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Statistical Relational AI meets Deep Learning 
The Big Takeaway

• Neural networks and deep learning seeing an extraordinary resurgence 
• widely applied to image, audio and video processing in diverse domains and problems

• Deep learning inputs are flat representations: vectors, matrices, tensors
• limits applicability to data with rich relational structure such as graphs and networks

• Statistical relational learning emerging as a powerful framework
• combines logic (for representing structure) and probability (to capture uncertainty)

• widely applied to knowledge bases, social networks, large structured data sets

• Combine the two frameworks: augment RBMs with relational features
• qualitative relationships (structure): relational random walks

• quantitative influences (parameters): restricted Boltzmann machines

• Relational Restricted Boltzmann Machines (R2BM)
• expressive and interpretable deep models



Neural Networks to Deep Learning
Changing Fortunes in the 20th Century

Source: Unknown



Neural Information Processing Systems (NIPS)

conference attendance over the last decade

popularity of the search

“deep learning” on Google
(Source: Google Trends)

Mark Zuckerberg attends NIPS 2013

and hires Yann LeCun to lead Facebook

AI Research

This figure only tracks attendance till 2015;

NIPS 2017 drew over 8000 attendees

The Second Golden Age
Deep Learning in the 21st Century

Source: Andrew Beam



Significant Technological Advances:
• Availability of massive, powerful computing resources: More GPUs means more layers

• Availability of massive, high-quality labeled data sets: More layers means more labeled data

Significant Technical Advances:
• Optimization-friendly activation functions: Rather than using neurocognition-inspired activation 

functions (logistic, hyperbolic tan), use activation function such as RelU to handle vanishing gradients

• Robust optimizers: Newer variants of stochastic gradient descent (momentum, RMSprop, and ADAM) 

produce better weights, faster

• Improved architectures: U-nets, Highway networks, Siamese networks, Resnets enable deep learning 

for different types of problems and domains

• Effective regularization: Techniques like batch normalization and data-augmentation reduce overfitting

Significant Accessibility:
• Widely-accessible software platforms like TensorFlow, Theano, Mxnet, Chainer implement a variety of 

layers, activation types, and GPU-based optimization algorithms and make prototyping faster

Adapted from Andrew Beam’s blog post: “Deep Learning 101 - Part 1: History and Background” 

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

The Second Golden Age
Why Deep Learning Now?

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html


early diagnosis from medical imagesDeep Learning Applications

Deep Learning’s greatest successes (arguably) are 

in image, audio and video analysis applications

colorizing black and white images

real-time pose estimation

extracting text descriptions from images

lip reading

autonomous agents for (video) games

audio analysis of music for genre classification



Deep Learning Pros
… and Cons

pro: can handle large number of input features

con: inputs are standardized to flat represent-

tations of features: vectors, matrices, tensors

pro: multiple layers discover and generate new feature combinations

con: intermediate layers are not always easily interpretable, especially 

by non-machine-learning domain experts

Source: Matthew Mayo, KDNuggets



Domains with Objects, Attributes and Relations
Flat Representations Cannot Handle Structure

Most data is actually stored in relational databases, and contains objects, their attributes and relationships between them

Source: Science and Food UCLA

Flavor network: nodes are ingredients, node size is the 

ingredient’s prevalence in recipes, edge thickness is the 

number of flavor compounds shared by two ingredients

Source: Future Health Systems

Social network: nodes are individuals, node size is their social 

influence, edges are social connections between individuals, 

edge types capture social interaction types



Statistical Relational Learning
Flat Representations Cannot Handle Structure

Source: Science and Food UCLA

Flavor network1: nodes are ingredients, node size is the 

ingredient’s prevalence in recipes, edge thickness is the 

number of flavor compounds shared by two ingredients

Different ingredients may have different numbers of flavor ``neighbors’’ 

e.g., cayenne has 6 flavor neighbors, while blueberry has 16

Capturing this (pairwise) information in a single table is not possible, which 

is why RDBMS use several tables and a schema describing the 

relationships between their columns

Many other data sets and applications:

• Social Networks, Customer Networks

• Collaborative Filtering

• Electronic Health Record data

• Gene Regulatory Networks

• Bibliographic data

• Communication data

• Trust Networks

1Ahn Y-Y, Ahnert SE, Bagrow JP, Barabási A-L (2011). Flavor network 

and the principles of food pairing. Scientific Reports 1, 196.

Most data is actually stored in relational databases, and contains objects, their attributes and relationships between them



Source: Science and Food UCLA

Statistical Relational Learning
First-Order Logic Can Capture Relationships

Flavor network: nodes are ingredients, node size is the 

ingredient’s prevalence in recipes, edge thickness is the 

number of flavor compounds shared by two ingredients

IngredientOf(?recipe, ?ingredient1) AND

FlavorCompound(?ingredient1, ?compound) AND

FlavorCompound(?ingredient2, ?compound) AND

⇒
CanSubstitute(?ingredient1,?ingredient2)

IngredientOf(shrimpScampi, shrimp)

IngredientOf(shrimpScampi, garlic)

IngredientOf(shrimpScampi, oliveOil)

IngredientOf(seasonedMussels, garlic)

IngredientOf(seasonedMussels, mussel)

…

FlavorCompound(garlic, hexylAlcohol)

FlavorCompound(mussel, nonanoicAcid)

…

CanSubstitute(shrimp,mussel)

Entities, attributes and relationships can be expressed 

through logical predicates

Complex interactions can be expressed 

through logical clauses (rules)



Statistical Relational Learning
But What About Uncertainty?

Learning
Decision trees, Optimization, SVMs, …

Logic
Resolution, WalkSat, Prolog, description logics, …

Probability
Bayesian networks, Markov networks, Gaussian Processes…

Logic + Learning
Inductive Logic Programming (ILP)

Learning + Probability
EM, Dynamic Programming, Active Learning, …

Logic + Probability
Nillson, Halpern, Bacchus, KBMC, ICL, …

propositional 

logic
first-order 

logic

inductive 

logic 

programming
prop. rule

learning

probability 

theory

classical

machine learning

probabilistic

logic

Statistical 

Relational 

Learning

logic

learning

uncertainty

Slide adapted from Sriraam Natarajan’s tutorial “Probabilistic Logic Models: Past, Present & Future”
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Statistical Relational Learning
A Brief History

Slide from Sriraam Natarajan’s tutorial 

“Probabilistic Logic Models: Past, Present 

& Future”
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If two persons are friends, they either both smoke or both do not smoke

1.5 Friends(?x, ?y) ⇒ ( Smokes(?x) ⇔ Smokes(?y) )

Smoking causes cancer
1.2 Smokes(?x) ⇒ Cancer(?x)

Friends(Amy,Cal) 

Friends(Ben,Cal) 

Smokes(Amy) 

Smokes(Cal) 

Cancer(Amy)

1.5 !Friends(?x, ?y) OR !Smokes(?x) OR Smokes(?y)

1.5 !Friends(?x, ?y) OR  Smokes(?x) OR !Smokes(?y)

1.2 !Smokes(?x) OR Cancer(?x)

A Markov Logic Network2 is specified by a set of weighted rules that 

incorporate domain knowledge qualitatively and quantitatively:

We will write these as weighted clauses (in this example, Horn clauses):

Evidence is the data known to be 

true (or false). If we use the closed-

world assumption, all facts not in 

evidence are assumed to be false.

In our example, all facts not in 

evidence can be queried.

2M. Richardson and P. Domingos. 2006. Markov logic networks. Machine Learning, 62(1-2), pp. 107-136.

Statistical Relational Learning
Markov Logic Networks

Weights can be negative and/or infinite, and higher weight ⇒ likelier the constraint is to hold
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1.5 !Friends(?x, ?y) OR !Smokes(?x) OR Smokes(?y)

1.5 !Friends(?x, ?y) OR  Smokes(?x) OR !Smokes(?y)

1.2 !Smokes(?x) OR Cancer(?x)

Statistical Relational Learning
Markov Logic Networks

Consider this MLN with two people: Anna (A) and Bob (B)

grounding: instantiating the rules with all possible values for the variables

graph structure: edge between two ground nodes they appear together in a rule

An MLN is template for (ground) Markov networks

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)
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1.5 !Friends(?x, ?y) OR !Smokes(?x) OR Smokes(?y)

1.5 !Friends(?x, ?y) OR  Smokes(?x) OR !Smokes(?y)

1.2 !Smokes(?x) OR Cancer(?x)

Statistical Relational Learning
Markov Logic Networks

Friends(Amy,Cal) 

Friends(Ben,Cal) 

Smokes(Amy) 

Smokes(Cal) 

Cancer(Amy)

Evidence is the data known to be 

true (or false). If we use the closed-

world assumption, all facts not in 

evidence are assumed to be false.

probability distribution over possible

worlds specified by the ground Markov 

network

rule (feature) weights #count of the times 

this rule is satisfied in 

the world, x

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)



Relational Restricted Boltzmann Machines (R2BM)
SRL Meets Deep Learning

Key intuition: Make the RBM features relational and interpretable

Construct the distributions similar to an SRL model using aggregators

Step 1: Relational Data Transformation

Bring relational data to lifted graphical form

Bring n-ary predicates to binary form by introducing Compound Value Type 

Step 2: Relational Transformation Layer

Learn m Random Walks on Lifted Relational graph connecting argument type of target example

Two ways of transformation

Existential Semantics (RRBM-E): if there exists at least one instance of random walk satisfied for target example

Counts (RRBM-C): # instances of random walk satisfied for  target example

Step 3: Learning Relational RBM

Learn Discriminative RBM by utilizing the features learnt at Transformation layer

We consider Restricted Boltzmann Machines (RBMs)

variant of Boltzmann machines with restriction that neurons form 

a bipartite graph; restriction allows for more efficient training  



(Discriminative) Restricted Boltzmann Machines
Background and Notation
A restricted Boltzmann machine (RBM) is a generative stochastic artificial 

neural network that can learn a probability distribution over its set of inputs

hidden layer

sigmoidal activation

visible (input) layer

multinomial activation 𝒗𝒊

𝒉𝒋

𝑾

hidden layer

sigmoidal activation

visible (input) layer

multinomial activation
𝒗𝒊

𝑾

𝒉𝒋

𝒚𝒌

𝑼

label (output) layer

Bernoulli activation

P v, h =
1
Z
e−(h

TWv + bTv + cTh)

A discriminative RBM3 is a modification that can also model outputs for 

classification problems

P v, h, y =
1
Z
e−(h

TWv + bTv + cTh + hTUy +dTy)

Multiclass outputs are modeled using one-hot vectorization
(Class ID = 1) person

(Class ID = 2) car

(Class ID = 3) tree

(Class ID = 4) road

(Class ID = 5) line
3H. Larochelle and Y. Bengio (2008). Classification using discriminative 

restricted Boltzmann machines. In Proceedings of the 25th ICML, pp. 536-543.



Relational Random Walks
Lifted Relational Random Walks

Network architecture is determined by domain structure, the set of relational rules

that describe how various relations, entities and attributes interact 

Other approaches employ carefully hand-crafted rules or learn them with inductive 

logic programming. We learn structure through relational random walks4!

A relational random walk through a domain’s schema

(lifted relational graph) is a chain of relations that identifies a 

feature template

Random Walk: A student S takes a course C taught by Professor P

Clausal Form: takes(S,C) AND taughtBy(C,P)

takes
S C P

taughtBy

Random Walk: A student S is the author of two publications, T1 and T2

Clausal Form: author(T1,S) AND author-1(S,T2)

author
T1 S T2

author-1

For semantically sound relational random walks, we need to 

define distinct inverse predicates, where the argument order 

(domain and range of binary predicates) is reversed

e.g., author-1(Student, TitleOfPubl) is the 

inverse of author(TitleOfPubl, Student)

4N. Lao, T. Mitchell and W. W. Cohen (2011). Random walk inference and learning in a large scale knowledge 

base. In Proceedings of EMNLP '11. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 529-539.



Relational Random Walks
Lifted Relational Random Walks

Every relational random walk is a relational feature that is constrained to begin 

at the first argument and end at the second argument of the target predicate

advisedBy(P0,P1)

isa
publication

P0

D

P2

T

P1

publication-1
isa-1

⇐ isa(P0,D) AND isa(D,P2)
-1 AND publication(P2,T)

-1 AND publication(T,P1)

P: person

D: designation

T:  title

Network architecture is determined by domain structure, the set of relational rules

that describe how various relations, entities and attributes interact 

Other approaches employ carefully hand-crafted rules or learn them with inductive 

logic programming. We learn structure through relational random walks!

target predicate: what we want to predict

relational random walk: a feature 

template describing what we

want to predict



Relational Restricted Boltzmann Machines
Step 1: Data Transformation

Convert n-ary predicates to binary form by introducing a 

Compound Value Type 
Freebase  (a now defunct online knowledge base) used Compound Value Types 

(CVTs) to represent n-ary relations with n > 2, e.g., values like geographic 

coordinates, actors playing a character in a movie. 

Convert unary predicates to binary form by introducing a new 
predicate isa

The ternary predicate
taught(Prof, Course, Semester)

becomes three binary predicates:
taught1(t_id, Prof), 

taught2(t_id, Course), 

taught3(t_id, Semester)

The unary predicate:  
student(Person)

becomes a binary predicate: 
isa(Person,`student’)

Convert predicate logic data to probabilistic random walk form



P: person

D: designation

T:  title

R: project

RW1: advisedBy(P0,P2)⇐ isa(P0,D1) ᴧ isa-1(D1,P2)

RW2: advisedBy(P0,P4)⇐ isa(P0,D1) ᴧ isa(D1,P2)
-1 ᴧ publication(P2,T3)

-1 ᴧ publication(T3,P4)

RW3: advisedBy(P2,P4)⇐ publication-1(P2,T3) ᴧ publication(T3,P4)

RW4: advisedBy(P2,P5)⇐ projectMember-1(P2,R3) ᴧ sameProject(R3,R4) ᴧ projectMember(R4,P5)

RW5: advisedBy(P0,P5)⇐ isa(P0,D1) ᴧ isa-1(D1,P2) ᴧ projectMember-1(P2,R3) ᴧ SameProject(R3,R4) ᴧ

projectMember(R4, P5)

Relational Restricted Boltzmann Machines
Step 2a: Construct Relational Random Walks

Learn m relational random walks on the lifted relational graph connecting argument types of 

target example; each relational random walk represents local structure in the domain, or 

alternately, a compound feature

isa publication

projectMember-1

sameProject
projectMember

P0 D1 P2 T3 P4

R3 R4 P5

publication-1isa-1



Relational Restricted Boltzmann Machines
Step 2b: Create Aggregated Input Feature Vector

Convert each relational example into an aggregate vector of random-walk-based features

RW4: A student S and a Professor P write a paper titled T

advisedBy(S,P)⇐author(S,T) AND author-1(T,P)

authorS T Pauthor-1

not all Professor−Student training examples will 

have the same number of papers 

(commonly referred to as multiple-parent problem) 

Ana-Bob have 10 papers, while Cal-Dan have  3.

RRBM-E

aggregate using existential semantics: does there 

exist at least one instance of the random walk satisfied 

in a given training example?

RRBM-C

aggregate using count semantics: how many

instances of the random walk are satisfied for by a 

given training example?



Relational Restricted Boltzmann Machines
Step 2b: Create Aggregated Input Feature Vector

Convert each relational example into an aggregate vector of random-walk-based features

RW4: A student S and a Professor P write a paper titled T

advisedBy(S,P)⇐author(S,T) AND author-1(T,P)

author
S T P

author-1

not all Professor−Student training examples will 

have the same number of papers 

(commonly referred to as multiple-parent problem) 

Ana-Bob have 10 papers, while Cal-Dan have  3.

RW1 RW2 RW3 RW4 ….     RWm

1 0 1 1 1

1 1 0 1 1

1 0 0 0 1

…

…

…

advisedBy(Ana,Bob)

advisedBy(Cal,Dan)

advisedBy(Ena,Fen)

ex
am

pl
es

features

RRBM-E

aggregate using existential semantics: does there 

exist at least one instance of the random walk satisfied 

in a given training example?

RRBM-C

aggregate using count semantics: how many

instances of the random walk are satisfied for by a 

given training example?

0 7 0 10 2

3 17 4 3 13

0 9 6 0 11

…

…

…

features

ex
am

pl
es

RW1 RW2 RW3 RW4 ….     RWm



𝑝 ො𝑦 𝑥 =
𝑒
𝑑ෝ𝑦+σ𝑗=1

𝑛 𝜎 𝑐𝑗+𝑈𝑗ෝ𝑦+σ𝑓=1
𝑚 𝑊𝑗𝑦𝑥𝑓

σ𝑘=1
𝐶 𝑒

𝑑𝑘+σ𝑗=1
𝑛 𝜎 𝑐𝑗+𝑈𝑗𝑘+σ𝑓=1

𝑚 𝑊𝑗𝑓𝑣𝑓

Relational Restricted Boltzmann Machines
Step 3: Discriminative Learning

Learn Discriminative RBM by utilizing the aggregated features from the relational transformation layer

hidden layer

sigmoidal activation

visible (input) layer

multinomial activation

𝒗𝒊

𝑾

𝒉𝒋

𝒚𝒌

𝑼

label (output) layer

Bernoulli activation

advisedBy(Ana,Bob)

prediction

?advisedBy(arg1=Ana,arg2=Bob)

relational training example with facts (ground 
instances) about arg1=Ana and arg2=Bob

Random Walks

relational features connecting 
arg1 and arg2 in target 

advisedBy(arg1,arg2 )

𝜎 𝑧 = log(1 + 𝑒𝑧)

relational transformation layer stacked on top of the DRBM forms 

the Relational RBM model

output of relational transformation layer is fed into multi-layered discriminative RBM

stochastic gradient descent is used to learn a regularized, non-linear, 

weighted combination of features; due to non-linearity, we can to learn a 

much more expressive model



Domain Target Predicate

UW-CSE advisedBy(Person,Person)

Cora Entity Resolution sameVenue(Venue,Venue)

IMDB workedUnder(Person,Person)

Yeast cites(Paper,Paper)

Domains:

Comparative Algorithms:
• Baselines: Tree-Count, MLN (Alchemy5)

• State-of-the-art SRL Methods6: RDN-Boost7, MLN-Boost8

Relational Restricted Boltzmann Machines
Experimental Setup

5 https://alchemy.cs.washington.edu/
6 https://starling.utdallas.edu/software/boostsrl/
7 S. Natarajan, T. Khot, K. Kersting, B. Gutmann and J. W. Shavlik (2012). Gradient-based Boosting for Statistical Relational Learning: 

The Relational Dependency Network Case, Special issue of Machine Learning Journal (MLJ), Volume 86, Number 1, pp. 25-56. 
8 T. Khot, S. Natarajan, K. Kersting, B. Gutmann and J. W. Shavlik (2015). Gradient-based Boosting for Statistical Relational Learning: 

The Markov Logic Network and Missing Data Cases, Machine Learning Journal, Volume 100, Issue 1, pp. 75-100.

https://alchemy.cs.washington.edu/
https://starling.utdallas.edu/software/boostsrl/


Relational Restricted Boltzmann Machines
RRBM Outperforms Baseline MLN and Decision-Tree Models



Relational Restricted Boltzmann Machines
RRBM Performs Similar To/BetterState-of-The-Art SRL Models



• Method to augment RBMs with relational features

• Connections to existing SRL approaches

• On par with state-of-the-art SRL results

• Future work
• Multiple distributions 

• Predicate invention using RWs and RBMs

• More interesting deep models

• Exploring closing of loop – using deep features to improve log-linear model

Relational Restricted Boltzmann Machines
Discussion
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𝑤1

𝑤1
𝑤1

𝑤𝑀

𝑤𝑀
each fact/instance atom is associated with a fact neuron

each relational random walk Rj is associated 

with a  rule combination neuron, 𝐴𝑅
𝑗

each instantiated (ground) relational random walk Rjθk 
is associated with a rule neuron, 𝐴𝑅

𝑗𝑘

parameters are tied by structure

identified by random walks
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the target predicate h is associated 

with an output neuron, and 

incorporates relational structure

𝑢1

𝑢𝑀

1

1

1

1

1

1

output layer

grounding layer

input layer

combining rules layer

𝑤𝑗𝑤𝑗

𝐴𝑅
𝑗

𝐴𝑅
𝑗,𝑙𝑒𝑜

𝐴𝑅
𝑗,𝑘𝑎𝑡

𝑢𝑗

11

Current and Future Work
Lifted Relational Neural Networks


