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Statistical Relational Al meets Deep Learning
The Big Takeaway

 Neural networks and deep learning seeing an extraordinary resurgence
* widely applied to image, audio and video processing in diverse domains and problems

* Deep learning inputs are flat representations: vectors, matrices, tensors
* limits applicability to data with rich relational structure such as graphs and networks

« Statistical relational learning emerging as a powerful framework
« combines logic (for representing structure) and probability (to capture uncertainty)
* widely applied to knowledge bases, social networks, large structured data sets

« Combine the two frameworks: augment RBMs with relational features
* qualitative relationships (structure): relational random walks
* quantitative influences (parameters): restricted Boltzmann machines

« Relational Restricted Boltzmann Machines (R?BM)
* expressive and interpretable deep models



Neural Networks to Deep Learning
Changing Fortunes in the 20" Century
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The Second Golden Age *, " DEEFLEARNING,

{

Deep Learning in the 21st Century

Neural Information Processing Systems (NIPS)
3czoogﬂ‘erence attendance over the last decade

2,400 Mark Zuckerberg attends NIPS 2013
and hires Yann LeCun to lead Facebook
1,600 Al Research
- ”“‘w ‘I “m“ “ “‘I“ __ This figure only tracks attendance till 2015;
0 | NIPS 2017 drew over 8000 attendees
Tutorials Conference Workshops
(2,584) (3,262) (3,006)
Souroe: Andrew Beam Interest over time ¥ O <L

popularity of the search
“‘deep learning” on Google

(Source: Google Trends)




The Second Golden Age
Why Deep Learning Now?

Significant Technological Advances:

« Availability of massive, powerful computing resources: More GPUs means more layers
« Availability of massive, high-quality labeled data sets: More layers means more labeled data

Significant Technical Advances:
« Optimization-friendly activation functions: Rather than using neurocognition-inspired activation
functions (logistic, hyperbolic tan), use activation function such as RelU to handle vanishing gradients
 Robust optimizers: Newer variants of stochastic gradient descent (momentum, RMSprop, and ADAM)
produce better weights, faster

 Improved architectures: U-nets, Highway networks, Siamese networks, Resnets enable deep learning
for different types of problems and domains

« Effective regularization: Techniques like batch normalization and data-augmentation reduce overfitting

Significant Accessibility:
* Widely-accessible software platforms like TensorFlow, Theano, Mxnet, Chainer implement a variety of
layers, activation types, and GPU-based optimization algorithms and make prototyping faster

Adapted from Andrew Beam'’s blog post: “Deep Learning 101 - Part 1: History and Background”
https://beamandrew.github.io/deeplearning/2017/02/23/deep learning 101 part1.html
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Deep Learning’s greatest successes (arguably) are
in image, audio and video analysis applications
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Deep Learning Pros
...and Cons

pro: multiple layers discover and generate new feature combinations
con: intermediate layers are not always easily interpretable, especially
by non-machine-learning domain experts
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con: inputs are standardized to flat represent-
tations of features: vectors, matrices, tensors
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Domains with Objects, Attributes and Relations
Flat Representations Cannot Handle Structure

Most data is actually stored in relational databases, and contains objects, their attributes and relationships between them

Flavor network: nodes are ingredients, node size is the
ingredient’s prevalence in recipes, edge thickness is the

number of flavor compounds shared by two ingredients
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Social network: nodes are individuals, node size is their social
influence, edges are social connections between individuals,
edge types capture social interaction types
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Statistical Relational Learnin
Flat Representations Cannot Handle Structure

Most data is actually stored in relational databases, and contains objects, their attributes and relationships between them

Flavor network': nodes are ingredients, node size is the Different ingredients may have different numbers of flavor " neighbors”

ingredient’s prevalence in recipes, edge thickness is the e.g., cayenne has 6 flavor neighbors, while blueberry has 16
number of flavor compounds shared by two ingredients
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Statistical Relational Learning

First-Order Logic Can Capture Relationships

Flavor network: nodes are ingredients, node size is the
ingredient’s prevalence in recipes, edge thickness is the
number of flavor cqmpound.s shared by two ingredients
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Entities, attributes and relationships can be expressed
through logical predicates
IngredientOf (shrimpScampi, shrimp)
IngredientOf (shrimpScampi, garlic)
IngredientOf (shrimpScampi, oliveOil)
IngredientOf (seasonedMussels, garlic)
IngredientOf (seasonedMussels, mussel)

FlavorCompound (garlic, hexylAlcohol)
FlavorCompound (mussel, nonanoicAcid)

CanSubstitute (shrimp,mussel)

Complex interactions can be expressed
through logical clauses (rules)
?ingredientl) AND

?compound) AND
?compound) AND

IngredientOf (?recipe,
FlavorCompound (?ingredientl,
FlavorCompound (?ingredient2,

=
CanSubstitute (?ingredientl, ?ingredient2)



Statistical Relational Learning
But What About Uncertainty?

Statistical
Relational

@ Learning

Decision trees, Optimization, SVMs, ...

@ Logic

Resolution, WalkSat, Prolog, description logics, ...

@ Probability

Bayesian networks, Markov networks, Gaussian Processes...

@D Logic + Learning carning

Inductive Logic Programming (ILP)
= =y rop.r
@® Lcarning + Probability P oaming
EM, Dynamic Programming, Active Learning, ...

@® Logic + Probability propositional

logic
Nillson, Halpern, Bacchus, KBMC, ICL, ... ¢ logic

class
machine learning

probabilistic
logic

inductive

logic

Slide adapted from Sriraam Natarajan’s tutorial “Probabilistic Logic Models: Past, Present & Future”



Statistical Relational Learning
A Brief History

Relational Gaussian Processes Infinite Hidden Relational Models
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Church ‘
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& Future! Probabilistic Entity-Relationship Models Qazi,Santos Costa




Statistical Relational Learning
Markov Logic Networks

A Markov Logic Network? is specified by a set of weighted rules that < >

incorporate domain knowledge qualitatively and quantitatively:

Friends (Amy,Cal)

Friends (Ben,Cal)
Smokes (Amy)

Smokes (Cal)

Smoking causes cancer ‘\Cancer (AmY)/

1.2 Smokes (?x) = Cancer (?x) Evidence is the data known to be

true (or false). If we use the closed-
We will write these as weighted clauses (in this example, Horn clauses): world assumption, all facts not in

1.5 !'Friends (?x, ?y) OR !'Smokes (?x) OR Smokes (?y) evidence are assumed to be false.
1.5 !Friends(?x, ?y) OR Smokes(?x) OR !Smokes (?y)
1.2 !'Smokes(?x) OR Cancer (?x)

If two persons are friends, they either both smoke or both do not smoke
1.5 Friends(?x, ?y) = ( Smokes(?x) < Smokes(?y) )

In our example, all facts not in
evidence can be queried.

Weights can be negative and/or infinite, and higher weight = likelier the constraint is to hold

2M. Richardson and P. Domingos. 2006. Markov logic networks. Machine Learning, 62(1-2), pp. 107-136. 1



Statistical Relational Learning
Markov Logic Networks

1.5 'Friends (?x, ?y) OR !Smokes(?x) OR Smokes (?y)
1.5 'Friends(?x, ?y) OR Smokes (?x) OR !Smokes (?y)
1.2 'Smokes (?x) OR Cancer (?x)

Consider this MLN with two people: Anna (A) and Bob (B)

grounding: instantiating the rules with all possible values for the variables

graph structure: edge between two ground nodes they appear together in a rule
An MLN is template for (ground) Markov networks

Eriends 0.5)
Smokes (B)

D%

Friends (B,A)

riends (B, B)
Cancer (B)

15



Statistical Relational Learning
Markov Logic Networks

1.5 'Friends (?x, ?y) OR !Smokes(?x) OR Smokes (?y)
1.5 'Friends(?x, ?y) OR Smokes (?x) OR !Smokes (?y)
1.2 'Smokes (?x) OR Cancer (?x)

probability distribution over possible
worlds specified by the ground Markov
network

Eriends 0.5)
’ rule (feature) weights
-

'

Friends (B,A)

>

Friends (Amy,Cal)
Friends (Ben,Cal)
Smokes (Amy)
Smokes (Cal)

\\\55_9ancer(Amyl_—”,/

Evidence is the data known to be
true (or false). If we use the closed-
world assumption, all facts not in

P(}{ —. 1..) — % exp (Z w;n; () evidence are assumed to be false.
i

#count of the times
this rule is satisfied in
the world, x

16



Relational Restricted Boltzmann Machines (R?BM)
SRL Meets Deep Learning

We consider Restricted Boltzmann Machines (RBMs) Key intuition: Make the RBM features relational and interpretable
variant of Boltzmann machines with restriction that neurons form
a bipartite graph; restriction allows for more efficient training Construct the distributions similar to an SRL model using aggregators

Step 1: Relational Data Transformation
Bring relational data to lifted graphical form
Bring n-ary predicates to binary form by introducing Compound Value Type

Step 2: Relational Transformation Layer
Learn m Random Walks on Lifted Relational graph connecting argument type of target example
Two ways of transformation
Existential Semantics (RRBM-E): if there exists at least one instance of random walk satisfied for target example
Counts (RRBM-C): # instances of random walk satisfied for target example

Step 3: Learning Relational RBM
Learn Discriminative RBM by utilizing the features learnt at Transformation layer



gDiscriminative Restricted Boltzmann Machines

ackground and Notation

A restricted Boltzmann machine (RBM) is a generative stochastic artificial
neural network that can learn a probability distribution over its set of inputs

P(v, 1) = L e~(MIWv + bTw + eTh)

Z

A discriminative RBM? is a modification that can also model outputs for

classification problems

P( 9 h, y) = % e_(hTW + bT + cTh + hTUy +dTy) hidden layer

Multiclass outputs are modeled using one-hot vectorization

(ClassiD=1)person [ | [ [ |
(Class ID = 2) car H BHEE
(Class ID = 3) tree | || |
(Class ID = 4) road HEE B
(Class ID = 5) 1ine (T T TR

h;
hidden layer . ' '

sigmoidal activation

w

visible (input) layer
multinomial activation v:
i

label (output) layer Yk
Bernoulli activation

U

sigmoidal activation

w

visible (input) layer
multinomial activation

3H. Larochelle and Y. Bengio (2008). Classification using discriminative
restricted Boltzmann machines. In Proceedings of the 25th ICML, pp. 536-543.



Relational Random Walks
Lifted Relational Random Walks

Network architecture is determined by domain structure, the set of relational rules
that describe how various relations, entities and attributes interact

Other approaches employ carefully hand-crafted rules or learn them with inductive
logic programming. We learn structure through relational random walks*!

Random Walk: A student S takes a course C taught by Professor P A relational random walk through a domain’s schema

takes taughtBy, (lifted relational graph) is a chain of relations that identifies a
feature template

Clausal Form: takes (S,C) AND taughtBy (C,P)

Random Walk: A student S is the author of two publications, T, and T, For semantically sound relational random walks, we need to

author author-! define distinct inverse predicates, where the argument order
(domain and range of binary predicates) is reversed
Clausal Form: author (T,,S) AND author !(S,T,)

e.g.,, author ! (Student, TitleOfPubl) isthe
inverse of author (TitleOfPubl, Student)

“N. Lao, T. Mitchell and W. W. Cohen (2011). Random walk inference and learning in a large scale knowledge
base. In Proceedings of EMNLP '11. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 529-539.



Relational Random Walks
Lifted Relational Random Walks

Network architecture is determined by domain structure, the set of relational rules
that describe how various relations, entities and attributes interact

Other approaches employ carefully hand-crafted rules or learn them with inductive
logic programming. We learn structure through relational random walks!

P: person
D: designation publication™

T. litle Every relational random walk is a relational feature that is constrained to begin

at the first argument and end at the second argument of the target predicate

publication
relational random walk: a feature

template describing what we
want to predict \

advisedBy (PO p P1)<= isa(P,,D) AND isa(D,P,) ! AND publication(P,,T) ! AND publication(T,P,)

\target predicate: what we want to predict



Relational Restricted Boltzmann Machines
Step 1: Data Transformation

Convert predicate logic data to probabilistic random walk form

Convert n-ary predicates to binary form by introducing a The ternary predicate

Compound Value Type taught (Prof, Course, Semester)
Freebase (a now defunct online knowledge base) used Compound Value Types

(CVTs) to represent n-ary relations with n > 2, e.g., values like geographic becomes three bin ary pre dicates:

coordinates, actors playing a character in a movie. )
piaying taughtl (t_id, Prof),

taught2 (t_id, Course),
taught3(t_id, Semester)

, The unary predicate:
Convert unary predicates to binary form by introducing a new Studegf (Person)

predicate isa

becomes a binary predicate:
isa (Person, student’)



Relational Restricted Boltzmann Machines
Step 2a: Construct Relational Random Walks

Learn m relational random walks on the lifted relational graph connecting argument types of
target example; each relational random walk represents local structure in the domain, or
alternately, a compound feature

P: person

D: designation
T. fitle

R: project

RWl: advisedBy(P,,P,)«< isa(P,,D,) a isa'(D,,P,)

RW2: advisedBy(P,,P,)< isa(P,,D;) a isa(D,;,P,) ! a publication(P,,T;) ' A publication(T,,P,)
RW3: advisedBy (P,,P,) <

RW4: advisedBy (P,,P;) & projectMember ! (P,,R;) A sameProject(R;,R,) A projectMember (R,,P.)

RW5: advisedBy(P,,P;) < isa(P,,D;) a isa™!(D,,P,) a projectMember!(P,,R;) a SameProject(R;,R,) a
projectMember (R,, P:)



Relational Restricted Boltzmann Machines
Step 2b: Create Aggregated Input Feature Vector

Convert each relational example into an aggregate vector of random-walk-based features

RW,: A student S and a Professor P write a paper titled T not all Professor-Student fraining examples will

have the same number of papers
author author?! .
®— e e (commonly referred to as multiple-parent problem)

advisedBy (S, P) <author(S,T) AND author™(T,P) Ana-Bob have 10 papers, while Cal-Dan have 3.

RRBM-E RRBM-C
aggregate using existential semantics: does there aggregate using count semantics: how many
exist at least one instance of the random walk satisfied instances of the random walk are satisfied for by a

. . LI ? . [
in a given training example? given training example?



Relational Restricted Boltzmann Machines
Step 2b: Create Aggregated Input Feature Vector

Convert each relational example into an aggregate vector of random-walk-based features

RW,: A student S and a Professor P write a paper titled T

( ) author e author‘

advisedBy (S,P) «author(S,T) AND author !(T,P)

RRBM-E
aggregate using existential semantics: does there
exist at least one instance of the random walk satisfied
in a given training example?

not all Professor-Student training examples will
have the same number of papers
(commonly referred to as multiple-parent problem)

Ana-Bob have 10 papers, while Cal-Dan have 3.

RRBM-C
aggregate using count semantics: how many
instances of the random walk are satisfied for by a
given training example?

RW, RW, RW, RW, .. RW_ RW, RW, RW, RW, ... RW,
features features
1 0 1 1 1 advisedBy (Ana,Bob) 0 7 0 10 2
% 1 1 0 1 1 advisedBy (Cal,Dan) § 3 17 4 3 13
1 0 0 0 1 0 9 6 0 11




Relational Restricted Boltzmann Machines
Step 3: Discriminative Learning

Learn Discriminative RBM by utilizing the aggregated features from the relational transformation layer

advisedBy (Ana,Bob)
prediction relational transformation layer stacked on top of the DRBM forms
A the Relational RBM model
label (output) layer k

Bernoulli activation E T
U

hidden layer ‘ . .j

sigmoidal activation

w

stochastic gradient descent is used to learn a regularized, non-linear,
weighted combination of features; due to non-linearity, we can to learn a
much more expressive model

n m
d:’)\/+zj=1 O'(Cj+Uj5\,+2f=1 ij.‘X'f)

visible (input) layer i
multinomial activation 5 —

= x  *® = p@Plv)=
~— =~ ~ n , , m .
g g g § Zg_ edk+zj=1 O'(CJ+U]k+Zf=1 W]fvf)

Random Walks ) b o =1 2

relational features connecting w ‘rg w [-d o(z) = log(1 + e?)

arg, and arg, in target SR & b

advisedBy (arg,,arg,)
=)Wl [T] output of relational transformation layer is fed into multi-layered discriminative RBM

?advisedBy (arg,=Ana, arg,=Bob)
relational training example with facts (ground
instances) about arg,=Ana and arg,=Bob



Relational Restricted Boltzmann Machines
Experimental Setup

Domains:

UW-CSE advisedBy (Person, Person)
Cora Entity Resolution sameVenue (Venue, Venue)
IMDB workedUnder (Person, Person)
Yeast cites (Paper, Paper)

Comparative Algorithms:
« Baselines: Tree-Count, MLN (Alchemy?®)
« State-of-the-art SRL Methods®: RDN-Boost’, MLN-Boost?

> https://alchemy.cs.washington.edu/

6 https:/starling.utdallas.edu/software/boostsrl/

7S. Natarajan, T. Khot, K. Kersting, B. Gutmann and J. W. Shavlik (2012). Gradient-based Boosting for Statistical Relational Learning:
The Relational Dependency Network Case, Special issue of Machine Learning Journal (MLJ), Volume 86, Number 1, pp. 25-56.

8 T. Khot, S. Natarajan, K. Kersting, B. Gutmann and J. W. Shavlik (2015). Gradient-based Boosting for Statistical Relational Learning:
The Markov Logic Network and Missing Data Cases, Machine Learning Journal, Volume 100, Issue 1, pp. 75-100.
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RRBM Performs Similar To/BetterState-of-The-Art SRL Models

Relational Restricted Boltzmann Machines
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Relational Restricted Boltzmann Machines
Discussion

* Method to augment RBMs with relational features
« Connections to existing SRL approaches
* On par with state-of-the-art SRL results

* Future work
 Multiple distributions
* Predicate invention using RWs and RBMs
 More interesting deep models
» Exploring closing of loop — using deep features to improve log-linear model



Current and Future Work
Lifted Relational Neural Networks
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