlinear programs; we shall use the one with the inner-
level KKT conditions. As noted above, LICQ or MFCQ, which are necessary to guarantee the existence
of the multipliers, λi, at stationarity, fail to hold for (54) because the gradients of the complemen-
tarity constraints, λigi(x, y) = 0, are never linearly independent. Denoting the feasible region of the
LPEC/MPEC (including the complementarities) is S0, and the set of multipliers that satisfies the first-
order KKT conditions of the inner-level problem is Λ(x, y), we can define a key regularity assumption
called the sequentially bounded constraint qualification (SBCQ).

Definition 1 (SBCQ) For any convergent subsequence {(xk, yk)} ⊆ S0, there exists, for each k, a
multiplier vector, λk ∈ Λ(xk, yk), and {λk}∞k=1 is bounded.

If SBCQ is satisfied, then it guarantees the non-emptiness of the set of multipliers, Λ(x, y), and the
existence of bounds on the multipliers on bounded sets. More importantly, it also guarantees the
equivalence of (53) and (54) with regard to global optima; equivalence with regard to local optima can
also be guaranteed if the functions gi(x, y) are convex in y. The SBCQ condition is weak and is easily
satisfied under (implied by) other stronger constraint qualifications for the inner-level problem such as
MFCQ.

In order to derive stationarity conditions for the MPEC, (54), we can relate it to the tightened
and relaxed non-linear programs, where the first-order equality constraints have been collected into
H(x, y, λ),

min
x,y

F (x, y) (tightened)

s. t. G(x, y) ≥ 0, H(x, y, λ) = 0,

λi = 0, ∀i ∈ Iα,

gi(x, y) = 0, ∀i ∈ Iγ ,

λi = 0, gi(x, y) = 0, ∀i ∈ Iβ .

min
x,y

F (x, y) (relaxed)

s. t. G(x, y) ≥ 0,H(x, y, λ) = 0,

λi = 0, ∀i ∈ Iα,

gi(x, y) = 0, ∀i ∈ Iγ ,

λi ≥ 0, gi(x, y) ≥ 0, ∀i ∈ Iβ .

(55)

and with the Lagrangian function,

L(x, y, λi, µ, ν, u, v) = F (x, y)− µG(x, y)− νH(x, y, λ)−
m∑

i=1

uiλi −
m∑

i=1

vigi(x, y), (56)

where
Iα := {i | λi = 0, gi(x, y) > 0},
Iβ := {i | λi = 0, gi(x, y) = 0},
Iγ := {i | λi > 0, gi(x, y) = 0}.

(57)

If the index set, Iβ , is empty, then strict complementarity is said to hold and if not, the complementarity
constraints in Iβ are said to be degenerate. We can now define some stationarity concepts.

Definition 2 (B-stationarity) A feasible point (x∗, y∗, λ∗) is said to be Bouligand or B-stationary
if it is a local minimizer of an LPEC obtained by linearizing all the MPEC functions about the point
(x∗, y∗, λ∗) i.e., ∇F (x, y) ′z ≥ 0, ∀z ∈ Tlin(x∗, y∗, λ∗), where Tlin denotes the tangent cone.

This is a primal stationarity condition and is very general. However, as a certificate, it is not very
useful as verifying it is combinatorially expensive due to the difficulty in characterizing the tangent
cone. Alternately, we can look at various dual stationarity conditions.

Definition 3 (W-stationarity) A feasible point (x∗, y∗, λ∗) is said to be weakly or W-stationary if
there exist multipliers µ, ν, u and v ≥ 0 such that

∇L(x, y, λi, µ, ν, u, v) = 0,

µ ≥ 0, ui = 0, ∀i ∈ Iγ , vi = 0, ∀i ∈ Iα.
(58)
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The conditions above are simply the non-trivial first-order KKT conditions of the tightened nonlinear
program. W-stationarity is a very important concept for computational purposes as it can help identify
points that are feasible but not stationary2.

Definition 4 (S-stationarity) A feasible point (x∗, y∗, λ∗) is said to be strongly or S-stationary if
the W-stationarity conditions, (58), and the condition: ∀i ∈ Iβ , ui, vi ≥ 0, hold.

As in the weak case, the conditions for S-stationarity are simply the first-order KKT conditions for
the relaxed nonlinear program. Finally, it can be shown that if “LICQ for MPECs” holds, then B-
stationarity is equivalent to S-stationarity [51]. This discussion can be easily extended to the case
where the outer-level problem may have equality constraints.

We now discuss some approaches to solving MPECs.

8.2 Nonlinear Programming Approaches

In machine learning, since the inner level problems are typically linear or quadratic, the reformulated
bilevel program, yields an LPEC of the following general form

min
x,y

c ′x + d ′y

s. t. 0 ≤ y ⊥ w = Nx + My + q ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

(59)

where some subset of variables of y are the multipliers λi. The complementarity condition can also
be expressed using min(y, w) = 0. This concave equality condition is equivalent to y − (y − w)+ = 0.
Here, r+ = max(r, 0), the componentwise plus function applied to some vector r ≥ 0.

8.2.1 Inexact Solutions

This solution approach can be thought of as similar to the well-known machine learning technique of
early stopping. As mentioned before, inexact and approximate solutions as well as local minima yield
fairly good optimal points in the machine learning context. We take advantage of this fact and use the
relaxation approach to solve MPECs. This method simply involves replacing all instances of “hard”
complementarity constraints of the form

0 ≤ y ⊥ w ≥ 0 ≡ y ≥ 0, w ≥ 0, y ′w = 0

with relaxed, “soft” complementarity constraints of the form

0 ≤ y ⊥tol w ≥ 0 ≡ y ≥ 0, w ≥ 0, y ′w ≤ tol

where tol > 0 is some prescribed tolerance of the complementarity conditions. If the machine learning
problem yields an LPEC, the resulting inexact formulation will be a quadratically constrained quadratic
program. For general MPECs, the relaxation will be a nonlinearly constrained optimization problem
which can be solved using off-the-shelf NLP solvers such as filter [24,26] or snopt [28], which
are freely available on the neos server [13]. Both these solvers implement the sequential quadratic
programming (SQP) method; filter uses trust-region based SQP while snopt uses line search based
SQP.

Inexact cross validation was used to solve bilevel cross validation for support vector regression,
(9), in [3] and support vector classification, (16), in [37] using filter. In spite of the fact that filter
provides no guarantee of global optimality and generally converges to locally optimal solutions, this
method performed well with regard to generalization error, indicating that local optimal solutions can
be practically satisfactory. The reported results also compared favorably with grid search techniques
with regard to parameter and feature selection and objective values. However, they were more efficient
than grid search, especially with regard to feature selection.

2 W-stationarity concepts can be strengthened by enforcing additional constraints on the multipliers in (56).
For example, replacing λigi(x, y) = 0 with min(λi, gi(x, y)) = 0 in (54) yields a non-smooth nonlinear program.
The first-order KKT conditions for the latter can be written using the Clarke generalized gradient, and are
precisely the conditions for Clarke or C-stationarity. See [56] for more details.
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8.2.2 Smooth Approximations

The condition, min(y, Nx+My + q) = 0, can be replaced by a function φ(y, w), possibly non-smooth,
such that φ(y, w) = 0 ≡ 0 ≤ y ⊥ w ≥ 0. The Fischer-Burmeister function [22], φ(y, w) = y + w −√

y2 + w2, is a non-smooth example of such a function. This function is smoothed using a parameter
ε to give the smoothed Fischer-Burmeister function, φ(y, w) = y + w−

√
y2 + w2 + ε2. The smoothed

function is everywhere differentiable and yields the following approximation of (59):

min
x,y

c ′x + d ′y

s. t. w = Nx + My + q ≥ 0, y ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0

yi + wi −
√

y2
i + w2

i + ε2k = 0, ∀i = 1 . . .m.

(60)

Pang and Fukushima [27] showed that for decreasing values of εk, the sequence of stationary points to
the nonlinear program (60), (xk, yk, wk), converges to a B-stationary point, (x∗, y∗, w∗), if weak second
order necessary conditions hold at each (xk, yk, wk), and LICQ for MPECs holds at (x∗, y∗, w∗). Various
methods can be used to solve the sequence of problems (60); for example, the sequential quadratic
programming (SQP) algorithm [36].

Another approach that was proposed for nonlinear and mixed complementarity problems in-
volves solving the non-smooth equation, y = (y−w)+; the right hand side of the equation, max(y−w, 0),
is not differentiable at zero, and can be replaced by an everywhere differentiable smooth approxima-
tion. Chen and Mangasarian [14] propose several different smooth approximations to the max function
generated from different parameterized probability density functions that satisfy certain consistency
properties. One approximation generated from the smoothed Dirac delta function that is commonly
used in neural network literature is

p(z, α) = z +
1
α

log (1 + e−αz), α > 0, (61)

where α is some smoothing parameter. Now, the smoothed non-linear equation representing the com-
plementarity system is φ(y, w) = y − p(y − w,α) = 0.

8.2.3 Exact Penalty Methods

Penalty and augmented Lagrangian methods have been widely applied to solving LPECs and MPECs
[34]. These methods typically require solving an unconstrained optimization problem. In contrast, exact
penalty methods penalize only the complementarity constraints in the objective:

min
x,y

c ′x + d ′y + µφ(y, w)

s. t. w = Nx + My + q ≥ 0, y ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

(62)

One approach to solving exact penalty formulations like (66) is the successive linearization algorithm,
where a sequence of problems with a linearized objective,

c ′(x− xk) + d ′(y − yk) + µ (∂xφ(yk, wk)(x− xk) + ∂yφ(yk, wk)(y − yk)) (63)

is solved to generate the next iterate. The algorithm requires concavity of the objective (to guarantee
the existence of vertex solutions at each iteration) and lower-boundedness of the objective. An example
of a differentiable penalty function is φ(y, w) = y ′w. The resulting quadratic program can be solved
using the Frank-Wolfe method [42].

Alternately, the concave penalty function, min(y, w), has also been proposed. Various ap-
proaches can be used to handle the non-smoothness of the penalized objective function arising from
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this choice of φ(y, w). The most straight-forward approach is to use successive linearization with the
gradients in the linearized objective being replaced by the supergradients [44],

∂xφ =
m∑

j=1


0, if yj < wj ,

(1− λj) 0 + λjNj , if yj = wj ,

Nj , if yj > wj .

∂yφ =
m∑

j=1


Ij , if yj < wj ,

(1− λj) Ij + λjMj , if yj = wj ,

Mj , if yj > wj .

(64)

and 0 ≤ λ ≤ 1. A second approach makes use of the fact that min(r, s), for any two scalars, r and s,
can be computed as

min(r, s) = arg min
ρ,σ

{ρr + σs | ρ, σ ≥ 0, ρ + σ = 1}. (65)

This gives a separable bilinear program [43],

min
x,y

c ′x + d ′y + ρ ′r + σ ′s

s. t. w = Nx + My + q ≥ 0, y ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

(66)

which can be solved using a finite Frank-Wolfe method. A third approach requires replacing the non-
smooth min with its smooth approximation, which can be defined analogous to the approximation for
the max function shown in the previous subsection,

m(z, α) = − 1
α

log (1 + e−αz), α > 0. (67)

The application of these methods to the bilevel machine learning applications is presently under in-
vestigation.

8.3 Integer Programming Approaches

The connections between bilevel programs, MPECs and mixed integer programs (MIPs) are well known.
It was shown in [1] that there exists a polynomial time reformulation to convert a mixed integer program
to a bilevel program. Also demonstrated in [1] was an implicit reformulation of a bilevel program as a
mixed integer program via MPECs. Specifically, a program with equilibrium constraints, such as (59),
can be converted to a MIP by splitting the complementarity constraints through the introduction of
integer variables, z, and a large finite constant θ.

min
x,y

c ′x + d ′y

s. t. 0 ≤ Nx + My + q ≤ θ(1− z),

0 ≤ y ≤ θz, z ∈ {0, 1}m,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

(68)

Care must be taken to compute the value of θ large enough so as not to cut off parts of the feasible
region. This is done by solving several LPs to obtain bounds on all the variables and constraints of
(68) and setting θ to be equal to the largest bound. Once θ is fixed, the MIP can now be solved by
using standard techniques such as branch and bound.

The biggest drawback of this approach is that the computation of the bound, θ, requires solving
a very large number of LPs. Other drawbacks are that the approach can only be applied to LPECs
with bounded feasible regions (thus ensuring that the feasible region of the MIP is also bounded)
and does not necessarily always converge to a global optimum. These latter limitations tend to be
less of a concern for bilevel programs arising from machine learning applications. However, all of the
drawbacks mentioned here are all satisfactorily dealt with in the method of [33], wherein a parameter-
free dual program of (68) is derived, reformulated as a minimax problem, and solved using Bender’s
approach. The application of this method to the bilevel machine learning applications is presently
under investigation.
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8.4 Other Approaches

The discussion of the solution approaches above is not meant to be exhaustive. There are several other
approaches to solving MPECs and LPECs such as active set identification methods [40], interior point
methods [39,41], implicit programming [15,39] and non-smooth methods [50].

9 Conclusions

We showed how various important machine learning problems can be cast as bilevel programs. This
includes cross validation for support vector regression and classification in order to perform parameter
and feature selection, kernel methods, semi-supervised learning and multi-task learning. This is cer-
tainly not an exhaustive list of machine learning problems that bilevel programming can be applied
to. Noting that all the methods proposed here were nonparametric methods, an interesting avenue of
further research with regard to modelling is the incorporation of parametric or generative methods
based on probability models into the bilevel framework.

In our approach, the inner-level problems in the bilevel programs are replaced by their first-
order KKT conditions. This yields mathematical programs with equilibrium constraints, a class of
non-convex, nonlinear, and generally hard problems. Under some mild conditions, the equivalence of
bilevel programs and their corresponding MPECs can be guaranteed. However, the presence of comple-
mentarity constraints in MPECs is a major theoretical and computational challenge, as the principles
of nonlinear programming theory cannot be directly extended to MPECs. However, additional station-
arity and constraint qualification concepts enable one to guarantee the existence of solutions for these
problems. In the machine learning context, many of the theoretical considerations are not a source
of difficulty as machine learning applications generally yield reasonably well-posed and well-behaved
MPECs.

A major outstanding open question is the development of efficient algorithms for bilevel pro-
grams. It should also be noted that machine learning problems, particularly support vector machines,
yield elegant, convex, sparse and highly structured problems; it should not be surprising that a lot of
these desirable characteristics get carried over to their bilevel counterparts. While the MPECs resulting
from the bilevel programs are non-convex, they are certainly very sparse and highly structured.

The structure inherent in SVMs and kernel methods makes them an attractive target for de-
composition methods. Well-known machine learning methods such as sequential minimal optimization
(SMO) take this to the extreme by decomposing the problem to consider pairs of points. More re-
cently, the method [33] has taken an important step in this direction of algorithmic development.
Mangasarian showed that variables in MPECs such as misclassification minimization problems [42] are
typically uncoupled, allowing the problem to be decomposed into smaller linear programs. Many of
the algorithms presented in this monograph have similar structures. It has already been demonstrated
that bilevel machine learning problems perform fairly well with regards to generalization error [3,37]
when solved using SQP-based methods such as filter. It should be noted that since the ultimate
goal is to produce good generalization, the solutions found need not necessarily be highly accurate or
global optimal. However, as the number of complementarities grows rapidly with increasing data set
sizes, problem size becomes all but intractable for these general purpose solvers. An urgent need is
to specifically exploit the structure and properties of machine learning problems to yield algorithms
that are efficient and scalable. We present these models as challenges to mathematical programming
researchers.
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