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Abstract. Preliminary results of a longitudinal study aimed at understanding the 

neurocognitive correlates of learning in a visual object recognition task are re-

ported. The experimental task used real-world novel stimuli, whereas the control 

task used real-world familiar stimuli. Participants practiced the tasks over 10 

weeks and reached a high level of accuracy. Brain imaging data was acquired in 

weeks 2, 6, and 10 and eye-tracking data was acquired in the other seven weeks. 

Quantitative and qualitative changes in brain activity were observed over the 

course of learning and skill acquisition. Generally, in the experimental task, brain 

activity increased at week 6 and decreased at week 10, whereas in the control 

task, brain activity decreased at week 6 and further decreased at week 10 com-

pared to week 2. New clusters of brain activity emerged at week 6 in the experi-

mental task. Eye-fixation and pupil-dilation data showed that fast learners tend 

to inspect the stimuli more thoroughly even after a response was given. These 

results are used to inform the development of computational cognitive models of 

visual object recognition tasks.  

Keywords: Longitudinal study, learning, brain imaging, eye tracking.  

1 Introduction and Background 

Practice related changes in brain activity have been reported in a variety of laboratory 

tasks and paradigms. Here we report preliminary results form a study aimed at investi-

gating patterns of brain activity associated with practice and learning in a visual object 

recognition task. What distinguishes this study from similar ones is the use of real-

world, complex stimuli (i.e., military aircraft) and a variety of measurements, such as 

accuracy, response time, eye fixations, pupil size, and fMRI BOLD signal. The purpose 

of this investigation is to inform the development of computational cognitive models 

(Anderson, 2007) that can be used to suggest instructional interventions that maximize 

learning and engagement and can be embedded in intelligent, adaptive tutoring systems. 

https://cms.hci.international/2015/index.php?module=hciiUserAdmin&op=viewUD&id=270


Anderson, Betts, Ferris, and Fincham (2010) have put forward a compelling argument 

for the value of combining behavioral and brain imaging data with computational cog-

nitive modeling for the purpose of informing the development of intelligent tutoring 

systems. 

The most robust result in the literature is that repeated practice is associated with 

reductions in activity in task-specific and task-general brain regions (Chein & Schnei-

der, 2005). However, this result applies only when there is a consistent mapping be-

tween stimuli and responses and no change in strategy is expected to occur with practice 

and learning. Increases in activity with practice are reported in paradigms that aim to 

develop skills (e.g. mirror reading, Poldrack & Gabrieli, 2001) or capacities (e.g., work-

ing memory, Olesen, Westerberg, & Klingberg, 2004). In these paradigms, strategy 

shifts are expected and even seen as a desirable effect of training. We expect our task 

to be more prone to strategizing than simpler laboratory tasks and conceive of strategy 

learning as an intrinsic component of skill acquisition. We expect participants to de-

velop strategies to inspect stimuli and their features, search for relevant information, 

encode, keep, and retrieve information in/from long-term memory. These activities will 

likely be associated with changes in neural activity that can be detected with fMRI. 

Given the purpose of our study, we are not just interested in quantitative changes such 

as increases or decreases in activity with learning. Qualitative changes are more inter-

esting because we can learn something about the structure of thought, for example, 

whether a participant changes strategies or allocates different resources to the task at 

hand. In addition, since our main purpose is to inform the development of cognitive 

models, the temporal dimension of task performance is very important. We assume that 

the brain reacts differently at different stages of skill acquisition. Thus, the question is 

not whether activation increases or decreases but rather when it increases and when it 

decreases.  

A number of theoretically informed regions of interest (ROI) were defined based on 

the literature on neural correlates of practice and learning (e.g., Anderson, Bothell, Fin-

cham, Anderson, Poole, & Qin, 2011; Borst & Anderson, 2014; Supekar, Swigart, Ten-

ison, Jolles, Rosemberg-Lee, Fuchs, & Menon, 2013). These were brain regions asso-

ciated with visual recognition (fusiform gyrus, middle occipital gyrus), manipulations 

of spatial representations (posterior parietal), storage and retrieval of declarative mem-

ories (hippocampus, prefrontal cortex), cognitive control (anterior cingulate), motor 

control (areas around the central sulcus), automaticity (basal ganglia), and workload 

(insula). We also used a control ROI that was known a priori to be insensitive to the 

experimental manipulation – the auditory cortex.     

1.1 Tasks 

In the experimental task (Figure 1A), participants saw an aircraft image and had to 

select its name out of four options. There were 75 different aircraft images in total. The 

control task (Figure 1B) was similar except it used familiar stimuli. There were 52 dif-

ferent control images in total.     



  

Fig. 1. A (left side): the experimental task and B (right side): the control task 

2 Method 

2.1 Participants 

Fifteen participants were recruited for this study from Wright State University’s under-

graduate and graduate student population. Throughout the 10-week duration of the 

study, over 50% of the participants dropped out of the study or were excluded for var-

ious reasons. This attrition rate is not uncommon for longitudinal studies.  

2.2 Design 

Table 1. Layout of the experimental design 

Week 

Session 

type Number and type of rounds  Number and type of trials 

1 Behavioral 1 Training + 1 Testing 2 x (75 Air + 52 Ctrl) 

2 Imaging 1 Testing 1 x (75 Air + 52 Ctrl) 

3 Behavioral  3 Training + 1 Testing 4 x (75 Air + 52 Ctrl) 

4 Behavioral  3 Training + 1 Testing 4 x (75 Air + 52 Ctrl) 

5 Behavioral  3 Training + 1 Testing 4 x (75 Air + 52 Ctrl) 

6 Imaging 1 Testing 1 x (75 Air + 52 Ctrl) 

7 Behavioral  3 Training + 1 Testing 4 x (75 Air + 52 Ctrl) 

8 Behavioral  3 Training + 1 Testing 4 x (75 Air + 52 Ctrl) 

9 Behavioral  3 Training + 1 Testing 4 x (75 Air + 52 Ctrl) 

10 Imaging 1 Testing 1 x (75 Air + 52 Ctrl) 

 

Neu-METCO Functional Data Processing  
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Figure 3.  Example control stimuli for  the training UI. Control stimuli consisted of four total models: a ship, car, 
bike, and tank. Feedback was provided in the same manner as for air track stimuli. 

 

 

Figure 4. NeuMETCO training UI fi le hierarchy. 

 

 

 

 



A pilot study was run with five participants to determine the length of the study neces-

sary to achieve asymptotic performance in terms of both accuracy and response time 

for an average participant. Based on what we learned from the pilot study, we decided 

to include 10 sessions in the main study, one session per week, and insert the brain 

imaging sessions at weeks 2, 6, and 10. Table 1 shows a schematic of the design.  

2.3 Apparatus  

Eye fixations and pupil size were recorded using a video-based eye tracker (EyeLink). 

Neuroimaging was performed using a 1.5 Tesla MR scanner (General Electric Excite 

HDX; General Electric, Milwaukee, Wisconsin) with an eight-channel head coil. Visual 

stimuli were projected onto a screen positioned at the foot end of the bore. A mirror 

affixed to the head coil enabled the participants to view the screen. A fiber-optic button 

response unit was used to record participants’ behavioral performance.  

3 Results and discussion 

Here we present exploratory analyses and preliminary results, mainly descriptive sta-

tistics and visualizations. More detailed quantitative analyses, including inferential sta-

tistics, will be presented at the conference and in a subsequent journal paper.   

3.1 Pilot study results  

The purpose of the pilot study was to get a sense of how many sessions were needed in 

order to achieve asymptotic performance. In addition, we were interested to learn about 

the participants’ strategies and how they organized their learning in the aircraft task. 

Figure 2 shows how (A) accuracy and (B) response time changes as a function of ses-

sion. It is not clear whether the average performance has reached an asymptote, partic-

ularly with regard to response time. Based on this observation we decided to increase 

the number of sessions to 10 to ensure solid learning and skill acquisition.  

After task completion, we debriefed the participants with regard to their learning 

strategies. A variety of strategies were reported such as: directly associating aircraft 

shapes and names, finding distinctive features of aircraft to aid with distinguishing 

among similar aircraft, selecting most memorable part of a name (e.g., the word “sea”, 

animal names) and discarding apparently irrelevant parts (e.g., numbers), using features 

and labels to group aircraft in categories, look for logical associations (e.g., helicopters 

without wheels have “sea” in their name), give ad-hoc names to particular shapes, etc. 

We concluded that the task is conducive to strategizing and performance in this task 

may be a function of how participants organize their learning (strategic learning and 

executive control) in addition to visual processing and memory per se.  



  

Fig. 2. (A) Accuracy (left plot) as a function of session. (B) Response time (right plot) as a func-

tion of session. Error bars are 95% confidence intervals.   

3.2 Behavioral results   

Extending the study to 10 sessions proved to be a good decision because performance 

continued to improve after session 6, although it did not reach the maximum possible 

level (100% accuracy). Since the accuracy variable was somewhat bimodal in distribu-

tion, we chose to show descriptive statistics for two ad-hoc groups that we call “fast 

learners” and “slow learners”, respectively. We show the two groups separately to il-

lustrate an interesting difference in learning strategy (see also the section on eye track-

ing results); we do not claim that the two groups are statistically distinct.  

Figure 3 shows how accuracy increases over the 10 sessions, starting from slightly 

above chance level (25%) in session 1 and ending at almost ceiling level (100%) in 

session 9 for fast learners. Figure 4 shows reductions in response time associated with 

practice in the two groups. Performance in the fMRI scanner (sessions 2, 6, and 10) 

tends to be lower than expected based on the learning trajectory (i.e., accuracy is lower 

and response time is higher in the scanner than out of scanner). This effect has been 

attributed to specific attentional and motor deficits caused by the scanner environment 

and the scanning procedure (Van Maanen, Forstmann, Keuken, Wagenmakers, & 

Heathcote, 2015).  

The tipping point of the separation between the two groups is around sessions 3 and 

4, where accuracy of the fast learners increases significantly faster than that of the slow 

learners. The confidence intervals are also wider around this point, suggesting that the 

cause of separation between groups is also an important determinant of individual dif-

ferences among learners. The response time pattern (Figure 4) suggests an interesting 

strategic difference between the two groups: fast learners tend to be more deliberative; 

they spend more time inspecting the stimuli in the first 3 sessions than slow learners 

(see the section of eye tracking results for a corroboration of this interpretation).           
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Fig. 3. Accuracy by session and round for fast and slow learners: For each session, the training 

rounds are indexed numerically (1 to 3) and the testing round is indexed with the letter “T”. The 

shaded areas represent 95% confidence intervals.  

Fig 4. Response time (in seconds) by session and round for fast and slow learners. Eye tracking 

results  

Eye-tracking data provided additional insights into the learning strategies of slow 

and fast learners. We analyzed the amount of time each participant looked at each of 

the following five components of the interface: object image, correct name option, in-

correct name options, feedback, and progress (i.e., image index and score). We grouped 

the eye tracking data in two classes based on when it occurred in a given trial: (1) before 

a response was made and (2) after feedback was provided. Figure 5 shows the eye fix-

ation patterns for (A) fast and (B) slow learners in trials in which they gave correct 

responses. The interface components of interest are shown on the X-axis. Each vertical 

bar represents a behavioral session (note: eye tracking data was not collected in the 



fMRI sessions). We notice that fast learners look longer at the aircraft image than slow 

learners, particularly after a response was made. In contrast, slow learners look longer 

at feedback and progress regions. Another interesting observation is that fast learners 

tend to increase the time they spend looking at the object as they learn. This increase 

occurs around sessions 3 and 4, which coincides with the moment in which fast learners 

clearly differentiate themselves from slow learners. Arguably, the extra time in which 

fast learners inspect the object after a correct response was given is spent rehearsing 

and attempting to consolidate their memories by use of mnemonic strategies. 

 

Fig. 5. Eye fixation patterns for fast and slow learners in trials in which a correct response was 

given. 

We also analyzed changes in pupil diameter as a function of task and practice. Pupil 

dilation has been interpreted as an index of cognitive resources allocated to the task at 

hand (Granholm, & Steinhauer, 2004; Siegle, Steinhauer, Stenger, Konecky, & Carter, 

2003). We assumed that pupil size of a given individual should be higher in the aircraft 

task than in the control task and took the difference between the two measures (here 

referred to as pupil dilation for brevity) to represent a normalized index of an individ-

ual’s resource allocation strategy. Figure 6A shows that pupil dilation is higher in fast 

learners and peaks around sessions 3 and 4. Paradoxically, in some sessions, slow learn-

ers show “negative” pupil dilation, that is, higher pupil size for control vehicles than 

for aircraft. This is obviously an inappropriate resource allocation strategy that may be 

responsible for the poorer performance observed in slow learners. Figure 6B shows that 

pupil dilation in session 1 strongly predicts aircraft accuracy over the entire experiment 

(r = 0.63, p = 0.04). Recall from Figure 3 that aircraft accuracy in session 1 was similar 

in the two groups and close to chance level. This result suggests that the overall perfor-

mance in this study was determined to a large extent by the participants’ willingness to 

allocate cognitive resources to the aircraft task at the outset of the study.                    
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Figure 9.  Left:  “
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behavior  d
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time  looking  at   their  ‘progress’  which  may  indicate  that  this  group  is  more  pe rf ormance  or iented  

than learning oriented. 

 

Figure 10 Left:  “
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behavior  d

u

ring  ‘incorrect’  re s ponse  trials;  Th e  circled  regions  indicate  two  interesting  ob servations,  
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Fig. 6. A (left side): Pupil dilation by session (except fMRI sessions 2, 6, and 10) in fast learners 

(dark bars) as compared to slow learners (light bars). B (right side): Correlation between pupil 

dilation in session 1 and overall aircraft accuracy.   

3.3 Region of interest analysis  

Overall, across all brain regions of interest, in the control task, we see the usual pattern 

of activation reported in the literature: activation decreases with practice (Chein & 

Schneider, 2005). In the aircraft task, we see a different pattern: activation increases in 

the learning phase from week 2 to week 6 and decreases in the consolidation phase from 

week 6 to week 10 (Figure 7A). This distinction is even clearer in the activation extent 

data (Figure 7B). These data represent to what extent (percentage) a region is activated 

above threshold. 

  

Fig. 7. A (left side): Activation intensity by fMRI session (week). B (right side): Activation extent 

by fMRI session (week). Error bars represent 95% confidence intervals.      
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We investigate further the distinction between the aircraft task and the control task 

in each region of interest (see Figure 8). We see that the distinction is more pronounced 

in particular regions of interest and almost inexistent in others. The largest differences 

are seen in fusiform gyrus, middle occipital gyrus, and superior parietal lobule. These 

are areas involved in developing visual object representations and operating on them. 

Part of this effect can be a “set size effect” considering that there are much more air-

crafts than control vehicles. More interesting are the differences seen in the inferior, 

middle, and medial frontal gyri thought to reflect retrieval and cognitive control opera-

tions.         

 

Fig. 8. Activation intensity by brain region of interest in the aircraft and control tasks   

Thus, there seem to be more than just quantitative differences between the two tasks. 

The participants seem to employ different strategies in the aircraft task as compared to 

the control task. The control task seems to be executed in a more automatic way, while 

the aircraft task is performed in a more controlled and deliberate manner.  
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Next we analyzed the dynamics of activation in the two tasks as the participants 

advanced in their learning. In the aircraft task, we notice increases in activation from 

week 2 to week 6 in caudate and hippocampus reflecting development of procedures 

(or rules) and declarative memories, respectively. The anterior cingulate cortex (ACC) 

also shows an increase in activation at week 6. This probably reflects the increased 

conflict and interference that occur with learning to distinguish between somewhat sim-

ilar objects and features. The control task shows different dynamics. Activation is much 

lower in magnitude to start with and decreases with practice. There is not much change 

of activation in areas related to memory and strategy development or deployment 

(ACC, caudate, hippocampus, and frontal gyri), reflecting the high level of automaticity 

reached by this task. 

3.4 Whole-brain exploratory analysis  

A theoretically agnostic exploratory analysis was performed to uncover potential acti-

vation patters that were not found in previous research or may be specific to our task 

and experimental setup. We identified all clusters of activity (i.e., adjacent voxels acti-

vated above threshold) as a function of task (aircraft vs. control) and session (weeks 2, 

6, and 10). For each cluster, we determined its size (i.e., number of voxels), identified 

all the local maxima, and listed the brain regions that these maxima belonged to. The 

overall pattern of changes in brain activity is consistent with the one observed in the 

ROI analysis (see section 3.4).  

With regard to the content of the clusters, the general trend that emerges across in-

dividuals is as follows. The first cluster tends to capture visual and representational 

areas in the occipital, temporal and parietal lobes, and cerebellum. The second cluster 

and the subsequent ones capture frontal areas (inferior frontal gyrus, middle frontal 

gyrus, superior frontal gyrus, and cingulate gyrus), motor areas (precentral and post-

central gyri), and subcortical areas (e.g., thalamus, basal ganglia). In the aircraft task, 

we see a qualitative shift from week 2 dominated by occipital areas to week 6 and week 

10 showing the emergence of the fusiform gyrus and other areas in the temporal lobe 

(inferior and middle temporal gyri) reflecting complex object representation and 

memory. Frontal and parietal areas involved in cognitive control, interference resolu-

tion, attention, and memory retrieval tend to be activated throughout the entire study in 

the aircraft task. In the control task, at week 2 the pattern looks much like the aircraft 

task, but by week 6 we see the emergence of medial frontal gyrus, possibly indicating 

a strategy shift. By week 10, we see the emergence of posterior parietal areas and the 

decline of frontal and temporal involvement, which suggests that by week 10 the strat-

egy might be based on direct representations bypassing memory and control.  

3.5 Correlations of brain activation and behavioral performance   

We examined correlations between brain activity in our predefined regions of interest 

and behavioral performance (i.e., accuracy in identification of aircraft images). Most of 

these correlations were not statistically significant due to the very low number of par-



ticipants (7). However, an interesting pattern emerged from the analysis of the correla-

tions from all regions of interest (Figure 9). The correlations tend to be negative at week 

2, turn to positive at week 6, and decrease significantly approaching zero at week 10. 

This pattern is similar for both activation intensity (Figure 9A) and activation extent 

(Figure 9B).  

  

Fig. 9. Pattern of correlations between brain activation (A, left side) intensity and (B, right side) 

extent and task performance (aircraft accuracy) at start, midpoint, and end of study. Error bars 

represent 95% confidence intervals.  

The negative correlations at week 2 can be interpreted as indicating higher and per-

haps inefficient metabolic expenditure for low performers and relatively lower meta-

bolic expenditure for high performers. This can also be associated with higher anxiety 

or stress for low performers. By week 6, all participants have significantly increased 

their accuracy. Their brain activity at this level could reflect how much of relevant brain 

resources participants recruit for the task. The participants who are able to recruit more 

of these resources perform better, which explains the positive correlation. By week 10, 

most participants reach a high level of performance (around 80%), the task has become 

less challenging for everybody, which explains the decrease in the magnitudes of the 

correlations. Thus, the participants who gradually recruit more brain resources as they 

learn the task tend to perform better. When their performance reaches a high level, they 

may decrease the level of metabolic expenditure. The participants who show relatively 

higher levels of brain activity and relatively lower performance in the early stages of 

learning tend to learn at a slower rate.   

4 Conclusion 

The preliminary analyses reported here suggest that learning progresses differently in 

the two tasks. The control task reaches high levels of automation, which is associated 

with decreases in most brain regions. The aircraft task recruits more brain resources as 

the participants learn to master it, particularly from brain regions involved in memory, 
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representation, and control. Learners would benefit from a tutoring process aimed at 

aiding memory encoding and retrieval, making correct associations, and resolving am-

biguity and interference among representations and associations.  
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