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Abstract. Knowledge-based support vector machines (KBSVMs) incorporate advice
from domain experts to improve generalization. Imperfect advice can lead to can
lead to significantly poorer models. To learn in this setting, we propose an approach
that extends KBSVMs and is able to not only learn from data and advice, but also
simultaneously improve the advice. The proposed approach is particularly effec-
tive for knowledge discovery in domains with few labeled examples. The additional
refinement constraints are bilinear and are solved using two iterative approaches:
successive linear programming and a constrained concave-convex approach.

Adding Knowledge to SVMs

Polyhedral knowledge sets in the input space of data, can be added to SVMs via knowledge-
based support vector machines (KBSVMs) [FMS03]. Knowledge sets characterize an area of
input space as belonging to one of the two classes and are specified using

Dx ≤ d ⇒ z(w′
x − γ) ≥ 1.

The advice specifies that every point x ∈ Dx ≤ d lies above w
′
x − γ = 1 (if labeled z = 1)

or below w
′
x − γ = −1 (if labeled z = −1).

Example: diabetes diagnosis from two features, blood glucose level and body mass index:

Expert (NIH) Advice for Type-2 Diabetes Diagnosis:

• an obsese person (bmi ≥ 30) with gluc ≥ 126 is at strong risk

• a person at normal weight (bmi ≤ 25) with gluc ≤ 100 is at
low risk.

Can be expressed as polyhedral advice in input space:

(bmi ≤ 25) ∧ (gluc ≤ 100) ⇒ ¬diabetes
(bmi ≥ 30) ∧ (gluc ≥ 126) ⇒ diabetes,

In general, Dx ≤ d allows linear combinations of input space
features to specify advice.

Using theorems of the alternative, the logical implication can be reformulated as constraints
with an advice vector, u:

D′
u + z w = 0, −d′u − z γ ≥ 1, u ≥ 0.

The advice vector is analogous to the dual multipliers α in SVMs: constraints of an advice
set which have non-zero u

is are called support constraints and only they contribute to w.
The following is the formulation of the knowledge-based support vector machine:

min
w,b,(ξ,ui,ηi,ζi)≥0

‖w‖1 + λe
′ξ + µ

∑m
i=1 (e′ηi + ζi)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ D′
iu

i + ziw ≤ ηi,

−d
i′
u

i − zib + ζi ≥ 1, i = 1, . . . ,m.

(1)

Learning from Imperfect Advice

Motivation. Simultaneously learn from small data sets and refine imperfect advice pro-
vided by a domain expert.

There are two types of imperfect advice

• Advice set 1. Advice that lies on the wrong side
of the margin is penalized as advice error through
∑

i (e′ηi + ζi) in (1).
Refinement leads to truncation of advice.

• Advice set 2. Advice that lies on the correct side of
the margin but far away provides no support vec-
tors, i.e., has all its advice vectors u

i = 0 in (1).
Refinement leads to extension of advice.

Formulation Introduce terms (Fi, f
i) into the formulation that directly modify boundaries

of advice regions,

(Di − Fi)x ≤ (di − f
i) ⇒ zi(w

′
x − b) ≥ 1, z = ±1

Extends rule-refining support vector machines (RRSVMs) [MWS+07] which performed
refinements of the form

Dix ≤ (di − f
i) ⇒ zi(w

′
x − b) ≥ 1, z = ±1

Advice-Refining Knowledge-Based SVMs (arkSVMs)

Advice refinement in KBSVMs can be formulated by optimizing model complexity + λ train-
ing error + µ advice error + ν refinement error:

min
w,b,Fi,f i,(ξ,ui,ηi,ζi)≥0

‖w‖1 + λe
′ξ + µ

∑m
i=1 (e′ηi + ζi) + ν

∑m
i=1

(

‖Fi‖1 + ‖f i‖1
)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − Fi)
′
u

i + ziw ≤ ηi,

−(di − f
i)′ui − zib + ζi ≥ 1, i = 1, . . . ,m.

(2)

This is the Advice-Refining KBSVM (arkSVMs).

• objective function of (2) trades-off the effect of refinement in each of the advice sets via
the refinement parameter ν

• refining d alone allows only for the translation of the boundaries of the polyhedral ad-
vice; in arkSVMs the boundaries of the advice can be translated and rotated

• advice constraints are bilinear. Solved using successive linear programming (also used
in [MWS+07]), and a concave-convex procedure

arkSVMs via Successive Linear Programming

Solve a sequence of linear programs while alternately fixing the bilinear variables
(Fi, f

i)mi=1 and {ui}m
i=1. At the t-th iteration, the algorithm alternates between the fol-

lowing steps:

• (Estimation Step) When the refinement terms, (F̂ t
i , f̂

i,t)mi=1, are fixed the resulting LP
becomes a standard KBSVM which attempts to find a data-estimate of the advice vec-

tors {ui}m
i=1 using the current refinement of the advice region: (Dj − F̂ t

j )x ≤ (dj − f̂
j,t).

• (Refinement Step) When the advice-estimate terms {ûi,t}m
i=1 are fixed, the resulting LP

solves for (Fi, f
i)mi=1 and attempts to further refine the advice regions based on estimates

from data computed in the previous step.

Algorithm converges to a local solution.

arkSVMs via Successive Quadratic Programming

A general bilinear term r′s, which is non-convex, can be written as the difference of two
convex terms: 1

4‖r + s‖2 − 1
4‖r − s‖2.

The j-th component of the bilinear advice constraint (with terms F ′
iu

i) in (2) is rewritten:

D′
iju

i + ziwj − ηi
j +

1

4
‖Fij − u

i‖2 ≤
1

4
‖Fij + u

i‖2,

and both sides of the constraint above are convex and quadratic. We linearize the right-

hand side around an estimate of the bilinear variables (F̂ t
ij, û

i,t):

D′
iju

i + ziwj − ηi
j + 1

4‖Fij − u
i‖2 ≤ 1

4‖F̂
t
ij + û

i,t‖2

+1
2(F̂

t
ij + û

i,t)′
(

(Fij − F̂ t
ij) + (ui − û

i,t)
)

.

Similarly, the constraint −(Di − Fi)
′
u

i − ziw − ηi ≤ 0, can be replaced by

−D′
iju

i − ziwj − ηi
j + 1

4‖Fij + u
i‖2 ≤ 1

4‖F̂
t
ij − û

i,t‖2

+1
2(F̂

t
ij − û

i,t)′
(

(Fij − F̂ t
ij) − (ui − û

i,t)
)

,

while d
i′
u

i + zib + 1 − ζi − f
i′
u

i ≤ 0 is replaced by

d
i′
u

i + zib + 1 − ζi + 1
4‖f

i − u
i‖2 ≤ 1

4‖f̂
i,t + û

i,t‖2

+1
2(f̂

i,t + û
i,t)′

(

(f i,t − f̂
i,t) + (ui − û

i,t)
)

.

• replace original bilinear non-convex constraints of (2) with convexified relaxations
gives a quadratically-constrained linear program (QCLP)

• RHS in (??–??) are affine; entire set of constraints convex.

• feasible set of this problem is a subset of the original

Iteratively solve the QCLP: At the t-th iteration, the restricted problem uses the cur-
rent estimate to construct a new feasible point and iterating this procedure produces a
sequence of feasible points with decreasing objective values.

Algorithm converges to a local solution.

Toy Example

Simple 2-dimensional example consists of 200 points separated by x1+x2 = 2. Two advice
sets: {S1 : (x1, x2) ≥ 0 ⇒ z = +1}, {S2 : (x1, x2) ≤ 0 ⇒ z = −1}.

(left) RRSVM (center) arkSVM-slp (right) arkSVM-sqp. Orange and green unhatched
regions show the original advice. The dashed lines show the margin, ‖w‖∞. For each
method, we show the refined advice: vertically hatched for Class +1, and diagonally
hatched for Class −1.

PIMA Indians Diabetes Diagnosis

Predict onset of diabetes in 768 Pima Indian women within the next 5 years based on eight
features. Studies [HFC+98, PHK+07] show diabetes incidence among the Pima Indians
is significantly higher among subjects with bmi ≥ 30;. diabetes incidence is higher for a
person with impaired glucose tolerance.

(Diabetes Rule 1) (gluc ≤ 126) ⇒¬diabetes,

(Diabetes Rule 2) (gluc ≥ 126) ∧ (gluc ≤ 140) ∧ (bmi ≤ 30) ⇒¬diabetes,

(Diabetes Rule 3) (gluc ≥ 126) ∧ (gluc ≤ 140) ∧ (bmi ≥ 30) ⇒ diabetes,

(Diabetes Rule 4) (gluc ≥ 140) ⇒ diabetes.

The pedigree function provides a measure heredity on the subject’s diabetes risk. A sub-
ject with high heredity who is at least 31 is at a significantly increased risk for diabetes in
the next five years [SED+88]:

(Diabetes Rule 5) (pedf ≤ 0.5) ∧ (age ≤ 31) ⇒¬diabetes,

(Diabetes Rule 6) (pedf ≥ 0.5) ∧ (age ≥ 31) ⇒ diabetes.
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(left) Results averaged over 10 runs on a hold-out 412 point test set; (right) Approximate
decision-tree showing Diabetes Rule 6 before and after refinement (if true then left
branch). Leaf nodes classify data according to ?diabetes.

arkSVM algorithms produce local solutions from small data sets and
imperfect expert advice. Learned models can generalize well and
provide refined advice easily interpreted by domain experts.
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