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Abstract. We introduce a novel, robust data-driven regularization strat-
egy called Adaptive Regularized Boosting (AR-Boost), motivated by a
desire to reduce overfitting. We replace AdaBoost’s hard margin with a
regularized soft margin that trades-off between a larger margin, at the
expense of misclassification errors. Minimizing this regularized exponen-
tial loss results in a boosting algorithm that relaxes the weak learning
assumption further: it can use classifiers with error greater than 1

2
. This

enables a natural extension to multiclass boosting, and further reduces
overfitting in both the binary and multiclass cases. We derive bounds
for training and generalization errors, and relate them to AdaBoost. Fi-
nally, we show empirical results on benchmark data that establish the
robustness of our approach and improved performance overall.

1 Introduction

Boosting is a popular method for improving the accuracy of a classifier. In par-
ticular, AdaBoost [1] is considered the most popular form of boosting and it has
been shown to improve the performance of base learners both theoretically and
empirically. The key idea behind AdaBoost is that it constructs a strong classi-
fier using a set of weak classifiers [2, 3]. While AdaBoost is quite powerful, there
are two major limitations: (1) if the base classifier has a misclassification error
of greater than 0.5, generalization decreases, and (2) it suffers from overfitting
with noisy data [4, 5].

The first limitation can become severe in multiclass classification, where
the error rate of random guessing is C−1

C , where C is the number of classes [6].
AdaBoost requires weak classifiers to achieve an error rate less than 0.5, which
can be problematic in multiclass classification. The second limitation of over-
fitting occurs mainly because weak classifiers are unable to capture “correct”
patterns inside noisy data. Noise can be introduced into data by two factors
– (1) mislabeled data, or (2) limitation of the hypothesis space of the base
classifier [7]. During training, AdaBoost concentrates on learning difficult data
patterns accurately, and potentially distorts the optimal decision boundary. Ad-
aBoost maximizes the “hard margin”, namely the smallest margin of those noisy
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data patterns and consequently the margin of other data points may decrease
significantly. Different regularization strategies such as early stopping, shrinking
the contribution of the individual weak classifiers, and soft margins, have been
proposed [2, 4, 5, 7–10] to combat this issue.

AdaBoost’s use of a hard margin increases the penalty exponentially for
larger negative margins; this further increases error due to outliers. We propose
an approach that combines early convergence with a soft margin by introducing
a regularization term inside the exponential loss function. In every boosting
round, the regularization term vanishes only if the weak classifier chosen at the
current stage classifies the observations correctly. We derive a modified version
of the AdaBoost algorithm by minimizing this regularized loss function and this
leads to Adaptive Regularized Boosting (AR-Boost).

We show that choosing optimal values of a data-driven regularized penalty
translates to the selection of optimal weights of the misclassified samples at each
boosting iteration. These optimal weights force the weak classifiers to correctly
label misclassifications in the previous stage. Consequently, AR-Boost converges
faster than AdaBoost, and is also more robust to outliers. Finally, the proposed
regularization allows boosting to employ weak classifiers even if their error rate
is greater than 0.5. This is especially suited to the multiclass setting, where the
permissible error is C−1

C > 1
2 . This serves as another significant motivation for

the development of this approach.
Many properties that motivate this approach are controlled by the user

through tuning a single regularization parameter ρ > 1, and this parameter de-
termines how much differently AR-Boost behaves, compared to AdaBoost. The
parameter ρ softens the margin, making our approach more robust to outliers.
This is because it does not force classification of outliers according to their (pos-
sibly) incorrect labels, and thus does not distort the optimal decision boundary.
Instead, it allows a larger margin at the expense of some misclassification error.
To better understand this, consider the example presented in Figure 1. When
the data is noisy, AdaBoost will still aim to classify the noisy example into one
of the classes; our approach instead avoids this, leading to a more robust de-
cision boundary. This added robustness allows for better generalization (shown
in the bottom row of Figure 1). In addition to an empirical demonstration of
this approach’s success, we also derive theoretical bounds on the training and
generalization error.

The rest of the paper is organized as follows. After reviewing existing
work on boosting in Section 2, we describe binary AR-Boost in Section 3, and
provide justification for our choice of regularization. In Section 4, we investigate
the theoretical properties of our approach by deriving training and generalization
error bounds. We describe the multiclass extension of AR-Boost in Section 5. In
Section 6, we investigate the empirical properties of binary and multiclass AR-
Boost, and compare their performance to some well-known regularized boosting
approaches, and conclude in Section 7.
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Fig. 1. Decision boundary made by the decision stumps (linear thresholds) used as
weak classifiers in AR-Boost (left column) and AdaBoost (right column) on training
(top row) and test (bottom row) dataset.

2 Background and Related Work

For training data (xi, yi), i = 1, . . . , n, we assume that xi ∈ Rp, yi ∈ {−1, 1} for
binary classification, and yi ∈ {1, . . . , C}, for C-class classification. AdaBoost
learns a strong classifier f(x) = sign

(∑T
t=1 αtht(x)

)
, by combining weak clas-

sifiers in an iterative manner [2]. Here, αt is the weight associated with the weak
classifier ht(·). The value of αt is derived by minimizing an exponential loss
function: L(y, f(x)) = exp (−yf(x)).

AdaBoost is prone to overfitting and several strategies were developed to
address this issue. Mease and Wyner [4] experimentally demonstrated that boost-
ing often suffers from overfitting run for a large number of rounds. Model selec-
tion using Akaike or Bayesian information criteria (AIC/BIC) [11, 12] achieved
moderate success in addressing overfitting. Hastie et al., [2] proposed ε-Boost
where they regularize by shrinking the contribution of each weak classifier:
f(x) = sign

(∑T
t=1 ναtht(x)

)
. More shrinkage (smaller ν) increases training

error over AdaBoost for the same number of rounds, but reduces test error.
Jin et al., [7] proposed Weight-Boost, which uses input-dependent regu-

larization that combines the weak classifier with an instance-dependent weight
factor: f(x) = sign

(∑T
t=1 exp (−|βft−1(x)|)αtht(x)

)
. This trades-off between

the weak classifier at the current iteration and the meta-classifier from pre-
vious iterations. The factor exp (−|βft−1(x)|) only considers labels provided
by ht(x) when the previous meta-classifier ft−1 is not confident on its deci-
sion. Xi et al., [13] minimized an L1-regularized exponential loss L(y, f(x)) =
exp (−yf(x) + β‖α‖1), β > 0, which provides sparse solutions and early stop-
ping. Rätsch et al., [5, 9] proposed a weight-decay method, in which they softened
the margin by introducing a slack variable ξ =

( ∑T
t=1 αtht(x)

)2 in the expo-
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Fig. 2. Common loss functions for binary classification compared with the proposed
loss L(y, f(x) = exp (−yf(x)− λ|y − ht(x)|), where ht is the most recent weak learner.

nential loss function L(y, f(x)) = exp (−yf(x)− Cξ), C ≥ 0. They found that
the asymptotic margin distribution for AdaBoost with noisy data is very similar
to that of SVMs [14]; analogous to SVMs, “easy” examples do not contribute to
the model and only “difficult” patterns with small margins are useful.

3 AR-Boost for Binary Classification

For any condition π, let δJπ K = 1, if π holds, and 0 otherwise. AdaBoost
minimizes an exponential loss function, L(y, f(x)) = exp (−yf(x)). The mis-
classification loss, L(y, f(x)) = δJ yf(x) < 0 K penalizes only the misclassi-
fied examples (with yf(x) < 0) with an exact penalty of 1. Other loss func-
tions (see Figure 2) attempt to overestimate the discontinuous misclassifica-
tion loss with continuous/differentiable alternatives. Of these, the squared loss,
L(y, f(x)) = (y−f(x))2 does not decrease monotonically with increasing margin
yf(x). Instead, for yf(x) > 0 it increases quadratically, with increasing influ-
ence from observations that are correctly classified with increasing certainty.
This significantly reduces the relative influence misclassified examples.

While exponential loss is monotonically decreasing, it penalizes larger
misclassified margins exponentially, is exponentially large for these outliers and
leads to worse misclassification rates [2]. This motivates the novel loss function,

L(y, f(x)) = exp (−yf(x)− λ|y − ht(x)|), (1)

where λ > 0 and ht(·) is the weak classifier chosen at the current step, t1.
The additional term in the loss function |y − ht(x)| acts as a regularizer, in
conjunction with the margin term yf(x). This term does not resemble typical
1 As the loss function incorporates the weak classifier from the last round ht, it should

be written Lt(y, f(x)); we drop the subscript t from L to simplify notation, as the
dependence of the loss on t is apparent from the context.
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Algorithm 1 AR-Boost for Binary Classification
input: λ = 1

2
log ρ {select ρ > 1 such that λ > 0}

w1
i = 1

n
, i = 1, . . . , n {initialize example weight distribution uniformly}

for t = 1 do
ht = WeakLearner

`
(xi, yi, w

t
i)
n
i=1

´
{train weak classifier ht using weights wti}

εt =

nX
i=1

wtiδJ yi 6= ht(xi) K {sum of weights of examples misclassified by ht}

if εt ≥ ρ
ρ+1

then
T = t− 1; break.

else

αt =
1

2
log

ρ (1− εt)
εt

{update αt with adaptive regularization parameter ρ}

wt+1
i =

wti exp (2αt δJ yi 6= ht(xi) K)
Zt

{update weights with normalization Zt}
end if

end for
output: f(x) = sign

“PT
t=1 αtht(x)

”
{final classifier}

norm-based regularizations that control the structure of the hypothesis space,
such as `1 or `2-norms. It behaves like a regularization term because, it controls
the hypothesis space by relaxing the weak learning assumption in order to admit
hypotheses that have error greater than 1

2 into the boosting process.
At iteration t, the proposed loss function is the same as AdaBoost’s loss

function if the misclassification error is zero. However, the penalty associated
with this loss is less than that of AdaBoost’s loss if an example is misclassified
(Figure 2). AdaBoost maximizes the hard margin, γ = yf(x) without allowing
any misclassification error, etr = 1

n

∑n
i=1 δJ yif(xi) < 0 K. Inspired by SVMs [14],

our function maximizes a soft margin, γ = yf(x) + λ |y − ht(x)|. Instead of
enforcing outliers to be classified correctly, this modification allows for a larger
margin at the expense of some misclassification errors, e′tr = 1

n

∑n
i=1 δJ yif(xi)+

λ|yi − ht(xi)| < 0 K, and tries to avoid overfitting.
We derive a modified AdaBoost algorithm that we call Adaptive Reg-

ularized Boosting (AR-Boost); the general procedure of AR-Boost for binary
classification is shown in Algorithm 1. The derivation of the updates is shown
in Appendix A. AR-Boost finds the hypothesis weight, αt = 1

2 log ρ (1−εt)
εt

, with
λ = 1

2 log ρ > 0. When ρ = 1, AR-Boost is the same as AdaBoost. As mentioned
earlier, the WeakLearner is capable of learning with classifiers with an error rate
εt > 0.5. The extent to which this error is tolerated is further discussed in the
next section. For all learners, we have αt = λ + 1

2 log (1−εt)
εt

. This is equivalent
to computing αAR-Boost

t = λ+ αAdaBoost
t .

One additional advantage of this regularized loss function is that the
penalty for negative margins can be adjusted after observing the classifier per-
formance. Accordingly, we determine the value of λ or ρ through cross vali-
dation, by choosing the parameter for which the average misclassification er-
ror, e′tr = 1

n

∑n
i=1 δJ−yif(xi)− λ|yi − ht(xi)| < 0 K is smallest. For instance, in
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Fig. 3. PIMA Indian Diabetes data set (left) 5-fold cross validation with smallest
cross-validation error for ρ = 4; (right) training and test errors over a number of
boosting iterations for ρ=4.

Figure 3 (left), we show AR-Boost’s 5-fold cross-validation error for the PIMA
Indian Diabetes data set [7]. The best value is ρ = 4, and the corresponding
training and test error curves are shown in Figure 3 (right) for this choice of ρ.
This behavior is similar to AdaBoost, in that even when the training error has
been minimized, the test error continues to decrease.

We derive the multiclass version of AR-Boost in Section 5, which takes
advantage of AR-Boost’s ability to handle weaker classifiers. Before proceeding,
we further analyze AR-Boost’s ability to relax the weak-learner assumption.

3.1 Relaxing the Weak Learning Assumption of AdaBoost

At the t-th iteration, αt = 1
2 log ρ(1−εt)

εt
, ρ > 1. The hypothesis weight αt > 0

only when ρ(1−εt)
εt

> 1. From this, it is immediately apparent that

εt <
ρ

1 + ρ
, (2)

and when ρ = 1, we have that εt < 0.5; this is the standard weak learning
assumption that is used in AdaBoost. As we start increasing the value of ρ > 1,
we can see that ρ

ρ+1 → 1 and AR-Boost is able to accommodate classifiers with
εt ∈ [0.5, ρ

ρ+1 ). Thus, AR-Boost is able to learn with weaker hypotheses than
afforded by the standard weak learning assumption; how weak these learners can
be is controlled by the choice of ρ. This can be seen in Figure 4, which shows the
AR-Boost objective values, and their minima plotted for various weak-learner
errors ε. AR-Boost can handle weaker classifiers than AdaBoost, and assigns
them increasingly lower weights α→ 0, the weaker they are.

3.2 How Does Relaxing the Weak Learning Assumption Help?

Similar to Zhu et al., [6] who illustrate that AdaBoost fails in the multiclass
setting, we show how this can also happen in binary classification. We conduct
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Fig. 4. Objective values of AR-Boost (f(α) = (1−ε)e−α+εeα−2λ) plotted as a function
of α for different values of ε. The minimum of each objective is also shown by dot. The
curves in dashed green represent classifiers that satisfy the weak learner assumption:
0 ≤ ε < 0.5, while the curves in orange represent classifiers that exceed it: 0.5 ≤ ε <
ρ
ρ+1

. These curves were plotted for ρ = 6.

an experiment with simple two-class data, where each example x ∈ R10, and
xij ∼ N (0, 1). The two classes are defined as,

c =

{
1, if 0 ≤

∑
x2
j < χ2

10,1/2,

−1 otherwise,

where χ2
10,1/2 is the (1/2)100% quantile of the χ2

10 distribution. The training and
test set sizes were 2000 and 10, 000, with class sizes being approximately equal.
We use decision stumps (single node decision tree) as weak learners.

Figure 5 (top row) demonstrates how AdaBoost sometimes fails in binary
classification. Training and test errors remain unchanged over boosting rounds
(Figure 5 top left). The error εt and the AdaBoost weights αt for each round t
are shown in Figure 5 top center, and right. The value of εt starts below 1

2 , and
after a few iterations, it overshoots 1

2 (αt < 0), then is quickly pushed back down
to 1

2 (Figure 5 top center). Now, once εt is equal to 1
2 , the weights of subsequent

examples are no longer updated (αt = 0). Thus, no new classifiers are added to
f(x), and the overall error rate remains unchanged.

Unlike AdaBoost, AR-Boost relaxes the weak learning assumption fur-
ther: it can use classifiers with error greater than 1

2 as shown in bottom row of
Figure 5. Here, both training and test error decrease with boosting iterations,
which is what we would expect to see from a successful boosting algorithm.
AR-Boost can successfully incorporate weak classifiers with error as large as
εt < ρ/(ρ + 1) for binary classification as shown in Algorithm 1. Similar be-
havior holds for the C-class case, which can incorporate classifiers with error
up to ε < ρ(C − 1)/(ρ(C − 1) + 1) as we show below, in Algorithm 2. This
limiting value of εt is not artificial, it follows naturally by minimizing the pro-
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Fig. 5. Comparing AdaBoost and AR-Boost on a simple two-class simulated example,
with decision stumps (single node decision trees) used as weak learners. The top row
(AdaBoost) and bottom row (AR-Boost) show (left) training and test errors; (cen-
ter) weak classifier error at round t, εt; and (right) example weight at round t, αt
respectively for AdaBoost and AR-Boost. For AR-Boost, ρ = 5.

posed novel regularized exponential loss function. It provides softer margins and
smaller penalties for larger negative margins than AdaBoost (Figure 2).

4 Analysis of AR-Boost

We now analyze the behavior or AR-Boost via upper bounds on the training
and generalization error and compare these bounds with AdaBoost.

4.1 Training Error

We can formally analyze the behavior of the algorithm by deriving an upper
bound on the training error. To do so, we first state the following.

Lemma 1. At the t-th iteration, define the goodness γt of the current weak
learner ht(x) as how much better it does than the worst allowable error: εt =
ρ
ρ+1 − γt. The normalization Zt of the weights wt+1

i (in Algorithm 1) can be
bounded by

Zt ≤ exp
(
− (ρ+ 1)2

2ρ
γ2
t +

ρ2 − 1
2ρ

γt

)
. (3)

This Lemma is proved in Appendix C. Now, we can state the theorem formally.



AR-Boost: Reducing Overfitting in Boosting 9

Theorem 1 If the goodness of weak learners at every iteration is bounded by
γt ≥ γ, the training error of AR-Boost, etr, after T rounds is bounded by

etr ≤
T∏
t=1

exp
(
− (ρ+ 1)2

2ρ
γ2 +

ρ2 − 1
2ρ

γ

)
. (4)

If γ ≥ ρ−1
ρ+1 , the training error exponentially decreases.

Proof After T iterations, the example weights wT+1
i can be computed using

step 9 of Algorithm 1. By recursively unraveling this step, and recalling that
w1
i = 1

n , we have

wT+1
i =

e−yif(xi)

n
∏T
t=1 Zt

. (5)

The training error is etr = 1
n

∑n
i=1 δJ yi 6= f(xi) K. For all misclassified examples,

we can bound the training error by

etr ≤
1
n

n∑
i=1

e−yif(xi) =
T∏
t=1

Zt,

where we use (5) and the fact that
∑n
i=1 w

t+1
i = 1. The bound follows from

Lemma 1 and the fact that γt ≥ γ. �
First, note that when ρ = 1, the training error bound is exactly the same

as that of AdaBoost. Next, to understand the behavior of this upper bound,
consider Figure 6 (right). The bound of AdaBoost is shown as the dotted line,
while the remaining curves are the AR-Boost training error for various values of
ρ > 1. It is evident that it is possible to exponentially shrink the training error
for increasing T , as long as the goodness of the weak learners is at least γ = ρ−1

ρ+1 ,
which means that the error at each iteration, εt ≤ 1

ρ+1 .

4.2 Generalization Error

Given a distribution D over X×{±1} and a training sample S drawn i.i.d. from
D, Schapire et al., [15] showed that the upper bound on the generalization error
of AdaBoost is, with probability 1− δ, ∀θ > 0,

PrD J yf(x) ≤ 0 K ≤ PrS J yf(x) ≤ θ K + O

 1√
n

(
d log2(nd )

θ2
+ log

1
δ

) 1
2
 ,

(6)
where d is the Vapnik-Chervonenkis (VC) dimension of the space of base clas-
sifiers. This bound depends on the training error eθtr = PrS J yf(x) ≤ θ K and is
independent of the number of boosting rounds T .

Schapire et al., explained AdaBoost’s ability to avoid overfitting using
the margin, m = yf(x), the magnitude of which represents the measure of con-
fidence on the predictions of the base classifiers. The bound above shows that a
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Fig. 6. The upper bound on the training error for various choices of ρ, as the goodness
of the weak learners improves. AdaBoost (ρ = 1) is the dashed line. The behavior of
AR-Boost for various values of ρ > 1 is similar to AdaBoost if γ > ρ−1

ρ+1
, that is, the

training error decreases exponentially as T →∞.

large margin on the training set results in a superior bound on the generaliza-
tion error. Since boosting minimizes the exponential loss L(y, f(x)) = e−yf(x),
the margin is maximized. The result below shows that AR-Boost also behaves
similarly to maximize the margin, m = yf(x) + λ|y − ht(x)|, where λ > 0.

Theorem 2 At every iteration t = 1, . . . , T , let the base learner produce classi-
fiers with training errors εt. Then, for any θ > 0, we have

eθtr = PrS J yf(x) ≤ θ K ≤

(√
ρ1+θ +

1√
ρ1−θ

)T T∏
t=1

√
ε1−θt (1− εt)1+θ. (7)

Proof. If yf(x) ≤ θ, then y
∑T
t=1 αtht(x) ≤ θ

∑T
t=1 αt and exp(−y

∑T
t=1 αtht(x)

+ θ
∑T
t=1 αt) ≥ 1. Using this, we have that

PrS J yf(x) ≤ θ K ≤ ES

r
exp

(
−y
∑T
t=1 αtht(x) + θ

∑T
t=1 αt

)z

=
1
n

exp

(
θ

T∑
t=1

αt

)
n∑
i=1

exp (−yif(xi)).

Using the value of αt, and equations (5) and (10) gives us the result. �
As before, we immediately note that when ρ = 1, this bound is exactly

identical to the bound derived by Schapire et al. [15]. To further analyze this
bound, assume that we are able to produce classifiers with εt ≤ ρ

ρ+1 − γ, with
some goodness γ > 0. We know from Theorem 1 that the upper bound of training
reduces exponentially with T . Then, we can simplify the upper bound in (7) to

PrS J yf(x) ≤ θ K ≤
(

1
ρ
− (ρ+ 1)

ρ
γ

) (1−θ)T
2

(1 + (ρ+ 1)γ)
(1+θ)T

2



AR-Boost: Reducing Overfitting in Boosting 11

Algorithm 2 AR-Boost for multiclass Classification
input: λ = C−1

2
log ρ {select ρ > 1 such that λ > 0}

w1
i = 1

n
, i = 1, . . . , n {initialize example weight distribution uniformly}

for t = 1 do
Ht = WeakLearner

`
(xi,yi, w

t
i)
n
i=1

´
{train weak classifier Ht using weights wti}

εt =

nX
i=1

wtiδJ ci 6= Ht(xi) K {sum of weights of examples misclassified by Ht}

if εt ≥ ρ(C−1)
ρ(C−1)+1

then
T = t− 1; break.

else

αt = log
ρ(1− εt)

εt
+ log (C − 1) {update αt with adaptive parameter ρ}

wt+1
i =

wti exp (αt δJ ci 6= Ht(xi) K)
Zt

{update weights with normalization Zt}
end if

end for
output: f(x) = arg max

k

“PT
t=1 αtδJHt(x) = k K

”
{final classifier}

Hence, ∀θ < 1
2
ρ−1
ρ+1 , and ∀γ > ρ−1

ρ+1 , we have that PrS J yf(x) ≤ θ K → 0 as T →
∞. This suggests that limT→∞ mini yif(xi) ≥ γ, showing that better weak
hypotheses, with greater γ, provide larger margins.

5 AR-Boost for Multiclass Classification

In the C-class classification case, each data point can belong to one of C classes
i.e., the label of the i-th data point ci ∈ 1, . . . , C. For this setting, we can
recode the output as a C-dimensional vector yi [6, 16] whose entries are such
that yki = 1, if ci = k; else yki = − 1

C−1 , if ci 6= k. The set of C possible output
vectors for a C-class problem is denoted Υ . Given the training data, we wish to
find a C-dimensional vector function f(x) =

(
f1(x), ...., fC(x)

)′ such that

f(x) =
arg min

f

∑n
i=1 L(yi, f(xi))

subject to
∑C
k=1 f

k(x) = 0.

We consider f(x) =
∑T
t=1 αtht(x), where αt ∈ R are coefficients, and ht(x)

are basis functions. These functions ht(x) : X → Υ are required to satisfy the
symmetric constraint:

∑C
k=1 h

k
t (x) = 0. Finally, every ht(x) is associated with

a multiclass classifier Ht(x) as, hkt (x) = 1, if Ht(x) = k; else hkt (x) = − 1
C−1 ,

if Ht(x) 6= k, such that solving for ht is equivalent to finding the multiclass
classifier Ht : X → {1, . . . , C}; in turn, Ht(x) can generate ht(x) resulting in a
one-to-one correspondence.

The proposed multiclass loss function for AR-Boost is L(y, f(x)) =
exp (− 1

Cy′f(x) − λ
C ‖y − ht(x)‖1), which extends the binary loss function to

the multiclass case discussed in Section 3. This loss is the natural generalization
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Table 1. Description of binary and multiclass data sets used in the experiments.

Dataset #examples #Train #Test #features #classes

ionosphere 351 238 113 341 2
german 1000 675 325 20 2

diabetes 768 531 237 8 2
wpbc 198 141 57 30 2
wdbc 569 423 146 30 2

spambase 4601 3215 1386 58 2

vowel 990 528 462 13 11
pen digits 10992 7494 3498 16 10
letter 20000 16000 4000 16 26
thyroid 215 160 55 5 3
satimage 6435 4435 2000 36 7

segmentation 2310 210 2100 19 7

of the exponential loss for binary classification proposed by Zhu et al., [6] as
Stage-wise Additive Modeling that uses a multiclass Exponential loss function
(SAMME). The general procedure of multiclass AR-Boost is shown in Algorithm
2 and the details of the derivation are shown in Appendix B. AR-Boost finds
the feature weight, αt = log ρ 1−εt

εt
+ log (C − 1), with ρ > 1. When ρ = 1, the

AR-Boost algorithm becomes the SAMME algorithm.

6 Experimental Results

We compare AR-Boost with AdaBoost and four other regularized boosting al-
gorithms: ε-boost [2], L1-regularized boost [13], AdaBoostreg [5] and Weight-
Boost [7]. We chose 12 data sets (6 binary and 6 multiclass problems) (see Table
1) from the UCI machine learning repository [17] that have been previously used
in literature [6, 7]. For all the algorithms, the maximum training iterations is set
to 100. We also use classification and regression trees (CART) [2] as the base-
line algorithm. We compared multiclass AR-Boost discussed in Section 5 to two
commonly used algorithms: AdaBoost.MH [18] and SAMME [6]. The parameter
ρ was tuned through cross validation.

Figure 7 (left) shows the results of binary classification across 6 binary
classification tasks. The baseline decision tree has the worst performance and
AdaBoost improves upon trees. Using regularization, however, gives different
levels of improvement over AdaBoost. Our AR-Boost approach yields further
improvements compared to the other regularized boosting methods on all data
sets except spambase. On spambase, AR-Boost produces test error of 4.91%,
while Weight Decay and WeightBoost give errors of 4.5% and 4.2% respectively.
These results demonstrate that performance is significantly improved for smaller
data sets (for example, the improvement is nearly 35% for wpbc). This shows
that AR-Boost is able to reduce overfitting, significantly at times, and achieves
better generalization compared to state-of-the-art regularized boosting methods
on binary classification problems.
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Fig. 7. Misclassification errors of binary AR-Boost (left) and multiclass AR-Boost
(right) compared with other AdaBoost algorithms on UCI data sets (see Table 1).

Similar results are observed in the multiclass setting (Figure 7, right).
Boosting approaches are generally an order of magnitude better than the base-
line; AR-Boost is comparable (in 3 tasks) or better (in 3 tasks) than SAMME,
the best of the other methods. The most interesting result is found on the vowel
dataset; both AR-Boost and SAMME achieve around 40% test error, which is
almost 15% better than AdaBoost.MH. This demonstrates that our approach
can seamlessly extend to the multiclass case as well. Again, similar to the binary
case, AR-Boost improves robustness to overfitting, especially for smaller data
sets (for example, nearly 33% improvement for the thyroid data set).

Finally, we investigate an important property of AR-Boost: robustness
to outliers, which is a prime motivation of this approach. In this experiment, we
introduced different levels of label noise (10%, 20%, 30%) in the binary classifica-
tion tasks, and compared AR-Boost to the baseline and AdaBoost. We randomly
flip the label to the opposite class for random training examples for the bench-
mark data. Increasing levels of noise: 10%, 20% and 30% were introduced, with
those probabilities of flipping a label. AR-Boost exhibits superior performance
(Figure 8) at all noise levels. The key result that needs to be emphasized is that
at higher noise levels, the difference becomes more pronounced. This suggests
that AR-Boost is reasonably robust to increasing noise levels, while performance
decreases for other approaches, sometimes drastically. Thus, AR-Boost can learn
successfully in various noisy settings, and also with small data sets.

These results taken together demonstrate that AR-Boost addresses two
limitations in AdaBoost, and other regularized boosting approaches to date,
which are also two motivating objectives: robustness to noise, and ability to
effectively handle multiclass classification.

7 Conclusion

We proposed Adaptive Regularized Boosting (AR-Boost) that appends a reg-
ularization term to AdaBoost’s exponential loss. This is a data-driven regu-
larization method, which softens the hard margin of AdaBoost by assigning a
smaller penalty to misclassified observations at each boosting round. Instead of
forcing outliers to be labelled correctly, AR-Boost allows a larger margin; while
this comes at the cost of some misclassification errors, it improves robustness
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Fig. 8. Misclassification errors of CART, AdaBoost and AR-Boost on UCI datasets
with 10%, 20% ad 30% label noise.

to noise. Compared to other regularized AdaBoost algorithms, AR-Boost uses
weaker classifiers, and thus can be used in the multiclass setting. The upper
bound of training and generalization error of AR-Boost illustrate that the er-
ror rate decreases exponentially with boosting rounds. Extensive experimental
results show that AR-Boost outperforms state-of-the-art regularized AdaBoost
algorithms for both binary and multiclass classification. It remains an interesting
future direction to understand the use of such an approach in other problems
such as semi-supervised learning and active learning.
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Appendix

A Derivation of binary AR-Boost

At the t-th iteration, the loss function is L(y, f(x)) = exp (−yf(x)− λ|y − ht(x)|).
Let ft(x) = ft−1(x) + αtht(x) be the strong classifier composed of first t classi-
fiers. We have that αt = arg minα

∑n
i=1 exp (−yift−1(xi)− αyiht(xi)− λ|yi − ht(xi)|).

Using the fact that wti = exp (−yift−1(xi)), we have

αt = arg min
α

n∑
i=1

wti exp (−αyiht(xi)− λ|yi − ht(xi)|)

= arg min
α

∑
i:yi=ht(xi)

wtie
−α +

∑
i:yi 6=ht(xi)

wtie
α−2λ.
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Letting εt =
∑n
i=1 w

t
iδJ yi 6= ht(xi) K, and observing that wti are normalized

(
∑n
i=1 w

t
i = 1), we have αt = arg minα e−α(1− εt) + eα−2λεt. This gives us

αt =
1
2

log
ρ(1− εt)

εt
, (8)

where we use λ = 1
2 log ρ. Now, observing from above that wt+1

i = exp (−yift(xi)) =
wti exp (−yiαtht(xi)) and using the fact that −yiht(xi) = 2δJ yi 6= ht(xi) K − 1,
we have

wt+1
i = wti exp (2αtδJ yi 6= ht(xi) K). (9)

The term e−αt is dropped as it appears in wt+1
i ∀i and cancels during normal-

ization. Then wt+1
i is expressed in terms of wti , y, αt and ht. Subsequently, the

summation breaks into two parts: y = ht and y 6= ht and finally it uses (8), to
get the final expression for Zt:

Zt =
n∑
i=1

wt+1
i =

(
1
√
ρ

+
√
ρ

) √
εt (1− εt). (10)

B Derivation of multiclass AR-Boost

At the t-th iteration, the loss function is L(y, f(x)) = exp (− 1
Cy′f(x)− λ

C ‖y − ht(x)‖1).
Let ft(x) = ft−1(x)+αtht(x) be the strong classifier composed of first t classifiers.
We need αt = arg minα

∑n
i=1 exp

(
− 1
Cy′i(ft−1(xi) + αtht(xi)) + λ

C ‖yi − ht(xi)‖1
)
.

Analogous to the two class case, we have wti = exp
(
− 1
Cy′ift−1(xi)

)
. Recall, that

solving for ht(x) is encoded as finding the multiclass classifier Ht(x) that yields
ht(x). Thus, we have

αt = arg min
α

n∑
i=1

wti exp (−α
C

y′iht(xi)−
λ

C
‖yi − ht(xi)‖1)

= arg min
α

∑
i:ci=Ht(xi)

wtie
− α
C−1 +

∑
i:ci 6=Ht(xi)

wtie
α

(C−1)2
− 2λ
C−1 .

As before, we set εt =
∑n
i=1 w

t
iδJ ci 6= Ht(xi) K and we get α̂t = (C−1)2

C αt

αt = log
ρ(1− εt)

εt
+ log (C − 1), (11)

where λ = C−1
2 log ρ. This allows us to write

wt+1
i =

{
wtie
−C−1

C αt , if ci = Ht(xi),

wtie
1
Cαt , if ci 6= Ht(xi).

(12)

After normalization, this weight above is equivalent to the weight used in Al-
gorithm 2. Finally, it is simple to show that the output after T iterations,
fT (x) = arg maxk(f1

T (x), . . . , fkT (x), . . . , fCT (x))′ and is equivalent to fT (x) =
arg maxk

∑T
t=1 αtδJHt(x) = k K.
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C Proof for Lemma 1

At the t-th iteration, setting εt = ρ
ρ+1 − γt in (10) and simplifying gives us

Zt =
ρ+ 1
√
ρ

√(
ρ

ρ+ 1
− γt

) (
1

ρ+ 1
+ γt

)
=

√
1− (ρ+ 1)2

ρ
γ2
t +

ρ2 − 1
ρ

γt

Now, using 1 + x ≤ ex gives (3). �
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5. Rätsch, G., Onoda, T., Müller, K.R.: An improvement of AdaBoost to avoid
overfitting. In: Proc. ICONIP. (1998) 506–509

6. Zhu, J., Zhou, H., Rosset, S., Hastie, T.: Multi-class AdaBoost. Statistics and Its
Inference 2 (2009) 349–360

7. Jin, R., Liu, Y., Si, L., Carbonell, J., Hauptmann, A.G.: A new boosting algorithm
using input-dependent regularizer. In: Proc. ICML. (2003) 615–622

8. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. The Annals of Statistics 28 (1998) 2000
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