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Abstract. We examine the interplay of optimization and machine learn-
ing. Great progress has been made in machine learning by cleverly
reducing machine learning problems to convex optimization problems
with one or more hyper-parameters. The availability of powerful convex-
programming theory and algorithms has enabled a flood of new re-
search in machine learning models and methods. But many of the
steps necessary for successful machine learning models fall outside of
the convex machine learning paradigm. Thus we now propose framing
machine learning problems as Stackelberg games. The resulting bilevel
optimization problem allows for efficient systematic search of large num-
bers of hyper-parameters. We discuss recent progress in solving these
bilevel problems and the many interesting optimization challenges that
remain. Finally, we investigate the intriguing possibility of novel machine
learning models enabled by bilevel programming.

1 Introduction

Convex optimization now forms a core tool in state-of-the-art machine learning.
Convex optimization methods such as Support Vector Machines (SVM) and
kernel methods have been applied with great success. For a learning task, such
as regression, classification, ranking, and novelty detection, the modeler selects a
convex loss and regularization functions suitable for the given task and optimizes
for a given data set using powerful robust convex programming methods such as
linear, quadratic, or semi-definite programming. But the many papers reporting
the success of such methods frequently gloss over the critical choices that go
into making a successful model. For example, as part of model selection, the
modeler must select which variables to include, which data points to use, and
how to set the possibly many model parameters. The machine learning problem
is reduced to a convex optimization problem only because the boundary of what
is considered to be part of the method is drawn very narrowly. Our goal here is
to expand the mathematical programming models to more fully incorporate the
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entire machine learning process. Here we will examine the bilevel approach first
developed in [1].

Consider support vector regression (SVR). In SVR, we wish to compute a
linear regression function that maps the input, x ∈ Rn, to a response y ∈ R,
given a training set of (input, output) pairs, {(xi, yi), i = 1 . . . �}. To accomplish
this, we must select hyper-parameters including the two parameters in the SVR
objective and the features or variables that should be used in the model. Once
these are selected, the learned function corresponds to the optimal solution of a
quadratic program. The most commonly used and widely accepted method for
selecting these hyper-parameters is still cross validation (CV).

In CV, the hyper-parameters are selected to minimize some estimate of the
out-of-sample generalization error. A typical method would define a grid over the
hyper-parameters of interest, and then do 10-fold cross validation for each of the
grid values. The inefficiencies and expense of such a grid-search cross-validation
approach effectively limit the desirable number of hyper-parameters in a model,
due to the combinatorial explosion of grid points in high dimensions.

Here, we examine how model selection using out-of-sample testing can be
treated as a Stackelberg game in which the leader sets the parameters to mini-
mize the out-of-sample error, and the followers optimize the in-sample errors for
each fold given the parameters. Model selection using out-of-sample testing can
then be posed as an optimization problem, albeit with an “inner” and an “outer”
objective. The main idea of the approach is as follows: the data is partitioned or
bootstrapped into training and test sets. We seek a set of hyper-parameters such
that when the optimal training problem is solved for each training set, the loss
over the test sets is minimized. The resulting optimization problem is a bilevel
program. Each learning function is optimized in its corresponding training prob-
lem with fixed hyper-parameters—this is the inner (or lower-level) optimization
problem. The overall testing objective is minimized—this is the outer (or upper-
level) optimization problem.

We develop two alternative methods for solving the bilinear programs. In both
methods, the convex lower level problems are replaced by their Karush-Kuhn-
Tucker (KKT) optimality conditions, so that the problem becomes a mathemati-
cal programming problem with equilibrium constraints (MPEC). The equivalent
optimization problem has a linear objective and linear constraints except for the
set of equilibrium constraints formed by the complementarity conditions. In our
first approach, the equilibrium constraints are relaxed from equalities to inequal-
ities to form a nonlinear program (NLP) that is then solved by a state-of-the-art
general-purpose nonlinear programming solver, filter. In the second approach,
the equilibrium constraints are treated as penalty terms and moved to the objec-
tive. The resulting penalty problem is then solved using the successive lineariza-
tion algorithm for model selection (SLAMS). Further performance enhancements
are obtained by stopping SLAMS at the first MPEC-feasible solution found, a
version we term EZ-SLAMS.

Our successful bilevel programming approaches offer several fundamental ad-
vantages over prior approaches. First, recent advances in bilevel programming in
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the optimization community permit the systematic treatment of models based
on popular loss functions used for SVM and kernel methods with many hyper-
parameters. In addition to the ability to simultaneously optimize many hyper-
parameters, the bilevel programming approach offers a broad framework in which
a wide class of novel machine learning algorithms can be developed. Amenable
problems with many parameters are pervasive in data analysis. The bilevel pro-
gramming approach can be used to address feature selection, kernel construction,
semi-supervised learning, and models with missing data.

This paper illustrates the bilevel approach applied to support vector regres-
sion. Additional information can be found in [1]. Discussion of the extensions of
the bilevel model selection method to other problems can be found in [2].

2 Bilevel Optimization

First, we briefly review bilevel optimization. Bilevel optimization problems are
a class of constrained optimization problems whose constraints contain a lower-
level optimization problem that is parameterized by a multi-dimensional de-
sign variable. In operations research literature, the class of bilevel optimiza-
tion problems was introduced in the early 1970s by Bracken and McGill [3].
These problems are closely related to the economic problem of the Stackelberg
game, whose origin predates the work of Bracken and McGill. In the late 1980s,
bilevel programming was given a renewed study in the extended framework of
a mathematical program with equilibrium constraints (MPEC) in [4], which is
an extension of a bilevel program with the optimization constraint replaced by
a finite-dimensional variational inequality [5].

The systematic study of the bilevel optimization problem and its MPEC ex-
tension attracted the intensive attention of mathematical programmers about
a decade ago with the publication of a focused monograph by Luo, Pang and
Ralph [4], which was followed by two related monographs [6,7]. During the past
decade, there has been an explosion of research on these optimization problems.
See the annotated bibliography [8], which contains many references. In general,
bilevel programs/MPECs provide a powerful computational framework for deal-
ing with parameter identification problems in an optimization setting. As such,
they offer a novel paradigm for dealing with the model selection problem de-
scribed in the last section. Instead of describing a bilevel optimization problem
in its full generality, we focus our discussion on its application to CV for model
selection.

3 A Bilevel Support-Vector Regression Model

We focus on a bilevel support-vector regression (SVR) problem and use it to
illustrate the kind of problems that the bilevel approach can treat. Specifi-
cally, suppose that the regression data are described by the � points Ω :=
{(x1, y1), . . . , (x�, y�)} in the Euclidean space �n+1 for some positive integers
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� and n. Consider the regression problem of finding a function f∗ : �n → �
among a given class that minimizes the regularized risk functional

R[f ] ≡ P [f ] +
C

�

�∑

i=1

L(yi, f(xi)),

where L is a loss function of the observed data and model outputs, P is a
regularization operator, and C is the regularization parameter. Usually, the ε-
insensitive loss Lε(y, f(x)) = max{|y − f(x)|− ε, 0} is used in SVR, where ε > 0
is the tube parameter, which could be difficult to select as one does not know
beforehand how accurately the function will fit the data. For linear functions:
f(x) = w ′x =

∑n
i=1 wixi, where the bias term is ignored but can easily be

accommodated, the regularization operator in classic SVR is the squared �2-
norm of the normal vector w ∈ �n; i.e., P [f ] ≡ ‖w‖2

2 =
∑n

i=1 w2
i .
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Fig. 1. SVR Model Selection as a Stackelberg Game

The classic SVR approach has two hyper-parameters, the regularization
constant C and the tube width ε, that are typically selected by cross validation
based on the mean square error (MSE) or mean absolute deviation (MAD)
measured on the out-of-sample data. In what follows, we focus on the latter and
introduce additional parameters for feature selection and improved regulariza-
tion and control. We partition the � data points into T disjoint partitions, Ωt

for t = 1, . . . , T , such that
⋃T

t=1 Ωt = Ω. Let Ωt ≡ Ω \ Ωt be the subset of the
data other than those in group Ωt. The sets Ωt are called training sets while the
sets Ωt are called the validation sets. We denote N t and Nt to be their index
sets respectively. For simplicity, we will ignore the bias term, b, but the method
can easily be generalized to accommodate it. In a fairly general formulation
in which we list only the essential constraints, the model selection bilevel program
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is to find the parameters ε, C, and wt for t = 1, · · · , T , and also the bounds w
and w in order to

minimize
C,ε,wt,w,w

1
T

T∑

t=1

1
| Nt |

∑

i∈Nt

|x ′
iw

t − yi |

subject to ε, C, ≥ 0, w ≤ w,

and for t = 1, . . . , T,

(1)

wt ∈ arg min
w≤w≤w

⎧
⎨

⎩C
∑

j∈N t

max(|x ′
jw − yj | − ε, 0) +

1
2

‖w ‖2
2

}
, (2)

where the argmin in the last constraint denotes the set of optimal solutions to the
convex optimization problem (2) in the variable w for given hyper-parameters
ε, C, w0, w, and w. Problem 1 is called the first-level or outer-level problem.
Problem (2) is referred to as the the second-level or inner-level problem. The
bilevel program is equivalent to the Stackelberg game shown in figure 1. The
bilevel programming approach has no difficulty handling the additional hyper-
parameters and other convex constraints (such as prescribed upper bounds on
these parameters) because it is based on constrained optimization methodology.

The parameters, w and w, are related to feature selection and regularization.
The bound constraints w ≤ w ≤ w enforce the fact that the weights on each
descriptor must fall in a range for all of the cross-validated solutions. This effec-
tively constrains the capacity of each of the functions, leading to an increased
likelihood of improving the generalization performance. It also forces all the
subsets to use the same descriptors, a form of variable selection. This effect can
be enhanced by adopting the one-norm, which forces w to be sparse. The box
constraints will ensure that consistent but not necessarily identical sets will be
used across the folds. This represents a fundamentally new way to do feature
selection, embedding it within cross validation for model selection.

Note that the loss functions used in the first level and second level—to
measure errors—need not match. For the inner-level optimization, we adopt
the ε-insensitive loss function because it produces robust solutions that are
sparse in the dual space. But typically, ε-insensitive loss functions are not em-
ployed in the outer cross-validation objective; so here we use mean absolute
deviation (as an example). Variations of the bilevel program (1) abound, and
these can all be treated by the general technique described next, suitably ex-
tended/modified/specialized to handle the particular formulations. For instance,
we may want to impose some restrictions on the bounds w and w to reflect
some a priori knowledge on the desired support vector w. In particular, we use
−w = w ≥ 0 in Section 5 to restrict the search for the weights to square boxes
that are symmetric with respect to the origin. Similarly, to facilitate comparison
with grid search, we restrict C and ε to be within prescribed upper bounds.

3.1 Bilevel Problems as MPECs

The bilevel optimization problem (1) determines all of the model parameters
via the minimization of the outer objective function. Collecting all the weight
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vectors across the folds, wt, column-wise into the matrix W for compactness, the
cross-validation error measured as mean average deviation across all the folds is

Θ(W ) =
1
T

T∑

t=1

1
| Nt |

∑

i∈Nt

|x ′
iw

t − yi |, (3)

and is subject to the simple restrictions on these parameters, and most im-
portantly, to the additional inner-level optimality requirement of each wt for
t = 1, . . . , T . To solve (1), we rewrite the inner-level optimization problem (2)
by introducing additional slack variables, ξt ≥ 0 within the t-th fold as follows:
for given ε, C, w, and w,

minimize
wt, ξt

C
∑

j∈N t

ξt
j +

1
2

‖wt ‖2
2

subject to w ≤ wt ≤ w,

ξt
j ≥ x ′

jw
t − yj − ε

ξt
j ≥ yj − x ′

jw
t − ε

ξt
j ≥ 0

⎫
⎪⎬

⎪⎭
j ∈ N t,

(4)

which is easily seen to be a convex quadratic program in the variables wt and
ξt. By letting γt,± be the multipliers of the bound constraints, w ≤ w ≤ w,
respectively, and αt,±

j be the multipliers of the constraints ξt
j ≥ x ′

jw
t−yj −ε and

ξt
j ≥ yj −x ′

jw
t −ε, respectively, we obtain the Karush-Tucker-Tucker optimality

conditions of (4) as the following linear complementarity problem in the variables
wt, γt,±, αt,±

j , and ξt
j :

0 ≤ γt,− ⊥ wt − w ≥ 0,

0 ≤ γt,+ ⊥ w − wt ≥ 0,

0 ≤ αt,−
j ⊥ x ′

jw
t − yj + ε + ξt

j ≥ 0

0 ≤ αt,+
j ⊥ yj − x ′

jw
t + ε + ξt

j ≥ 0

0 ≤ ξt
j ⊥ C − αt,+

j − αt,−
j ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
∀j ∈ N t,

0 = wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj + γt,+ − γt,−,

(5)

where a ⊥ b means a′b = 0. The orthogonality conditions in (5) express the
well-known complementary slackness properties in the optimality conditions of
the inner-level (parametric) quadratic program. All the conditions (5) represent
the Karush-Kuhn-Tucker conditions. The overall two-level regression problem is
therefore
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minimize
1
T

T∑

t=1

1
| Nt |

∑

i∈Nt

zt
i

subject to ε, C, ≥ 0, w ≤ w,

and for all t = 1, . . . , T

−zt
i ≤ x ′

iw
t − yi ≤ zt

i , ∀ i ∈ Nt,

0 ≤ αt,−
j ⊥ x ′

jw
t − yj + ε + ξt

j ≥ 0

0 ≤ αt,+
j ⊥ yj − x ′

jw
t + ε + ξt

j ≥ 0

0 ≤ ξt
j ⊥ C − αt,+

j − αt,−
j ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
∀j ∈ N t,

0 ≤ γt,− ⊥ wt − w ≥ 0,

0 ≤ γt,+ ⊥ w − wt ≥ 0,

0 = wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj + γt,+ − γt,−.

(6)

The most noteworthy feature of the above optimization problem is the com-
plementarity conditions in the constraints, making the problem an instance of
a linear program with linear complementarity constraints (sometimes called an
LPEC). The discussion in the remainder of this paper focuses on this case.

4 Alternative Bilevel Optimization Methods

The bilevel cross-validation model described above searches the continuous do-
main of hyper-parameters as opposed to classical cross validation via grid search,
which relies on the discretization of the domain. In this section, we describe two
alternative methods for solving the model. We also describe the details of the
classical grid search approach.

The difficulty in solving the LPEC reformulation (6) of the bilevel optimiza-
tion problem (1) stems from the linear complementarity constraints formed from
the optimality conditions of the inner problem (5); all of the other constraints
and the objective are linear. It is well recognized that a straightforward solution
using the LPEC formulation is not appropriate because of the complementar-
ity constraints, which give rise to both theoretical and computational anomalies
that require special attention. Among various proposals to deal with these con-
straints, two are particularly effective for finding a local solution: one is to relax
the complementarity constraints and retain the relaxations in the constraints.
The other proposal is via a penalty approach that allows the violation of these
constraints but penalizes the violation by adding a penalty term in the objective
function of (6). There are extensive studies of both treatments, including de-
tailed convergence analyses and numerical experiments on realistic applications
and random problems. Some references are [9,10,11,6] and [4]. In this work, we
experiment with both approaches.
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4.1 A Relaxed NLP Reformulation

Exploiting the LPEC structure, the first solution method that is implemented
in our experiments for solving (6) employs a relaxation of the complementarity
constraint. In the relaxed complementarity formulation, we let tol > 0 be a
prescribed tolerance of the complementarity conditions. Consider the relaxed
formulation of (6):

minimize
1
T

T∑

t=1

1
| Nt |

∑

i∈Ωt

zt
i

subject to ε, C ≥ 0, w ≤ w,

and for all t = 1, . . . , T

−zt
i ≤ x ′

iw
t − yi ≤ zt

i , ∀ i ∈ Nt

0 ≤ αt,−
j ⊥tol x ′

jw
t − yj + ε + ξt

j ≥ 0

0 ≤ αt,+
j ⊥tol yj − x ′

jw
t + ε + ξt

j ≥ 0

0 ≤ ξt
j ⊥tol C − αt,+

j − αt,−
j ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∀j ∈ N t

0 ≤ γt,− ⊥tol wt − w ≥ 0,

0 ≤ γt,+ ⊥tol w − wt ≥ 0,

0 = wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj + γt,+ − γt,−,

(7)

where a ⊥tol b means a′b ≤ tol. The latter formulation constitutes the re-
laxed bilevel support-vector regression problem that we employ to determine
the hyper-parameters C, ε, w and w; the computed parameters are then used
to define the desired support-vector model for data analysis.

The relaxed complementary slackness is a novel feature that aims at enlarging
the search region of the desired regression model; the relaxation corresponds to
inexact cross validation whose accuracy is dictated by the prescribed scalar, tol.
This reaffirms an advantage of the bilevel approach mentioned earlier, namely,
it adds flexibility to the model selection process by allowing early termination of
cross validation, and yet not sacrificing the quality of the out-of-sample errors.

The above NLP remains a non-convex optimization problem; thus, finding a
global optimal solution is hard, but the state-of-the-art general-purpose NLP
solvers such as filter (see [12] and [13]) and snopt (see [14]) are capable
of computing good-quality feasible solutions. These solvers are available on the
neos server – an internet server that allows remote users to utilize professionally
implemented state-of-the-art optimization algorithms. To solve a given problem,
the user first specifies the problem in an algebraic language, such as ampl or
gams, and submits the code as a job to neos. Upon receipt, neos assigns a
number and password to the job, and places it in a queue. The remote solver
unpacks, processes the problem, and sends the results back to the user.
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The nonlinear programming solver, filter, was chosen to solve our problems.
We also experimented with snopt but as reported in [1], we found filter to
work better overall. filter is a sequential quadratic programming (SQP) based
method, which is a Newton-type method for solving problems with nonlinear
objectives and nonlinear constraints. The method solves a sequence of approx-
imate convex quadratic programming subproblems. filter implements a SQP
algorithm using a trust-region approach with a “filter” to enforce global con-
vergence [12]. It terminates either when a Karush-Kuhn-Tucker point is found
within a specified tolerance or no further step can be processed (possibly due to
the infeasibility of a subproblem).

4.2 Penalty Reformulation

Another approach to solving the problem (6) is the penalty reformulation.
Penalty and augmented Lagrangian methods have been widely applied to solv-
ing LPECs and MPECs, for instance, by [15]. These methods typically require
solving an unconstrained optimization problem. In contrast, penalty methods
penalize only the complementarity constraints in the objective by means of a
penalty function.

Consider the LPEC, (6), resulting from the reformulation of the bilevel re-
gression problem. Define St, for t = 1, . . . , T , to be the constraint set within the
t-th fold, without the complementarity constraints:

St :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zt, αt,±, ξt,
γt,±, rt, st

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−zt
i ≤ x ′

iw
t − yi ≤ zt

i , ∀ i ∈ Nt,

x ′
jw

t − yj + ε + ξt
j ≥ 0

yj − x ′
jw

t + ε + ξt
j ≥ 0

C − αt,+
j − αt,−

j ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
∀j ∈ N t,

w ≤ wt ≤ w,

0 = wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj + γt,+ − γt,−,

wt = rt − � st,

zt, αt, ±, ξt, γt, ±, rt, st ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8)

where we rewrite the weight vector, wt, within each fold as wt = rt − � st, with
rt, st ≥ 0 and � denotes a vector of ones of appropriate dimension. Also, let S0
be defined as the set of constraints on the outer-level variables:

S0 :=
{

C, ε,
w,w,w0

∣∣∣∣
C, ε,w0,w,w ≥ 0

w ≤ w

}
. (9)

Then, the overall constraint set for the LPEC (6), without the complementarity
constraints is defined as SLP :=

⋃T
t=0 St. Let all the variables in (8) and (9) be

collected into the vector ζ ≥ 0.



34 K.P. Bennett et al.

In the penalty reformulation, all the complementarity constraints of the form
a ⊥ b in (6) are moved into the objective via the penalty function, φ(a, b). This
effectively converts the LPEC (6) into a penalty problem of minimizing some,
possibly non-smooth, objective function on a polyhedral set. Typical penalty
functions include the differentiable quadratic penalty term, φ(a, b) = a′b, and
the non-smooth piecewise-linear penalty term, φ(a, b) = min(a, b). In this paper,
we consider the quadratic penalty. The penalty term, which is a product of the
complementarity terms is

φ(ζ) =
T∑

t=1

⎛

⎜⎜⎜⎜⎜⎜⎝

Θt
p︷ ︸︸ ︷

1
2

‖wt ‖2
2 + C

∑

j∈N t

ξt
j

+
1
2

∑

i∈N t

∑

j∈N t

(αt,+
i − αt,−

i )(αt,+
j − αt,−

j )x′
ixj

+ ε
∑

j∈N t

(αt,+
j + αt,−

j ) +
∑

j∈N t

yj (αt,+
j − αt,−

j )

−w′γt,+ + w′γt,−

︸ ︷︷ ︸
−Θt

d

⎞

⎟⎟⎟⎟⎟⎟⎠
. (10)

When all the hyper-parameters are fixed, the first two terms in the quadratic
penalty constitute the primal objective, Θt

p, while the last five terms constitute
the negative of the dual objective, Θt

d, for support vector regression in the t-
th fold. Consequently, the penalty function is a combination of T differences
between the primal and dual objectives of the regression problem in each fold.
Thus,

φ(ζ) =
T∑

t=1

(
Θt

p(ζ
t
p) − Θt

d(ζ
t
d)

)
,

where ζt
p ≡ (wt, ξt), the vector of primal variables in the t-th primal problem and

ζt
d ≡ (αt,±, γt,±), the vector of dual variables in the t-th dual problem. However,

the penalty function also contains the hyper-parameters, C, ε and w as variables,
rendering φ(ζ) non-convex. Recalling that the linear cross-validation objective
was denoted by Θ, we define the penalized objective: P (ζ; μ) = Θ(ζ) + μ φ(ζ),
and the penalized problem, PF (μ), is

min
ζ

P (ζ; μ)

subject to ζ ∈ SLP.
(11)

This penalized problem has some very nice properties that have been extensively
studied. First, we know that finite values of μ can be used, since local solutions
of LPEC, as defined by strong stationarity, correspond to stationarity points
of PF (μ). The point ζ∗ is a stationary point of PF (μ) if and only if there
exists a Lagrangian multiplier vector ρ∗, such that (ζ∗, ρ∗) is a KKT point of
PF (μ). In general, KKT points do not exist for LPECs. An alternative local
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optimality condition, strong stationarity of the LPEC, means that ζ∗ solves an
LP formed by fixing the LPEC complementarity conditions appropriately. See
Definition 2.2. [9] for precise details on strong stationarity. Finiteness ensures
that the penalty parameter can be set to reasonable values, contrasting with
other approaches in which the penalty problem only solve the original problem
in the limit.

Theorem 1 (Finite penalty parameter). [[9], Theorem 5.2] Suppose that
ζ∗ is a strongly stationary point of (6), then for all μ sufficiently large, there
exists a Lagrangian multiplier vector ρ∗, such that (ζ∗, ρ∗) is a KKT point of
PF (μ) (11).

It is perhaps not surprising to note that the zero penalty corresponds to a point
where the primal and dual objectives are equal in (4.2). These strongly stationary
solutions correspond to solutions of (11) with φ(ζ) = 0, i.e., a zero penalty. The
quadratic program, PF (μ), is non-convex, since the penalty term is not positive
definite. Continuous optimization algorithms will not necessarily find a global
solution of PF (μ). But we do know know that local solutions of PF (μ) that are
feasible for the LPEC are also local optimal for the LPEC.

Theorem 2 (Complementary PF (μ) solution solves LPEC). [[9], Theo-
rem 5.2] Suppose ζ∗ is a stationary point of PF (μ) (11) and φ(ζ∗) = 0. Then
ζ∗ is a strongly stationary for (6).

One approach to solving exact penalty formulations like (11) is the successive
linearization algorithm, where a sequence of problems with a linearized objective,

Θ(ζ − ζk) + μ ∇φ(ζk)′(ζ − ζk), (12)

is solved to generate the next iterate. We now describe the Successive Lineariza-
tion Algorithm for Model Selection (SLAMS).

4.3 Successive Linearization Algorithm for Model Selection

The QP, (11), can be solved using the Frank-Wolfe method of [10] which simply
involves solving a sequence of LPs until either a global minimum or some locally
stationary solution of (6) is reached. In practice, a sufficiently large value of μ
will lead to the penalty term vanishing from the penalized objective, P (ζ∗; μ).
In such cases, the locally optimal solution to (11) will also be feasible and locally
optimal to the LPEC (6).

Algorithm 1 gives the details of SLAMS. In Step 2, the notation arg vertex
min indicates that ζk is a vertex solution of the LP in Step 2. The step size in
Step 4 has a simple closed form solution since a quadratic objective subject to
bounds constraints is minimized. The objective has the form f(λ) = aλ2 + bλ,
so the optimal solution is either 0, 1 or −b

2a , depending on which value yields the
smallest objective. SLAMS converges to a solution of the finite penalty problem
(11). SLAMS is a special case of the Frank-Wolfe algorithm and a convergence
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Algorithm 1. Successive linearization algorithm for model selection
Fix μ > 0.

1. Initialization:
Start with an initial point, ζ0 ∈ SLP.

2. Solve Linearized Problem :
Generate an intermediate iterate, ζ̄k, from the previous iterate, ζk, by solving the
linearized penalty problem, ζ̄k ∈ arg vertex min

ζ∈SLP

∇ζP (ζk; μ)′ (ζ − ζk).

3. Termination Condition:
Stop if the minimum principle holds, i.e., if ∇ζP (ζk; μ)′ (ζ̄k − ζk) = 0.

4. Compute Step Size:
Compute step length λ ∈ arg min

0≤λ≤1
P

(
(1 − λ) ζk + λ ζ̄k; μ

)
, and get the next it-

erate, ζk+1 = (1 − λ) ζk + λ ζ̄k.

proof of the Frank-Wolfe algorithm with no assumptions on the convexity of
P (ζj , μ) can be found in [11], thus we offer the convergence result without proof.

Theorem 3 (Convergence of SLAMS). [[11]] Algorithm 1 terminates at ζk

that satisfies the minimum principle necessary optimality condition of PF (μ):
∇ζP (ζk; μ)′(ζ −ζk) ≥ 0 for all ζ ∈ SLP, or each accumulation ζ̄ of the sequence
{ζk} satisfies the minimum principle.

Furthermore, for the case where SLAMS generates a complementary solution,
SLAMS finds a strongly stationary solution of the LPEC.

Theorem 4 (SLAMS solves LPEC). Let ζk be the sequence generated by
SLAMS that accumulates to ζ̄. If φ(ζ̄) = 0, then ζ is strongly stationary for
LPEC (6).

Proof. For notational convenience let the set SLP = {ζ |Aζ ≥ b}, with an
appropriate matrix, A, and vector, b. We first show that ζ̄ is a KKT point of
the problem

min
ζ

∇ζP (ζ; μ)

s.t. Aζ ≥ b.

We know that ζ̄ satisfies Aζ̄ ≥ b since ζk is feasible at the k-th iteration. By
Theorem 3 above, ζ̄ satisfies the minimum principle; thus, we know the system
of equations

∇ζP (ζ̄; μ)′(ζ − ζ̄k) < 0, ζ ∈ SLP,

has no solution for any ζ ∈ SLP. Equivalently, if I = {i|Aiζ̄ = bi}, then

P (ζ̄; μ)′(ζ − ζ̄) < 0, Aiζ ≥ 0, i ∈ I,

has no solution. By Farkas’ Lemma, there exists ū such that

∇ζP (ζ̄; μ) −
∑

i∈I

ūiAi = 0, ū ≥ 0.
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Thus (ζ̄, ū) is a KKT point of PF (μ) and ζ̄ is a stationary point of PF (μ). By
Theorem 2, ζ̄ is also a strongly stationary point of LPEC (6).

4.4 Early Stopping

Typically, in many machine learning applications, emphasis is placed on general-
ization and scalability. Consequently, inexact solutions are preferred to globally
optimal solutions as they can be obtained cheaply and tend to perform reason-
ably well. Noting that, at each iteration, the algorithm is working to minimize
the LPEC objective as well as the complementarity penalty, one alternative to
speeding up termination at the expense of the objective is to stop as soon as
complementarity is reached. Thus, as soon as an iterate produces a solution that
is feasible to the LPEC, (6), the algorithm is terminated. We call this approach
Successive Linearization Algorithm for Model Selection with Early Stopping (EZ-
SLAMS). This is similar to the well-known machine learning concept of early
stopping, except that the criterion used for termination is based on the status
of the complementarity constraints i.e., feasibility to the LPEC. We adapt the
finite termination result in [11] to prove that EZ-SLAMS terminates finitely for
the case when complementary solutions exist, which is precisely the case of in-
terest here. Note that the proof relies upon the fact that SLP is polyhedral with
no straight lines going to infinity in both directions.

Theorem 5 (Finite termination of EZ-SLAMS). Let ζk be the sequence
generated by SLAMS that accumulates to ζ̄. If φ(ζ̄) = 0, then EZ-SLAM termi-
nates at an LPEC (6) feasible solution ζk in finitely many iterations.

Proof. Let V be the finite subset of vertices of SLP that constitutes the vertices
{v̄k} generated by SLAMS. Then,

{ζk} ∈ convex hull{ζ0 ∪ V},

ζ̄ ∈ convex hull{ζ0 ∪ V}.

If ζ̄ ∈ V , we are done. If not, then for some ζ ∈ SLP, v ∈ V and λ ∈ (0, 1),

ζ̄ = (1 − λ)ζ + λv.

For notational convenience define an appropriate matrix M and vector b such
that 0 = φ(ζ̄) = ζ̄′(M ζ̄ + q). We know ζ̄ ≥ 0 and M ζ̄ + q ≥ 0. Hence,

vi = 0, or Miv + qi = 0.

Thus, v is feasible for LPEC (6).

The results comparing SLAMS to EZ-SLAMS are reported in Sections 6 and 7. It
is interesting to note that there is always a significant decrease in running time
with typically no significant degradation in generalization performance when
early stopping is employed.
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4.5 Grid Search

In classical cross-validation, parameter selection is performed by discretizing the
parameter space into a grid and searching for the combination of parameters that
minimizes the validation error (which corresponds to the upper level objective in
the bilevel problem). This is typically followed by a local search for fine-tuning
the parameters. Typical discretizations are logarithmic grids of base 2 or 10 on
the parameters. In the case of the classic SVR, cross validation is simply a search
on a two-dimensional grid of C and ε.

This approach, however, is not directly applicable to the current problem
formulation because, in addition to C and ε, we also have to determine w,
and this poses a significant combinatorial problem. In the case of k-fold cross
validation of n-dimensional data, if each parameter takes d discrete values, cross
validation would involve solving roughly O(kdn+2) problems, a number that
grows to intractability very quickly. To counter the combinatorial difficulty, we
implement the following heuristic procedures:

– Perform a two-dimensional grid search on the unconstrained (classic) SVR
problem to determine C and ε. We call this the unconstrained grid search
(Unc. Grid). A coarse grid with values of 0.1, 1 and 10 for C, and 0.01, 0.1
and 1 for ε was chosen.

– Perform an n-dimensional grid search to determine the features of w us-
ing C and ε obtained from the previous step. Only two distinct choices for
each feature of w are considered: 0, to test if the feature is redundant, and
some large value that would not impede the choice of an appropriate fea-
ture weight, otherwise. Cross validation under these settings would involve
solving roughly O(3.2N ) problems; this number is already impractical and
necessitates the heuristic. We label this step the constrained grid search
(Con. Grid).

– For data sets with more than 10 features, recursive feature elimination [16]
is used to rank the features and the 10 largest features are chosen, then
constrained grid search is performed.

5 Experimental Design

Our experiments aim to address several issues. The experiments were designed
to compare the successive linearization approaches (with and without early stop-
ping) to the classical grid search method with regard to generalization and
running time. The data sets used for these experiments consist of randomly
generated synthetic data sets and real world chemoinformatics (QSAR) data.

5.1 Synthetic Data

Data sets of different dimensionalities, training sizes and noise models were gen-
erated. The dimensionalities i.e., number of features considered were n = 10, 15
and 25, among which, only nr = 7, 10 and 16 features respectively, were rele-
vant. We trained on sets of � = 30, 60, 90, 120 and 150 points using 3-fold cross
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Table 1. The Chemoinformatics (QSAR) data sets

# Vars. # Vars.
Data set # Obs. # Train # Test # Vars. (stdized) (postPCA)
Aquasol 197 100 97 640 149 25
B/B Barrier (BBB) 62 60 2 694 569 25
Cancer 46 40 6 769 362 25
Cholecystokinin (CCK) 66 60 6 626 350 25

validation and tested on a hold-out set of a further 1, 000 points. Two different
noise models were considered: Laplacian and Gaussian. For each combination
of feature size, training set size and noise model, 5 trials were conducted and
the test errors were averaged. In this subsection, we assume the following no-
tation: U(a, b) represents the uniform distribution on [a, b], N(μ, σ) represents
the normal distribution with probability density function 1√

2πσ
exp

(
− (x−μ)2

2σ2

)
,

and L(μ, b) represents the Laplacian distribution with the probability density
function 1

2b exp
(
− |x−μ|

b

)
.

For each data set, the data, wreal and labels were generated as follows. For
each point, 20% of the features were drawn from U(−1, 1), 20% were drawn from
U(−2.5, 2.5), another 20% from U(−5, 5), and the last 40% from U(−3.75, 3.75).
Each feature of the regression hyperplane wreal was drawn from U(−1, 1) and
the smallest n − nr features were set to 0 and considered irrelevant. Once
the training data and wreal were generated, the noise-free regression labels
were computed as yi = x′

iwreal. Note that these labels now depend only on
the relevant features. Depending on the chosen noise model, noise drawn from
N(0, 0.4σy) or L(0,

0.4σy√
2

) was added to the labels, where σy is the standard
deviation of the noise-less training labels.

5.2 Real-World QSAR Data

We examined four real-world regression chemoinformatics data sets: Aquasol,
Blood/Brain Barrier (BBB), Cancer, and Cholecystokinin (CCK), previously
studied in [17]. The goal is to create Quantitative Structure Activity Relationship
(QSAR) models to predict bioactivities typically using the supplied descriptors
as part of a drug design process. The data is scaled and preprocessed to reduce
the dimensionality. As was done in [17], we standardize the data at each di-
mension and eliminate the uninformative variables that have values outside of
±4 standard deviations range. Next, we perform principle components analysis
(PCA), and use the top 25 principal components as descriptors. The training
and hold out set sizes and the dimensionalities of the final data sets are shown in
Table 1. For each of the training sets, 5-fold cross validation is optimized using
bilevel programming. The results are averaged over 20 runs.

The LPs within each iterate in both SLA approaches were solved with CPLEX.
The penalty parameter was uniformly set to μ = 103 and never resulted in
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complementarity failure at termination. The hyper-parameters were bounded as
0.1 ≤ C ≤ 10 and 0.01 ≤ ε ≤ 1 so as to be consistent with the hyper-parameter
ranges used in grid search. All computational times are reported in seconds.

5.3 Post-processing

The outputs from the bilevel approach and grid search yield the bound w and the
parameters C and ε. With these, we solve a constrained support vector problem
on all the data points:

minimize C

�∑

i=1

max( |x ′
iw − yi | − ε, 0 ) +

1
2

‖w ‖2
2

subject to −w ≤ w ≤ w

to obtain the vector of model weights ŵ, which is used in computing the gener-
alization errors on the hold-out data:

MAD ≡ 1
1000

∑

(x,y) hold-out
|x ′ŵ − y |

and
MSE ≡ 1

1000

∑

(x,y) hold-out
(x ′ŵ − y )2.

The computation times, in seconds, for the different algorithms were also
recorded.

6 Computational Results: Synthetic Data

In the following sections, constrained (abbreviated con.) methods refer to the
bilevel models that have the box constraint −w ≤ w ≤ w, while unconstrained
(abbreviated unc.) methods refer to the bilevel models without the box con-
straint. In this section, we compare the performance of several different methods
on synthetic data sets.

Five methods are compared: unconstrained and constrained grid search (Unc.
Grid and Con. Grid), constrained SLAMS (SLAMS), constrained SLAMS with
early stopping (EZ-SLAMS) and constrained filter based sequential quadratic
programming (Filter SQP).

There are in total 15 sets of problems being solved; each set corresponds
to a given dimensionality (n = 10, 15 or 25) and a number of training points
(� = 30, 60, . . .150). For each set of problems, 5 methods (as described above)
were employed. For each method, 10 random instances of the same problem are
solved, 5 with Gaussian noise and 5 with Laplacian noise. The averaged results
for the 10, 15, and 25-d data sets are shown in Tables 2, 3 and 4 respectively.
Each table shows the results for increasing sizes of the training sets for a fixed
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Table 2. 10-d synthetic data with Laplacian and Gaussian noise under 3-fold cross
validation. Results that are significantly better or worse are tagged ✓ or ✗ respectively.

Method Objective Time (sec.) MAD MSE
30 pts
Unc. Grid 1.385 ± 0.323 5.2± 0.5 1.376 2.973
Con. Grid 1.220 ± 0.276 635.3±59.1 1.391 3.044
filter (SQP) 1.065 ± 0.265 18.7± 2.2 1.284 ✓ 2.583 ✓

Slams 1.183 ± 0.217 2.4± 0.9 1.320 2.746
ez-Slams 1.418 ± 0.291 0.6± 0.1 1.308 2.684
60 pts
Unc. Grid 1.200 ± 0.254 5.9± 0.5 1.208 2.324
Con. Grid 1.143 ± 0.245 709.2±55.5 1.232 2.418
filter (SQP) 1.099 ± 0.181 23.3± 4.4 1.213 2.328
Slams 1.191 ± 0.206 3.7± 2.4 1.186 2.239
ez-Slams 1.232 ± 0.208 1.3± 0.3 1.186 2.238
90 pts
Unc. Grid 1.151 ± 0.195 7.2± 0.5 1.180 2.215
Con. Grid 1.108 ± 0.192 789.8±51.7 1.163 ✓ 2.154 ✓

filter (SQP) 1.069 ± 0.182 39.6±14.1 1.155 ✓ 2.129 ✓

Slams 1.188 ± 0.190 5.8± 2.6 1.158 ✓ 2.140 ✓

ez-Slams 1.206 ± 0.197 2.7± 0.8 1.159 ✓ 2.139 ✓

120 pts
Unc. Grid 1.124 ± 0.193 7.0± 0.1 1.144 2.087
Con. Grid 1.095 ± 0.199 704.3±15.6 1.144 2.085
filter (SQP) 1.037 ± 0.187 30.2± 7.8 1.161 2.152
Slams 1.116 ± 0.193 15.6±15.3 1.141 2.082
ez-Slams 1.137 ± 0.191 4.2± 1.1 1.143 2.089
150 pts
Unc. Grid 1.091 ± 0.161 8.2± 0.3 1.147 2.098
Con. Grid 1.068 ± 0.154 725.1± 2.7 1.142 2.081
filter (SQP) 1.029 ± 0.171 40.6± 5.9 1.150 2.110
Slams 1.103 ± 0.173 20.1± 5.5 1.136 2.063
ez-Slams 1.110 ± 0.172 7.4± 1.1 1.136 2.062

dimensionality. The criteria used for comparing the various methods are valida-
tion error (cross-validation objective), test error (generalization error measured
as MAD or MSE on the 1000-point hold-out test set) and computation time (in
seconds). For MAD and MSE, the results in bold refer to those that are signifi-
cantly different than those of the unconstrained grid as measured by a two-sided
t-test with significance of 0.1. The results that are significantly better and worse
are tagged with a check (✓) or a cross (✗) respectively.

From an optimization perspective, the bilevel programming methods consis-
tently tend to outperform the grid search approaches significantly. The objective
values found by the bilevel methods, especially filter, are much smaller than
those found by their grid-search counterparts. Of all the methods, filter finds a
lower objective most often. The coarse grid size and feature elimination heuristics
used in the grid search cause it to find relatively poor objective values.
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Table 3. 15-d synthetic data with Laplacian and Gaussian noise under 3-fold cross
validation. Results that are significantly better or worse are tagged ✓ or ✗ respectively.

Method Objective Time (sec.) MAD MSE
30 pts
Unc. Grid 1.995 ± 0.421 9.1± 9.3 1.726 4.871
Con. Grid 1.659 ± 0.312 735.8±92.5 1.854 5.828
filter (SQP) 1.116 ± 0.163 28.7± 7.3 1.753 5.004
Slams 1.497 ± 0.258 5.0± 1.3 1.675 4.596
ez-Slams 1.991 ± 0.374 0.9± 0.2 1.697 4.716
60 pts
Unc. Grid 1.613 ± 0.257 7.3± 1.3 1.584 4.147
Con. Grid 1.520 ± 0.265 793.5±83.1 1.589 4.254
filter (SQP) 1.298 ± 0.238 52.6±36.4 1.511 3.874
Slams 1.565 ± 0.203 8.3± 3.5 1.504 3.820
ez-Slams 1.673 ± 0.224 2.3± 0.3 1.498 3.807
90 pts
Unc. Grid 1.553 ± 0.261 8.2± 0.5 1.445 3.553
Con. Grid 1.575 ± 0.421 866.2±67.0 1.551 4.124
filter (SQP) 1.333 ± 0.254 64.7±12.9 1.407 ✓ 3.398 ✓

Slams 1.476 ± 0.182 16.3± 6.3 1.411 ✓ 3.398 ✓

ez-Slams 1.524 ± 0.197 3.8± 0.9 1.412 3.404 ✓

120 pts
Unc. Grid 1.481 ± 0.240 7.5± 0.0 1.396 3.350
Con. Grid 1.432 ± 0.171 697.9± 2.2 1.395 3.333
filter (SQP) 1.321 ± 0.168 57.5±11.6 1.388 3.324
Slams 1.419 ± 0.166 32.6±18.6 1.375 3.273 ✓

ez-Slams 1.474 ± 0.181 6.2± 0.8 1.379 3.291
150 pts
Unc. Grid 1.448 ± 0.264 8.7± 0.1 1.362 3.221
Con. Grid 1.408 ± 0.232 723.2± 2.0 1.376 3.268
filter (SQP) 1.333 ± 0.204 85.7±23.6 1.371 3.240
Slams 1.436 ± 0.217 41.8±17.5 1.360 3.214
ez-Slams 1.459 ± 0.216 10.1± 1.8 1.359 3.206

The reported times provide a rough idea of the computational effort of each
algorithm. As noted above, the computation times for the neos solver, filter,
includes transmission, and waiting times as well as solve times. For grid search
methods, smart restart techniques were used to gain a considerable increase
in speed. However, for Con. Grid, even these techniques cannot prevent the
running time from becoming impractical as the problem size grows. While the
computation times of filter are both much less than that of Con. Grid, it is
the SLA approaches that really dominate. The efficiency of the SLA approaches
is vastly computationally superior to both grid search and filter.

The bilevel approach is much more computationally efficient than grid search
on the fully parameterized problems. The results, for filter, are relatively effi-
cient and very acceptable when considering that they include miscellaneous times
for solution by neos. It is reasonable to expect that a filter implementation on
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Table 4. 25-d synthetic data with Laplacian and Gaussian noise under 3-fold cross
validation. Results that are significantly better or worse are tagged ✓ or ✗ respectively.

Method Objective Time (sec.) MAD MSE
30 pts
Unc. Grid 3.413 ± 0.537 5.7± 0.0 2.915 13.968
Con. Grid 2.636 ± 0.566 628.5± 0.5 3.687 ✗ 22.065 ✗

filter (SQP) 1.087 ± 0.292 18.0± 2.7 2.916 13.881
Slams 1.684 ± 0.716 7.9± 2.4 2.962 14.607
ez-Slams 3.100 ± 0.818 1.5± 0.2 2.894 13.838
60 pts
Unc. Grid 2.375 ± 0.535 6.2± 0.0 2.321 8.976
Con. Grid 2.751 ± 0.653 660.9± 1.6 3.212 ✗ 16.734 ✗

filter (SQP) 1.467 ± 0.271 53.1±11.1 2.282 8.664
Slams 2.065 ± 0.469 15.3± 7.1 2.305 8.855
ez-Slams 2.362 ± 0.441 3.1± 0.4 2.312 8.894
90 pts
Unc. Grid 2.256 ± 0.363 7.0± 0.0 2.161 7.932
Con. Grid 2.927 ± 0.663 674.7± 1.0 3.117 ✗ 15.863 ✗

filter (SQP) 1.641 ± 0.252 86.0±15.5 2.098 ✓ 7.528 ✓

Slams 2.149 ± 0.304 29.3±12.2 2.119 7.711
ez-Slams 2.328 ± 0.400 6.3± 1.2 2.131 7.803
120 pts
Unc. Grid 2.147 ± 0.343 8.4± 0.0 2.089 7.505
Con. Grid 2.910 ± 0.603 696.7± 1.5 3.124 ✗ 15.966 ✗

Slams 2.156 ± 0.433 45.6±16.4 2.028 ✓ 7.121 ✓

ez-Slams 2.226 ± 0.461 10.3± 1.5 2.034 ✓ 7.154 ✓

150 pts
Unc. Grid 2.186 ± 0.383 9.9± 0.1 1.969 6.717
Con. Grid 2.759 ± 0.515 721.1± 1.7 2.870 ✗ 13.771 ✗

Slams 2.069 ± 0.368 63.5±30.5 1.949 6.636
ez-Slams 2.134 ± 0.380 14.2± 2.5 1.947 ✓ 6.619

a local machine (instead of over the internet) would require significantly less
computation times, which could bring it even closer to the times of Unc. Grid or
the SLA methods. The filter approach does have a drawback, in that is that
it tends to struggle as the problem size increases. For the synthetic data, filter

failed to solve 10 problems each from the 25d data sets with 120 and 150 points
and these runs have been left out of Table 4.

Of course, in machine learning, an important measure of performance is gen-
eralization error. These problems were generated with irrelevant variables; pre-
sumably, appropriate choices of the symmetric box parameters in the bilevel
problem could improve generalization. (This topic is worth further investigation
but is beyond the scope of this paper.) Compared to classic SVR optimized with
Unc. Grid, filter and the SLA approaches yield solutions that are better or
comparable to the test problems and never significantly worse. In contrast, the
generalization performance of Con. Grid steadily degrades as problem size and
dimensionality grow.
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Table 5. Results for QSAR data under 5-fold cross validation. Results that are signif-
icantly better or worse are tagged ✓ or ✗ respectively.

Method Objective Time (sec.) MAD MSE
Aquasol
Unc. Grid 0.719 ± 0.101 17.1± 0.4 0.644 0.912
Con. Grid 0.778 ± 0.094 1395.9± 3.5 0.849 ✗ 1.605 ✗

filter (SQP) 0.574 ± 0.083 1253.0±533.7 0.676 0.972
Slams 0.670 ± 0.092 137.8± 52.0 0.647 0.911
ez-Slams 0.710 ± 0.088 19.1± 3.3 0.643 0.907
Blood/Brain Barrier
Unc. Grid 0.364 ± 0.048 13.4± 1.9 0.314 0.229
Con. Grid 0.463 ± 0.081 1285.7±155.3 0.733 ✗ 0.856 ✗

filter (SQP) 0.204 ± 0.043 572.7±339.5 0.338 0.214
Slams 0.363 ± 0.042 17.1± 9.8 0.312 0.231
ez-Slams 0.370 ± 0.042 8.0± 1.6 0.315 0.235
Cancer
Unc. Grid 0.489 ± 0.032 10.3± 0.9 0.502 0.472
Con. Grid 0.477 ± 0.065 1035.3± 1.5 0.611 ✗ 0.653 ✗

filter (SQP) 0.313 ± 0.064 180.8± 64.3 0.454 0.340
Slams 0.476 ± 0.086 25.5± 9.2 0.481 0.336 ✓

ez-Slams 0.567 ± 0.096 5.2± 1.1 0.483 0.341 ✓

Cholecystokinin
Unc. Grid 0.798 ± 0.055 12.0± 0.4 1.006 1.625
Con. Grid 0.783 ± 0.071 1157.6± 1.8 1.280 ✗ 2.483 ✗

filter (SQP) 0.543 ± 0.063 542.3±211.5 0.981 1.520
Slams 0.881 ± 0.108 35.1± 20.4 1.235 ✗ 2.584 ✗

ez-Slams 0.941 ± 0.092 9.1± 1.3 1.217 ✗ 2.571 ✗

Finally, the SLA approaches that employ early stopping tend to generalize
very similarly to the SLA approaches that do not stop early. The objective is
usually worse but generalization is frequently comparable. This is a very impor-
tant discovery because it suggests that allowing the SLA approaches to iterate to
termination is very expensive, and it is without any corresponding improvement
in the cross-validation objective or the generalization performance. The early
stopping method, EZ-SLAMS is clearly competitive with the classical Unc. Grid
approach with respect to validation and generalization; their main advantage is
their efficiency even when handling many hyper-parameters (which Unc. Grid is
unable to do).

7 Computational Results: QSAR Data

Table 5 shows the average results for the QSAR data. After the data is prepro-
cessed, we randomly partition the data into 20 different training and testing sets.
For each of the training sets, 5-fold cross validation is optimized using bilevel
programming. The results are averaged over the 20 runs. We report results for
the same 5 methods as those used for synthetic data. The parameter settings
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used in the grid searches, filter and SLA approaches and the statistics reported
are the same as those used for the synthetic data.

Again, as with the synthetic data, filter finds solutionswith the smallest cross-
validated training errors or equivalently objective value. SLAMS also finds good
quality solutions except for the clearly suboptimal solution found on the Chole-
cystokinin data. The SLA method have very good computational times. However,
computation times for filter are not competitive with the SLA methods or Unc.
Grid. Unsurprisingly, constrained grid searchhas the worst computation time. The
difficulty of the underlying bilevel optimization problem is underscored by the fact
that the greedy Con. Grid search in Section 4.5 sometimes fails to find a better so-
lution than the unconstrained grid search.The constrained searchdrops important
variables that cause it to have bad generalization.

In terms of test set error, filter performs the best. SLA also performs quite
well on all data sets except on Cholecysotkinin, where the SLA get trapped in poor
local minima. However, on the remaining data sets, the SLA approaches generalize
very well and tend to be competitive with Unc. Grid with regard to execution time.
The best running times, however, are produced by the early stopping based SLA
approaches, which SLAM the door on all other approaches computationally while
maintaining as of good generalization performance as SLAMS.

8 Discussion

We showed how the widely used model selection technique of cross valida-
tion (for support vector regression) could be formulated as a bilevel program-
ming problem; the formulation is more flexible and can deal with many more
hyper-parameters than the typical grid search strategy which quickly becomes
intractable as the hyper-parameter space increases. The proposed bilevel prob-
lem is converted to an instance of a linear program with equilibrium constraints
(LPEC). This class of problems is difficult to solve due to the non-convexity cre-
ated by the complementarity constraints introduced in the reformulation. A ma-
jor outstanding question has always been the development of efficient algorithms
for LPECs and bilevel programs. To this end, we proposed two approaches to
solve the LPEC: a relaxed NLP-based approach which was solved using the off-
the-shelf, SQP-based, NLP solver, filter and a exact penalty-based approach
which was solved using a finite successive linearization algorithm.

Our preliminary computational results indicate that general purpose SQP
solvers can tractably find high-quality solutions that generalize well. The com-
putation times of the filter solver are especially impressive considering the
fact that they are obtained via internet connections and shared resources. Gen-
eralization results on random data show that filter yields are comparable, if
not better than current methods. Interestingly, SLAMS typically finds worse so-
lutions than filter in terms of the objective (cross-validated error) but with
very comparable generalization. The best estimate of the generalization error to
be optimized in the bilevel program remains an open question. The SLAMS
algorithm computationally outperforms classical grid search and the filter



46 K.P. Bennett et al.

solver especially as the number of hyper-parameters and data points grows. We
have demonstrated scalability to high dimensional data sets containing up to
thousands points (results not reported here).

The computational speed of NLP- or the SLA-based approaches can be im-
proved by taking advantage of the structure inherent in bilevel problems arising
from machine learning applications. Machine learning problems, especially sup-
port vector machines, are highly structured, and yield elegant and sparse solu-
tions, a fact that several decomposition algorithms such as sequential minimal
optimization target. Despite the non-convexity of the LPECs, bilevel programs
for machine learning problems retain the structure inherent in the original ma-
chine learning problems. In addition, the variables in these LPECs tend to de-
couple, for example, in cross validation, the variables may be decoupled along
the folds. This suggests that applying decomposition or cutting-plane methods
to bilevel approaches can make them even more efficient. An avenue for future
research is developing decomposition-based or cutting-plane algorithms that can
train on data sets containing tens of thousands of points or more.

While support vector regression was chosen as the machine learning prob-
lem to demonstrate the potency of the bilevel approach, the methodology can
be extended to several machine learning problems including classification, semi-
supervised learning, multi-task learning, missing value imputation, and novelty
detection. Some of these formulations have been presented in [2], while others
remain open problems. Aside from discriminative methods, bilevel programming
can also be applied to generative methods such as Bayesian techniques. Further-
more, the ability to optimize a large number of parameters allows one to consider
new forms of models, loss functions and regularization.

Another pressing question, however, arises from a serious limitation of the
formulation presented herein: the model can only handle linear data sets. Classi-
cal machine learning addresses this problem by means of the kernel trick. It was
shown in [2] that the kernel trick can be incorporated into a generic bilevel model
for cross validation. The flexibility of the bilevel approach means that one can
even incorporate input-space feature selection into the kernelized bilevel model.
This type of bilevel program can be reformulated as an instance of a mathemat-
ical program with equilibrium constraints (MPEC). The MPECs arising from
kernelized bilevel machine learning problems tend to have several diverse sources
of non-convexity because they have nonlinear complementarity constraints; this
leads to very challenging mathematical programs and an equally challenging
opening for future pursuits in this field.
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