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Classification model selection via bilevel programming
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Support vector machines and related classification models require the solution of convex optimization
problems that have one or more regularization hyper-parameters. Typically, the hyper-parameters
are selected to minimize cross validated estimates of the out-of-sample classification error of the
model. This cross-validation optimization problem can be formulated as a bilevel program in
which the outer-level objective minimizes the average number of misclassified points across the
cross-validation folds, subject to inner-level constraints such that the classification functions for each
fold are (exactly or nearly) optimal for the selected hyper-parameters. Feature selection is included
in the bilevel program in the form of bound constraints in the weights. The resulting bilevel problem
is converted to a mathematical program with linear equilibrium constraints, which is solved using
state-of-the-art optimization methods. This approach is significantly more versatile than commonly
used grid search procedures, enabling, in particular, the use of models with many hyper-parameters.
Numerical results demonstrate the practicality of this approach for model selection in machine
learning.

Keywords: Support vector classification; Cross validation; Bilevel Programming; Model Selection;
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1 Introduction

Support Vector Machines (SVM) [1,2] are one of the most widely used methods
for classification. The underlying quadratic programming problem is convex
(thus, is generally not difficult to deal with, both theoretically and compu-
tationally), but typically it contains hyper-parameters that must be selected
by the users. Despite many interesting attempts to use bounds or other tech-
niques [3–5], the most widely accepted and commonly used method for select-
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ing these hyper-parameters is still based on minimizing cross-validated esti-
mates of the classification errors. For example, one might define a grid over
the hyper-parameters of interest, and then perform 10-fold cross validation for
each of the grid values. Since the size of the grid grows exponentially with the
number of hyper-parameters, grid search becomes prohibitively expensive for
a large number of parameters. In this work, we use bilevel programming to
identify hyper-parameters for classification problems.

The work nontrivially extends our recent work on applying the methodology
of bilevel programming to parameter identification problems in machine learn-
ing. The motivation and benefits of the bilevel approach are explained in our
previous paper, [6], where we have discussed the application to constrained
regression within the framework of cross validation. In essence, unlike many
traditional grid search methods used in machine learning that are severely
restricted by the number of hyper-parameters to be searched, the bilevel ap-
proach enables the identification of many such parameters all at once by way
of the state-of-the-art optimization methods and their softwares (such as those
publicly available on the neos servers). Another important advantage of the
bilevel approach is its modeling versatility in handling multiple machine learn-
ing goals simultaneously and efficiently; these include optimal choice of model
parameters [3, 7], feature selection for dimension reduction [8], inexact cross
validation, kernelization to handle nonlinear data sets [9], and variance control
for fold consistency through multi-tasking.

Solution path methods [5, 10] also tackle selection of regularization param-
eters as a continuous optimization problem using parametric linear/quadratic
programming, which necessarily restricts the selection to one single parameter
only. These methods solve the problem of picking the best parameter using one
training set and one testing set very efficiently. One paper used this approach
to optimize parameters [11] by combining the solution paths of the two paths
for each of the two parameters. Solution path approaches are a special case
of the bilevel approach, but the bilevel approach is far more general in that it
can be applied to many parameters and alternative measures of generalization,
based on many solutions such as cross-validation.

From the optimization point of view, bilevel programs resulting from these
applications belong to the general class of mathematical programs with equi-
librium constraints (MPECs), [12], for which there are extensive advances in
theory, algorithms, and software in recent years. Some selected references fo-
cusing on algorithm developments and analysis include [13–25].

We focus on the bilevel binary classification problem where the main task
is to classify data into two groups according to a linear model using a clas-
sical support-vector (SV) classifier [1]. The hyper-parameters are selected to
minimize the T -fold cross validated estimate of the out-of-sample misclassi-
fication error. Each fold of training defines an inner-level convex quadratic
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program (QP) with parameters constrained by some bounds that are part of
the overall variables to be optimized; such bounds provide a mechanism for
feature selection whereby those features corresponding to small bounds in the
solution of the bilevel problem will be deemed insignificant. The outer-level
problem minimizes the T -fold average classification error based on the optimal
solutions of the inner-level QPs for all possible hyper-parameters. Using the
approach in [26], we add inner-level linear programs to compute the number
of misclassified test points for each fold. In principle, the objective functions
in the inner-level classification optimization problems could be rather general;
the only restriction we impose is their convexity so that the only non-convexity
generated by the inner-level problems in the MPEC is essentially the comple-
mentarity slackness in the optimality conditions of the inner-level problems.

The organization of the paper is as follows. In Section 2, we present the
mathematical formulation of the bilevel cross validation classification model
and show how it can be converted to an instance of an MPEC. In Section 3,
we illustrate the power of the formulations to address variations of the classi-
fication problems. In Section 4, we describe grid search and present a relaxed
nonlinear programming reformulation of the MPEC called inexact cross vali-
dation. In Section 5, we describe the experimental setup, the data sets used,
and present some computational results comparing the grid search and bilevel
cross validation methods. We conclude the paper with some final remarks in
Section 6.

2 Model Formulation

We first say a few words about our notation. Let Ω denote a given finite set
of ℓ = |Ω| labeled data points, {(xi, yi)}ℓ

i=1 ⊂ R
n+1. Since we are interested in

the binary classification case, the labels yi are ±1. Let the set of indices for
the points in Ω be N = {1, . . . , ℓ}. For T -fold cross validation, Ω is partitioned
into T pairwise disjoint subsets, Ωt, called the validation sets. The sets Ωt =
Ω \Ωt are the training sets within each fold. The corresponding index sets for
the validation and training sets are Nt and N t respectively. The hyperplane
trained within the t-th fold using the training set Ωt is identified by the pair
(wt, bt) ∈ R

n+1. For compactness of notation, the vectors wt are collected,
column-wise, into the matrix W ∈ R

n×T , and the scalars bt into the vector
b ∈ R

T . A vector of ones of arbitrary dimension is denoted by 1. Given two
vectors, r and s ∈ R

n, the complementarity condition r ⊥ s means r ′s = 0,
where the prime ′ denotes the transpose; and r⋆ denotes the step function
applied to each component of the vector r as defined in (7).

The well-known SV classification problem depends on a nonnegative regu-
larization parameter, λ, which is selected through cross validation based on
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the average misclassification error measured on the out-of-sample data, i.e, the
validation sets. Specifically, the basic bilevel model for support vector classifi-
cation, is formulated as follows:

minimize
W,b,λ,w

Θ(W,b)

subject to λ lb ≤ λ ≤ λ ub, w lb ≤ w ≤ w ub ,

and for t = 1, . . . , T,

(1)

(wt, bt) ∈ arg min
−w≤w≤w

b∈R





λ

2
‖w ‖2

2 +
∑

j∈N t

max
(
1 − yj(x

′
jw − b), 0

)



 . (2)

Problem 1 is called the outer-level problem and subproblems 2 are called the
inner-level problems. The outer-level objective, Θ(W,b), is some measure of
validation accuracy over all the folds, typically the average number of misclas-
sifications. There are T inner-level subproblems, one for each fold in T -fold
cross validation. The arg min is the last constraint in (1) and denotes the set
of all optimal solutions to the T convex optimization problems (2). Each t-th
subproblem is simply a classical support vector classification problem applied
to the corresponding training set, Ωt, along with the additional box constraint
of the form −w ≤ w ≤ w, where w is a variable in the overall bilevel opti-
mization; in turn, w is restricted to given bounds wub ≥ wlb ≥ 0.

The symmetric box constraint is included for the purposes of wrapper-type
feature selection and regularization. In addition, the box constraint was se-
lected to illustrate that the bilevel approach can successfully optimize many
hyper-parameters. Note that there is one box constraint parameter for every
descriptor. Consider a particular feature that is expected to be redundant or
irrelevant i.e., that feature does not contribute much to the final classifier.
Then, the corresponding weight in w would be small or zero, which, in turn,
constrains the corresponding weights in each wt, thereby effectively control-
ling their capacity and potentially increasing generalization performance. The
bilevel program will effectively be a wrapper feature selection method. Wrap-
per methods search for subsets of feature that optimize estimates of the testing
generalization error for models trained with those features [27]. Sparse 1-norm
regularization can also be used for feature selection but the subset features in
each of the CV folds illustrates great variability [8]. The box constraints will
ensure that a consistent subset of the features will be used across all the folds.
If w can be picked effectively, the box constrained SVM, (2), could represent a
fundamentally new way to perform feature selection. Thus, the box constraints
are embedded in the bilevel cross validation scheme and w becomes a vector
of hyper-parameters in the problem.

Note that we use λ
2‖w‖2

2 for regularization rather than the typical term



Bilevel Model Selection for Classification 5

C
∑

j∈N t

max(1 − yj(x
′
jw − b), 0), where C is the parameter to be chosen.

This is due to our empirical observation that the former is more numerically
robust than the latter within the bilevel setting. Clearly, the two modes of
regularization are equivalent for each inner-level problem with C = 1

λ
, provided

that both parameters are positive. Note that the bilevel program selects the
hyperparameters. The final classifier can be constructed by optimizing a single
instance of the lower-level problem using the optimal hyper-parameters and
all of the training data. In this case, the final λ should be scaled by T

T−1 to
account for the larger training set size.

Similar to w, the parameter λ is subject to given bounds λub ≥ λlb > 0. This
is done for three reasons: first, to facilitate direct comparison with grid search
based cross validation (see Section 4.2); second, to improve the stability and
speed up convergence of a general purpose NLP solver; and third, to ensure
the positivity of the parameters λ and w: so that the bilevel approach yields,
in case of the former, a nonzero regularization parameter, in case of the latter,
a nontrivial box constraint for feature selection.

2.1 The inner-level problems

As mentioned above, there are T inner-level problems that model the training
of classifiers within each fold. Consider the inner-level problem corresponding
to the t-th fold i.e., the t-th training set, Ωt, indexed by N t, is used. With λ
and w fixed in this subproblem, we introduce slack variables, ξt, in (2) to refor-
mulate the max function using standard linear programming techniques. This
gives the the box-constrained SV classifier (BoxSVC) which is nearly identical
to the classical SVM for classification, except that it has the additional box
constraint for regularization and feature selection:

minimize
wt, bt, ξ

t

λ

2
‖wt‖2

2 +
∑

j∈N t

ξt
j

subject to −w ≤ wt ≤ w,
{

yj(x
′
jw

t − bt) ≥ 1 − ξt
j

ξt
j ≥ 0

}
∀ j ∈ N t.

(3)

The BoxSVC is a convex quadratic program in the variables wt, bt and
{ξt

j}j∈N t

. Let γt,− and γt,+ be the multipliers of the lower and upper bound

constraints −w ≤ wt ≤ w respectively and αt
j be the multiplier for the hyper-

plane constraint, yj(x
′
jw

t − bt) ≥ 1− ξt
j. Using these multipliers, we can write

down the primal and dual feasibility and complementarity slackness conditions
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of (3) compactly as follows:

0 ≤ αt
j ⊥ yj(x

′
jw

t − bt) − 1 + ξt
j ≥ 0

0 ≤ ξt
j ⊥ 1 − αt

j ≥ 0




 ∀ j ∈ N t,

0 ≤ γt,+ ⊥ w − wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

(4)

which together with the following first-order conditions,

λwt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑

j∈N t

yjα
t
j = 0,

(5)

constitute the Karush-Kuhn-Tucker (KKT) optimality conditions to (3). The
KKT conditions are necessary and sufficient conditions for the optimal solution
of (3). Thus the inner-level optimization problems (2) can be replaced with
the system of equations (4) and (5).

2.2 The outer-level optimization

The inner-level problems solve T box-constrained SV classification problems
on the training sets to yield T hyperplanes, (wt, bt), one for each fold. The
outer-level objective function is a measure of generalization error based on the
T out-of-sample validation sets, which we minimize. The measure used here
is the classical cross-validation error for classification, the average number of
points misclassified. The outer-level objective that achieves this can be written
using the step function, ()⋆, as

Θ(W,b) =
1

T

T∑

t=1

1

|Nt |
∑

i∈Nt

[
−yi(x

′
iw

t − bt)
]
⋆
. (6)

Note that in the inner summation, Ωt, the t-th validation set, indexed by Nt,
is used. The inner summation averages the number of misclassifications within
each fold while the outer summation averages the averaged misclassification
error over the folds. The step function used in (6) can be defined, componen-
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twise, for a vector, r, as

(r⋆)i =

{
1, if ri > 0,
0, if ri ≤ 0.

(7)

It is clear that ()⋆ is discontinuous and that (6) cannot be used directly in
the bilevel setting. The step function, however, can be characterized as the
solution to a linear program as demonstrated in [26], i.e.,

r⋆ = arg min
ζ

{−ζ ′r : 0 ≤ ζ ≤ 1}. (8)

Thus, we have to solve T linear programs of the form (9) to determine which
validation points, xi ∈ Nt, are misclassified within the t-th fold, i.e., when
the sign of yi(x

′
iw

t − bt) is negative. These LPs are inserted as inner-level
problems into the bilevel setting in order to recast the discontinuous outer-
level objective into a continuous one. They yield ζt =

[
−yi(x

′
iw

t − bt)
]
⋆
, with

ζt
i = 1 if the point xi is misclassified and 0 otherwise. Finally, it should be

noted that if xi lies on the hyperplane, (wt, bt), then we will have 0 < ζt
i < 1.

ζt ∈ arg min
0≤ζ≤1 {

∑

i∈Nt

ζiyi

(
x ′

iw
t − bt

)
}

. (9)

Returning to the general case, we introduce additional multipliers, z, for the
constraint ζ ≤ 1. Consequently, any solution to (8) should satisfy the following
linear complementarity conditions:

0 ≤ ζ ⊥−r + z ≥ 0,

0 ≤ z ⊥ 1 − ζ ≥ 0.
(10)

We noted in Section 2.1 that the inner-level problems, (2), can be replaced
with the first-order KKT conditions, (4–5). Furthermore, the inner-level step
function LPs, (9), can be rewritten using the linear complementarity condi-
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tions, (10). The overall two-level classification problem becomes

min
1

T

T∑

t=1

1

|Nt |
∑

i∈Nt

ζt
i

s. t. λ lb ≤ λ ≤ λ ub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T,

0 ≤ ζt
i ⊥ yi

(
x ′

iw
t − bt

)
+ zt

i ≥ 0

0 ≤ zt
i ⊥ 1 − ζt

i ≥ 0

}
∀ i ∈ Nt,

0 ≤ αt
j ⊥ yj(x

′
jw

t − bt) − 1 + ξt
j ≥ 0

0 ≤ ξt
j ⊥ 1 − αt

j ≥ 0

}
∀ j ∈ N t,

0 ≤ γt,+ ⊥ w − wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

λwt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑

j∈N t

yjα
t
j = 0,

(11)

which is an instance of an MPEC. It is a nonconvex optimization problem
because of the complementarity constraints. We refer to this problem as the
Bilevel Misclassification Minimization (BilevelMM) problem.

3 Bilevel Classification Variations

There are many possible variations of the bilevel classification problem. To
illustrate the versatility of the bilevel approach, we discuss the outer-level
objective, feature selection strategies, and kernel selection.

3.1 Outer-level objective

The outer-level objective, (6), is not the only criterion that can be used to
estimate generalization error within the cross validation scheme. An intuitively
appealing alternative is to use the same misclassification measure for both the
outer- and inner-level problems. Thus, we can also use the hinge loss, which
minimizes the distance of each misclassified validation point from the classifier
margin trained within each fold. The hinge loss is an upper bound on the
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misclassification objective:

Θ(W,b) =
1

T

T∑

t=1

1

|Nt |
∑

i∈Nt

max
(
1 − yi(x

′
iw

t − bt), 0
)
. (12)

The resulting MPEC is simpler because the lower level problems, (9), intro-
duced to calculate the average number of points misclassified are not required.
One might expect that this would lead to faster solutions by the filter solver
on neos. But as we see later, this is not the case. When the hinge-loss is used
in the outer-level, the MPEC becomes

min
1

T

T∑

t=1

1

|Nt |
∑

i∈Nt

zt
i

s. t. λ lb ≤ λ ≤ λ ub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T,

zt
i ≥ 1 − yi

(
x ′

iw
t − bt

)

zt
i ≥ 0

}
∀ i ∈ Nt,

0 ≤ αt
j ⊥ yj(x

′
jw

t − bt) − 1 + ξt
j ≥ 0

0 ≤ ξt
j ⊥ 1 − αt

j ≥ 0

}

∀ j ∈ N t,

0 ≤ γt,+ ⊥ w − wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

λwt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑

j∈N t

yjα
t
j = 0.

(13)

We refer to this problem as Bilevel Hinge Loss (BilevelHL) problem.

3.2 Enhanced feature selection

The introduction of w into the SVM represents a novel and powerful way to
perform feature selection and to force w to be sparse. A simple way to enhance
this would be to use either an L1-norm regularization or a combination of
L1 and L2 norms (elastic nets [28, 29]) in the inner level. These variations
would only require straightforward modifications to the model. However, we
will focus on yet another variation, one that attempts to incorporate prior
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knowledge into feature selection.
Suppose, for n-dimensional data, it was known a priori that at most nmax

features are sufficient. This can be incorporated into the model by introducing
the constraint ‖w‖0 ≤ nmax into the outer-level problem, where ‖ · ‖0 is called
the zero-norm or the cardinality of a vector, i.e., it counts the number of non-
zero elements in its argument. This constraint forces the number of allowable
features to be bounded above by some user-defined maximum and causes the
features with the smallest weights to be dropped from the model. The con-
straint can be rewritten using the ()⋆ function, since we have ‖w‖0 = 1′w⋆. If
the conditions (10) are used to rewrite the constraint, the following inequality
and complementarity constraints are added to the outer-level of (11):

n∑

m=1

δm ≤ nmax,

0 ≤ δ ⊥ −w + d ≥ 0,

0 ≤ d ⊥ 1− δ ≥ 0.

(14)

In the constraints above, δ counts the selected features of w, and d is the
multiplier to the constraint 1− δ ≥ 0.

3.3 Kernel bilevel cross validation

A fundamental limitation of (11) is the fact that it is linear and cannot handle
nonlinear data sets effectively. One of the most powerful features of SVMs is
their ability to deal with high-dimensional, highly nonlinear data using the
kernel trick. We now demonstrate how a linear bilevel program can be kernel-
ized.

An important feature of the formulation (11) is that it is capable of feature
selection. However, it is clear from the first-order conditions, (5), that wt

depends not only on the training data, but also on the multipliers, γt,±, of
the box constraints. These multipliers are an impediment to expressing wt

solely as a linear combination of the training data, a fundamental assumption
that is at the heart of all kernel methods through the representation theorem.
As a consequence, temporarily setting aside the concerns of feature selection,
we drop the box constraints, set γt,± to zero, and work with the classical SV
classifier. The new first order conditions are

λwt =
∑

j∈N t

yjα
t
jxj , ∀ t = 1, . . . , T. (15)

Now, we can eliminate wt within each fold of (11) using (15). The resulting
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linear inner product terms, x ′
ixk, can be replaced by a bilinear, symmetric,

positive semi-definite kernel function, κ(xi, xk). The final bilevel cross valida-
tion for kernel SV classification model is shown below with C = 1/λ:

min
1

T

T∑

t=1

1

|Nt |
∑

i∈Nt

ζt
i

s. t. C ≥ 0,

and for t = 1 . . . T,

0 ≤ ζt
i ⊥ C yi




∑

k∈N t

ykα
t
kκ(xi, xk) − bt



 + zt
i ≥ 0

0 ≤ zt
i ⊥ 1 − ζt

i ≥ 0





∀ i ∈ Nt,

0 ≤ αt
j ⊥ C yj




∑

k∈N t

ykα
t
kκ(xj , xk) − bt



 − 1 + ξt
j ≥ 0

0 ≤ ξt
j ⊥ 1 − αt

j ≥ 0





∀ j ∈ N t,

∑

j∈N t

yjα
t
j = 0.

(16)
There are two new challenges raised by the kernel model. First, the kernel
contains parameters that must be determined. Second, as formulated above,
this model is not capable of performing feature selection. These challenges can
be overcome by considering a parameterized kernel of the form κ(xi, xk; p),
where p ≥ 0 is the feature scaling vector whose role is similar to w in the
linear model; in particular, if pi = 0, then the i-th feature is eliminated. For
example, the parameterized Gaussian kernel can be written down as below:

κ(xi, xk; p) = exp
(
−(xi − xk)

′diag(p) (xi − xk)
)
, (17)

where diag(p) is the diagonal matrix with diagonal entries given by the com-
ponents of p. Other kernels can be similarly extended and used in the model.
Consequently, the components of this new vector of kernel parameters, p, be-
come variables in the overall bilevel kernel model. The introduction of the
parameterized kernel is a very powerful extension to the linear model (11) as
it is capable of picking the regularization parameters, and kernel parameters
and features, leaving only the choice of kernel to the user. Additional research
is needed to develop effective solvers for the bilevel kernel models. Our pre-
liminary computational investigation found that filter runs through neos
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could only successfully solve small problems. Thus, the results and discussion
in this paper are limited to the linear case.

4 Inexact and Discretized Cross Validation

The bilevel formulations described in the previous section perform model se-
lection by searching a continuous parameter space. In contrast, classical cross
validation approximately solves the bilevel problem by searching a discretized
version of the same parameter space. In the bilevel approach also performs
inexact cross validation, by solving a relaxed version of the bilevel MPEC.
Pertinent details of both these methods are described below.

4.1 Inexact cross validation

There exist several approaches that can deal with the complementarity con-
straints in MPECs such as (11). Some of these are: penalty methods, which
allow for the violation of the complementarity constraints, but penalize them
through a penalty term in the outer-level objective; smoothing methods, that
construct smooth approximations of the complementarity constraints; and re-
laxation methods, that relax the complementarity constraints while retaining
the convex constraints. We use the relaxation approach to solve (11).

This method of solving an MPEC simply involves replacing all instances of
the “hard” complementarity constraints of the form

0 ≤ c ⊥ d ≥ 0 ≡ c ≥ 0, d ≥ 0, c ′d = 0,

with relaxed, “soft” complementarity constraints of the form

0 ≤ c ⊥tol d ≥ 0 ≡ c ≥ 0, d ≥ 0, c ′d ≤ tol,

where tol > 0 is some prescribed tolerance of the complementarity conditions.
This leads us to the bilevel SVC problem with inexact cross validation, which
is the same as (11) except that all the ⊥ conditions are replaced by ⊥tol.

Even though this is still a non-convex optimization problem, it represents a
novel approach in the context of machine learning. The tolerance parameter,
tol, which is set a priori, determines the accuracy of the relaxation and per-
forms inexact cross validation. That means: an appropriately chosen tol can
enlarge the search region of the model at the expense of a tolerable decrease in
model accuracy. This is similar to the well-known machine-learning concept of
“early stopping” in that the quality of the out-of-sample errors—measured in
the outer-level objective of the bilevel program—is not affected significantly by
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small perturbations to a computed solution, in turn facilitating an early ter-
mination of cross validation. This approach also has the advantage of easing
the difficulty of dealing with the disjunctive nature of the complementarity
constraints. The exact same approach can also be applied to the hinge-loss
MPEC, (13).

4.2 Grid search

Classical cross validation is performed by discretizing the parameter space into
a grid and searching for the combination of parameters that minimizes the out-
of-sample error, also referred to as validation error. This corresponds to the
outer-level objective of the bilevel program (11). Typically, coarse logarithmic
parameter grids of base 2 or 10 are used. Once a locally optimal grid point with
the smallest validation error has been found, it may be refined or fine-tuned
by a local search.

In the case of SV classification, the only hyper-parameter is the regular-
ization constant, λ. However, the bilevel model (11) uses the box-constrained
SVM for feature selection; Grid Search has to determine w as well. It is this
search in the w-space that causes a serious combinatorial difficulty for the
grid approach. To see this, consider the case of T -fold cross validation using
grid search, where λ and w are each allowed to take on d discrete values.
Assuming the data is n-dimensional, grid search would have to solve roughly
O(Tdn+1) problems. The resulting combinatorial explosion makes grid search
intractable for all but the smallest n. In this paper, to counter this difficulty,
we implement the following heuristic scheme:

• To determine λ: Perform a one-dimensional grid search using the classi-
cal SVC problem (without the box constraint). The range [λlb, λub] is dis-
cretized into a coarse, base-10, logarithmic grid. These grid points constitute
the search space for this step, which we will call unconstrained grid search.
At each grid point, T SVC problems are solved on the training sets and the
error is measure on the validation sets. The grid point with the smallest
average validation error, λ, is “optimal”.

• To determine w: Perform a n-dimensional grid search to determine the rele-
vant features of w using the box-constrained SVC problem (BoxSVC) and λ
obtained from the previous step. Only two distinct choices for each feature
are considered: 0, to test feature redundancy, and some large value that
would not affect the choice of an appropriate feature weight. In this set-
ting, 3-fold cross validation would involve solving about O(3 ∗ 2n) BoxSVC
problems. We call this step constrained grid search.

• The number of problems in constrained grid search is already impractical
necessitating a further restriction of the relevant features to a maximum of
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Table 1. Descriptions of data sets used.

Data set ℓtrain ℓtest n T

Pima Indians Diabetes Database 240 528 8 3
Wisconsin Breast Cancer Database 240 442 9 3
Cleveland Heart Disease Database 216 81 14 3
Johns Hopkins University Ionosphere Database 240 111 33 3
Star/Galaxy Bright Database 600 1862 14 3
Star/Galaxy Dim Database 900 3292 14 3

n = 10. If a data set has more features, they are ranked using recursive

feature elimination [30], and the 10 best features are chosen.

5 Numerical Tests

We compare unconstrained and constrained grid search approaches to the
bilevel approaches (11) and (13) relaxed through inexact cross validation.
The bilevel programs were implemented in ampl and solved using filter

[31–33], which is a general-purpose nonlinear programming solver available
on the neos server (www-neos.mcs.anl.gov). Unconstrained and constrained
grid were solved using mosek’s quadratic program solver accessed through a
matlab interface.

5.1 Experimental design

We used 6 real-world classification data sets, four of which are available via
anonymous ftp from the UCI Repository for Machine Learning and two from
the Star/Galaxy database at the University of Minnesota. The data sets were
all standardized to zero norm and unit standard deviation. Twenty instances
of each data set were randomly generated and each instance was split into a
training set with ℓtrain points, which is used for cross validation and a hold-
out test set, with ℓtest points. The data descriptions are shown in Table 5.1.
The hyper-parameters in the bilevel program were restricted as follows: λ ∈
[10−4, 104] and w ∈ [0, 1.5]. Grid search used the exact same bounds but
was further restricted to λ ∈ {10−4, 10−3, . . . , 103, 104} and w ∈ {0, 1.5}. The
complementarity tolerance was set to be tol = 10−6 in all runs except in the
BilevelHL problem on the dim data set, where the value of tol = 10−4 was used.
These settings were used to perform 3-fold cross validation on each instance.

Using the cross-validated hyper-parameters λ̂ and ŵ obtained from the
bilevel and the grid search approaches, we implement a post-processing pro-
cedure to calculate the generalization error on the hold-out data for each
instance. Specifically, a constrained SVC problem is solved on all the training
data using 3

2 λ̂ and ŵ giving the final classifier (ŵ , b̂) which is used to compute
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Figure 1. Effect of increasing the number of folds on learning rate of classifiers for pima.

the test (hold-out) error rate:

ERRORtest =
1

ℓtest

∑

(x,y) test

1

2
| sign(ŵ ′x− b̂) − y |.

Recall that the bilevel model uses 3-fold cross-validation and that each training
fold consists of two-thirds of the total training data. Consequently, the final
regularization parameter, λ̂, is rescaled by a factor of 3

2 because the final model,
which is constructed in the post-processing phase, uses all of the training data.
For general T -fold cross validation, as mentioned before, this factor will be

T
T−1 , T > 1, assuming that each fold contains the same fraction of data.

In addition, we also compute the cardinality of the final w returned by the
different approaches to determine the effectiveness of feature selection. For
the bilevel approaches, the features in w with weights less than

√
tol were

considered irrelevant and set to zero, after which the test error was computed.
Various criteria are used to compare the bilevel approach to the grid search
approach: cross-validation error, test error, feature selection and execution
time. The results, averaged over 20 instances for each data set, are presented
in Table 5.2. Results which are significantly different (using a paired t-test at
10% confidence) with respect to unconstrained grid are shown in bold. The
computational results in Table 5.2 all used T = 3 cross validation folds.

To study the effect of increasing the number of folds on cross validation error
and test error, we report, in Figure 1, the results averaged over 5 instances of
the pima data set. The results clearly demonstrate that larger number of folds
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Table 2. Computational Results comparing Grid Search and Bilevel Approaches.

Data set Method CV Error Test Error ‖w‖0 Time (sec.)

pima Unconstrained Grid 23.10 ± 2.12 23.75 ± 0.94 8.0 12.3± 1.1
Constrained Grid 21.04± 1.63 24.13 ± 1.13 4.5 434.9± 35.1
Bilevel (Misclass Min) 21.87± 2.25 23.90 ± 0.95 6.4 51.8± 23.0
Bilevel (HingeLoss Min) 44.04± 3.19 23.80 ± 1.14 5.4 156.5± 57.5

cancer Unconstrained Grid 3.54 ± 1.14 3.61 ± 0.64 9.0 11.7± 0.4
Constrained Grid 2.73 ± 0.88 4.42 ± 0.85 5.8 815.5± 29.7
Bilevel (Misclass Min) 3.13 ± 1.05 3.59 ± 0.79 8.2 19.9± 8.3
Bilevel (HingeLoss Min) 6.13 ± 2.22 3.76 ± 0.74 6.8 58.3± 33.6

heart Unconstrained Grid 15.93 ± 2.02 16.05 ± 3.65 13.0 10.6± 0.8
Constrained Grid 13.94± 1.69 16.85 ± 4.15 7.1 1388.7± 37.6
Bilevel (Misclass Min) 14.49± 1.47 16.73 ± 3.89 11.2 64.0± 20.5
Bilevel (HingeLoss Min) 28.89± 3.20 16.30 ± 3.29 8.8 217.1± 82.5

ionosphere Unconstrained Grid 22.27 ± 2.45 23.06 ± 2.45 33.0 7.5± 0.6
Constrained Grid 19.25± 2.07 22.34 ± 2.02 6.9 751.1± 3.0
Bilevel (Misclass Min) 19.16± 2.44 23.65 ± 2.99 20.2 423.0±159.5
Bilevel (HingeLoss Min) 33.79± 2.79 22.79 ± 2.03 14.2 1248.8±618.5

bright Unconstrained Grid 0.78 ± 0.34 0.74 ± 0.13 14.0 22.7± 0.2
Constrained Grid 0.51 ± 0.24 0.97 ± 0.33 6.7 3163.7± 11.5
Bilevel (Misclass Min) 0.62 ± 0.31 0.79 ± 0.14 11.2 110.9± 61.2
Bilevel (HingeLoss Min) 1.12 ± 0.58 0.75 ± 0.14 8.9 564.2±335.7

dim Unconstrained Grid 4.71 ± 0.55 4.96 ± 0.29 14.0 55.0± 5.1
Constrained Grid 4.36 ± 0.51 5.21 ± 0.37 7.2 7643.5± 74.5
Bilevel (Misclass Min) 4.77 ± 0.64 5.51 ± 0.33 7.7 641.5±344.1
Bilevel (HingeLoss Min) 9.54 ± 1.00 5.28 ± 0.36 5.7 1465.2±552.9

can be successfully solved, but computation time does grow with the number
of folds. The range of generalization values observed for different numbers of
folds is not large, so T = 3 represents a reasonable choice. The best choice of
the number of folds for a particular data set remains an open question.

5.2 Discussion

We first examine the performance of the bilevel misclassification minimization
(BilevelMM) programming approach with respect to the grid search methods.
The first conclusion that can be drawn, from computational efficiency per-
spective, is that BilevelMM vastly outperforms the constrained grid search
approach; the execution times for the former are several orders of magnitude
smaller than the latter. It should be noted that the reported computation
times for filter include transmission times as well as solve times, and that
the reported computation times for grid search are enhanced by the use of
smart restarting heuristics. However, despite the latter, it is clear that con-
strained grid search quickly becomes impractical as the problem size grows.
This effect is clearly noticeable in the computation times for the Star/Galaxy
data sets, where the execution time is affected, not only by the number of fea-
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tures, but also by the data set sizes, which contain hundreds of training points.
BilevelMM, on the other hand, is capable of cross-validating the dim data set,
with 900 training points, in around 10-11 minutes on average. This suggests
that the scalability of the bilevel approach could be improved significantly by
exploiting the structure and sparsity inherent in SVMs. Research is currently
underway in this direction and findings will be reported elsewhere.

With regard to generalization error, two interesting points emerge. First,
the BilevelMM approach consistently produces results that are comparable
to, if not slightly better than the grid search approaches, in spite of the fact
that the cross-validation error is typically higher. This can be attributed to the
fact that general-purpose NLP solvers tend to converge to acceptable solutions,
with no guarantee of global optimality. Second, the only exception is the dim

data set where the slight degradation in generalization performance can be
imputed to numerical difficulties experienced by the NLP solvers because of
large dimensionality and large data set size. Again, a specialized algorithm
that could guarantee global optimality could produce better generalization
performance.

With regard to feature selection, it is clear that unconstrained grid performs
none at all, while, interestingly, constrained grid search uses less features than
BilevelMM, albeit at the expense of excessive computational times and poorer
generalization. This can be attributed to the fact that constrained grid is
greedy, i.e., it analyzes every combination of features to find an optimal set
and performs feature selection aggressively on data sets with more than 10
features as it drops the remaining features using RFE. BilevelMM has no
such heuristic or mechanism to drive the number of selected features down.
Despite this, it is clear that it does succeed in performing a better trade-off
between feature selection and generalization. See Section 3.2 for ideas that
might improve feature selection in the bilevel setting.

Next, we discuss the performance of the bilevel hinge-loss (BilevelHL) ap-
proach and compare it to BilevelMM. The most striking difference is in the
computation times of the two approaches, with BilevelHL, quite unexpectedly,
taking two to three times longer. We theorize that this is because BilevelMM
has many more stationary points (for an intuitive explanation of this curious
property that is endemic to misclassification minimization problems, see [26])
than BilevelHL and consequently, a general-purpose NLP solver tends to con-
verge to stationarity faster. However, BilevelHL is still considerably faster than
grid search; again, the only exception being the ionosphere data set. It should
be noted that constrained grid search used only 10 features—after recursive
feature elimination was used to drop 23 of the 33 features—while BilevelHL
solved the full problem using all the features. If constrained grid were to use
all 33 features, it would have to solve around O(1011) BoxSVC problems.

In terms of generalization error, BilevelHL performs as well or better than
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BilevelMM and never significantly worse than unconstrained grid (except for
the dim data set), despite the fact that the CV errors of BilevelHL are uni-
formly higher. Recall that a complementarity tolerance of 10−4 was used for
the dim data set. This was to relax the problem further for the numerical sta-
bility of the NLP solver. This relaxation, however, leads to a slight degradation
in the quality of the solution.

Finally, BilevelHL tends to pick fewer features than BilevelMM, but
still more than constrained grid. This comparison between BilevelMM and
BilevelHL indicates that the best choice of outer-level objective is still an
open question in need of further research.

6 Conclusions

We demonstrated how T -fold cross-validation can be cast as a continuous
bilevel program: inner-level problems are introduced for each of the T -folds to
compute classifiers on the training sets and to calculate the misclassification
errors on the training sets within each fold. Furthermore, we introduced the
box-constrained SVM which has a hyper-parameter for each feature to per-
form feature selection. The resulting bilevel program is converted to an MPEC,
which is in turn converted to a nonlinear programming problem through in-
exact cross validation. The advantage of the bilevel approach is that many
hyper-parameters can be optimized simultaneously, unlike prior grid search
approaches that are practically limited to one or two parameters. Initial com-
putational results using filter through neos were very promising. High qual-
ity solutions were found using few features using much less computation time
than grid search approaches over the same hyper-parameters.

This work represents a first proof of concept. We showed that cross-
validation through minimization of different objectives such as averaged mis-
classification error and hinge loss could be solved efficiently with large numbers
of hyper-parameters. The resulting classifiers demonstrated good generaliza-
tion ability and were dependent on only a few features. The success of these
two different bilevel approaches suggests that other changes in the objective
and regularization can lead to further enhancement of performance for classifi-
cation problems. Furthermore, the versatility of the bilevel approach suggests
that further variations could be developed to tackle other challenges in machine
learning such as missing data, semi-supervised learning, kernel learning and
multi-task learning. Future theoretical and computational work is needed to
investigate this flexibility–that the bilevel approach has the ability to optimize
large number of hyper-parameters for many types of outer-level objectives.

A major outstanding research question is the development of efficient opti-
mization algorithms for the bilevel program. Our current work is limited to
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the use of an off-the-shelf NLP solver. A recent linear time SVM algorithm can
solve traditional SVM classification problems with millions of data points [34]
using advanced decomposition techniques that exploit the underlying structure
of the problem. Many other efficient and scalable methods for SVM abound
and these methods should be compared with and incorporated into the bilevel
approach [35, 36]. Solution path algorithms traverse the feasible regions for
very limited bilevel problems. The hope is that by developing related special
purpose solvers the scalability of the bilevel program can be achieved as well.
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