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Abstract. We consider the problem of learning Boltzmann machine classifiers
from relational data. Our goal is to extend the deep belief framework of RBMs to
statistical relational models. This allows one to exploit the feature hierarchies and
the non-linearity inherent in RBMs over the rich representations used in statistical
relational learning (SRL). Specifically, we use lifted random walks to generate
features for predicates that are then used to construct the observed features in the
RBM in a manner similar to Markov Logic Networks. We show empirically that
this method of constructing an RBM is comparable or better than the state-of-the-
art probabilistic relational learning algorithms on six relational domains.

Introduction

Restricted Boltzmann machines (RBMs, [30]) are popular models for learning proba-
bility distributions due to their expressive power. Consequently, they have been applied
to various tasks such as collaborative filtering [39], motion capture [41] and others.
Similarly, there has been significant research on the theory of RBMs: approximating
log-likelihood gradient by contrastive divergence (CD, [17]), persistent CD [42], par-
allel tempering [11], extending them to handle real-valued variables and discriminative
settings. While these models are powerful, they make the standard assumption of using
flat feature vectors to represent the problem.

In contrast to flat-feature representations, Statistical Relational Learning (SRL, [15,
9]) methods use richer symbolic features during learning; however, they have not been
fully exploited in deep-learning methods. Learning SRL models is computationally in-
tensive [33] however, particularly model structure (qualitative relationships). This is due
to the fact that structure learning requires searching over objects, their attributes, and
attributes of related objects. Hence, the state-of-the-art learning method for SRL mod-
els learns a series of weak relational rules that are combined during prediction. While
empirically successful, this method leads to rules that are dependent on each other mak-
ing them uninterpretable, since weak rules cannot always model rich relationships that
exist in the domain. For instance, a weak rule could say something like: “a professor
is popular if he teaches a course”. When learning discriminatively, this rule could have



been true if some professors teach at least one course, while at least one not so popular
popular professor did not teach a course in the current data set. We propose to use a
set of interpretable rules based on the successful Path Ranking Algorithm (PRA, [28]).
Recently, Hu et al. [20] employed logical rules to enhance the representation of neural
networks. There has also been work on lifting neural networks to relational settings [4].
While specific methodologies differ, all these methods employ relational and logic rules
as features of neural networks and train them on relational data. In this spirit, we pro-
pose a methodology for lifting RBMs to relational data. While previous methods on
lifting relational networks employed logical constraints or templates, we use relational
random walks to construct relational rules, which are then used as features in a RBM.
Specifically, we consider random walks constructed by the PRA approach of Lao and
Cohen [28] to develop features that can be trained using RBMs. We consider the for-
malism of discriminative RBMs as our base classifier and use these relational walks
with the base classifier.

We propose two approaches to instantiating RBM features: (1) similar to the ap-
proach of Markov Logic Networks (MLNs, [12]) and Relational Logistic Regression
(RLR, [21]), we instantiate features with counts of the number of times a random walk is
satisfied for every training example; and (2) similar to Relational Dependency Networks
(RDNs, [32]), we instantiate features with existentials (1 if ∃ at least one instantiation of
the path in the data, otherwise 0). Given these features, we train a discriminative RBM
with the following assumptions: the input layer is multinomial (to capture counts and
existentials), the hidden layer is sigmoidal, and the output layer is Bernoulli.

We make the following contributions: (1) we combine the powerful formalism of
RBMs with the representation ability of relational logic; (2) we develop a relational
RBM that does not fully propositionalize the data; (3) we show the connection between
our proposed method and previous approaches such as RDNs, MLNs and RLR, and
(4) we demonstrate the effectiveness of this novel approach by empirically comparing
against state-of-the-art methods that also learn from relational data.

The rest of the paper is organized as follows: Section 2 presents the background
on relational random walks and RBMs, Sections 3 and 4 present our RRBM approach
and algorithms in detail, and explore its connections to some well-known probabilistic
relational models. Section 5 presents the experimental results on standard relational data
sets. Finally, the last section concludes the paper by outlining future research directions.

Prior Work and Background

In this article, we represent relational data using standard first-order logic notation. We
refer to objects of a particular type as constants of that type. Relations in the domain
are called predicates and the true relations in the data are called ground atoms.

Random Walks

Relational data is often represented using a ground (or lifted) graph. The constants (or
types) form the nodes and the ground atoms (or predicates) form the edges.N -ary pred-
icates can be represented with hyperedges or multiple binary relations, where a node is



introduced for every ground atom (or predicate) and edges are introduced from this
node to each argument. This graph representation allows the use of many path-based
approaches for discovering the structure of the data. A path in a ground relational graph
(where nodes are constants) corresponds to a conjunction of ground atoms. For exam-
ple, the path s1−takes−c1−taughtBy−p1 describes an example where the student
s1 takes class c1 taught by professor p1. In a ground relational graph, this path can
be converted to: takes(s1, c1) ∧ taughtBy(c1, p1). In contrast, in a lifted relational
graph (where nodes are types), paths are conjunctions of predicates with shared vari-
ables: takes(S, C) ∧ taughtBy(C, P).

Relational Probabilistic Models

Markov Logic Networks (MLNs, [12]) are relational undirected models, where first-
order logic formulas correspond to cliques of a Markov network, and formula weights
correspond to the clique potentials. An MLN can be instantiated as a Markov network
with a node for each ground predicate (atom) and a clique for each ground formula. All
groundings of the same formula are assigned the same weight leading to the following
joint probability distribution over all atoms: P (X=x) = 1

Z exp (
∑
i wini(x)), where

ni(x) is the number of times the i-th formula is satisfied by possible world x, and Z
is a normalization constant. Intuitively, a possible world where formula fi is true one
more time than a different possible world is ewi times as probable, all other things being
equal. We focus on discriminative learning, where we learn a conditional distribution
of one predicate given all other predicates.

Another such discriminative model is relational logistic regression (RLR, [21]),
which extends logistic regression to relational settings, and where training examples
can have differing feature sizes. An interesting observation is that RLR can be consid-
ered as an aggregator when there are multiple values for the same set of features.

Structure Learning Approaches

Many structure learning approaches for Probabilistic Logical Models (PLMs), includ-
ing MLNs, use graph representations. For example, Learning via Hypergraph Lifting
(LHL, [23]) builds a hypergraph over ground atoms; LHL then clusters the atoms to
create a “lifted” hypergraph, and traverses this graph to obtain rules. Specifically, they
use depth-first traversal to create the paths in this “lifted” hypergraph to create potential
clauses by using the conjunction of predicates from the path as the body of the clause.

Learning with Structural Motifs (LSM, [24]) performs random walks over the graph
to cluster nodes and performs depth-first traversal to generate potential clauses. We use
random walks over a lifted graph to generate all possible clauses, and then use a non-
linear combination (through the hidden layer) of ground clauses, as opposed to linear
combination in MLNs. Our hypothesis space includes the clauses generated by both
these approaches without the additional complexity of clustering the nodes.

Propositionalization Approaches

To learn powerful deep models on relational data, propositionalization is used to convert
ground atoms into a fixed-length feature vector. For instance, kFoil [27] uses a dynamic



approach to learn clauses to propositionalize relational examples for SVMs. Each clause
is converted into a Boolean feature that is 1, if an example satisfies the clause boyd and
each clause is scored based on the improvement of the SVM learned using the clause
features. Alternately, the Path Ranking Algorithm (PRA) [28], which has been used to
perform knowledge base completion, creates features for a pair of entities by generating
random walks from a graph. We use a similar approach to perform random walks on
the lifted relational graph to learn the structure of our relational model.

Restricted Boltzmann Machines

Boltzmann machines (BMs, [30]) model probability distributions and are interpretable
as artificial neural networks [1]. A BM consists of visible units V (representing obser-
vations) and hidden units H (representing dependencies between features). A general
BM is a fully-connected Markov random field [26], which makes learning computa-
tionally intensive. A more tractable model, the Restricted Boltzmann Machine (RBM),
constrains the BM to a bipartite graph of visible and hidden units. A singular benefit
of this representation is that hidden-layer outputs of one RBM can be used as input
to another higher-level RBM, a procedure known as stacking. Stacking uses RBMs as
building blocks to construct deep belief networks (DBNs) with multiple layers of non-
linear transformations of input data; this results in powerful deep belief networks [18].

RBMs have been used as feature extractors for supervised learning [14] and to ini-
tialize deep neural networks [19]. Larochelle and Bengio [29] proposed a standalone
formulation for supervised classification called discriminative RBMs. We adopt this for-
malism to demonstrate our approach of combining rich first-order logic representations
of relational data with nonlinear classifiers learned by discriminative RBMs.

Relational Restricted Boltzmann Machines

Reconsider MLNs, arguably one of the leading relational approaches unifying logic and
probability. The use of relational formulas as features within a log-linear model allows
the exploitation of “deep” knowledge. Nevertheless, this is still a shallow architecture as
there are no “hierarchical” formulas defined from lower levels. The hierarchical stack-
ing of layers, however, is the essence of deep learning and, as we demonstrate in this
work, critical for relational data, even more than for propositional data. This is due to
one of the key features of relational modeling: predictions of the model may depend
on the number of individuals, that is, the population size. Sometimes this dependence
is desirable, and in other cases, model weights may need to change. In either case, it is
important to understand how predictions change with population size when modeling
or even learning the relational model [21].

We now introduce Relational RBMs, a deep, relational classifier that can learn hi-
erarchical relational features through its hidden layer and model non-linear decision
boundaries. The idea is to use lifted random walks to generate relational features for
predicates that are then counted (or used as existentials) to become RBM features. Of
course, more than one RBM could be trained, stacking them on top of each other. For



Fig. 1: Lifted random walks are converted into feature vectors by explicitly grounding
every random walk for every training example. Nodes and edges of the graph in (a) rep-
resent types and predicates, and underscore ( Pr) represents the inverted predicates. The
random walks counts (b) are then used as feature values for learning a discriminative
RBM (DRBM). An example of random walk represented as clause is (c).

the sake of simplicity, we focus on a single layer; however, our approach is easily ex-
tended to multiple layers. Our learning task can be defined as follows:

Given: Relational data, D; Target Predicate, T .
Learn: Relational Restricted Boltzmann Machine (RRBM) in a discriminative fashion.

We are given data, D = {(xi, ŷi)`i=1}, where each training example is a vector, xi ∈
Rm with a multi-class label, ŷi ∈ {1, . . . , C}. The training labels are represented by
a one-hot vectorization: yi ∈ {0, 1}C with yki = 1 if ŷi = k and zero otherwise. For
instance, in a three-class problem, if ŷi = 2, then yi = [0, 1, 0]. The goal is to train a
classifier by maximizing the log-likelihood, L =

∑`
i=1 log p(yi,xi). In this work, we

employ discriminative RBMs, for which we make some key modeling assumptions:

1. input layers (relational features) are modeled using a multinomial distribution, for
counts or existentials;

2. the output layer (target predicate) is modeled using a Bernoulli distribution
3. hidden layers are continuous, with a range in [0, 1].

Step 1: Relational data representation

We use a lifted-graph representation to model relational data,D. Each type corresponds
to a node in the graph and the predicate r(t1, t2) is represented by a directed edge from
the node t1 to t2 in the graph. For N -ary predicates, say r(t1, ..., tn), we introduce a
special compound value type (CVT)1, rCVT, for each n-ary predicate. For each argument
tk, an edge erk is added between the nodes rCVT and tk. Similarly for unary predicates,
r(t) we create a binary predicate isa(t, r).

1 wiki.freebase.com/wiki/Compound Value Type



Step 2: Relational transformation layer

Now, we generate the input feature vector xi from a relational example, T(a1j, a2j).
Inspired by the Path Ranking Algorithm [28], we use random walks on our lifted re-
lational graph to encode the local relational structure for each example. We generate
m unique random walks connecting the argument types for the target predicate to de-
fine the m dimensions of x. Specifically, starting from the node for the first argument’s
type, we repeatedly perform random walks till we reach the node for the second argu-
ment. Since random walks also correspond to the set of candidate clauses considered
by structure-learning approaches for MLNs [23, 24], this transformation function can
be viewed as the structure of our relational model.

A key feature of an RBM trained on standard i.i.d. data is that the feature set x is de-
fined in advance and is finite. With relational data, this set can potentially be infinite, and
feature size can vary with each training instance. For instance, if the random walk is a
paper written by a professor− student combination, not all professor− student

combinations will have the same number of feature values. This is commonly referred
as multiple-parent problem [34]. To alleviate this problem, SRL methods consider one
of two approaches – aggregators or combining rules. Aggregators combine multiple val-
ues to a single value, while combining rules combine multiple probability distributions
into one. While these solutions are reasonable for traditional probabilistic models that
estimate distributions, they are not computationally feasible for the current task.

Our approach to the multiple-parent problem is to consider existential semantics: if
there exists at least one instance of the random walk that is satisfied for an example, the
feature value corresponding to that random walk is set to 1 (otherwise, to 0). This ap-
proach was also recently (and independently of our work) used by Wang and Cohen [43]
for ranking via matrix factorization. This leads to our first model: RRBM-Existentials,
or RRBM-E, where E denotes the existential semantics used to construct the RRBM. One
limitation of RRBM-E is that it does not differentiate between a professor− student

combination that has only one paper and another that has 10 papers, that is, it does not
take into account how often a relationship is true in the data. Inspired by MLNs, we
also consider counts of the random walks as feature values, a model we denote RRBM-
Counts or RRBM-C (Figure 1). For example, if a professor− student combination
has written 10 papers, the feature value corresponding to this random walk for that com-
bination is 10. To summarize, we define two transformation functions, xj = g(a1j, a2j)

– ge(a1j, a2j, p) = 1, if ∃ a grounding of the pth random walk connecting object a1j
to object a2j, otherwise 0 (RRBM-E);

– gc(a1j, a2j, p) = #groundings of pth random walk connecting object a1j to object
a2j (RRBM-C).

For example, consider that the walk takes(S, C) ∧ taughtBy(C, P) is used to gen-
erate a feature for advisedBy(s1, p1). The feature from gc would be set to the count:
|{C | takes(s1, C) ∧ taughtBy(C, p1)}|. With the function, ge, this feature would be
set to 1, if ∃C, takes(s1, C) ∧ taughtBy(C, p1).

These transformation functions also allow us to relate our approach to other well-
known relational models. For instance, gc uses counts similar to MLNs, while ge uses
existential semantics similar to RDNs [32]. Using features from ge to learn weights for



a logistic regression model would lead to an RLR model, while using features from
gc would correspond to learning an MLN (as we show later). One could also imagine
using RLR as an aggregator from these random walks, but that is a direction for future
work. While counts are more informative and connect to existing SRL formalisms such
as MLNs, exact counting is computationally expensive in relational domains. This can
be mitigated by using approximate counting approaches, such as the one due to [7] that
leverages the power of graph databases. Our empirical evaluation did not require count
approximations; we defer integration of approximate counting to future research.

Step 3: Learning Relational RBMs

The output of the relational transformation layer is fed into multilayered discriminative
RBM (DRBM) to learn a regularized, non-linear, weighted combination of features.
The relational transformation layer stacked on top of the DRBM forms the Relational
RBM model. Due to non-linearity, we are able to learn a much more expressive model
than traditional MLNs and RLRs. Recall that the DRBM as defined by [29] consists
of n hidden units, h, and the joint probability is modeled as p(y,x,h) ∝ e−E(y,x,h),
where the energy function is parameterized Θ ≡ (W,b, c,d, U):

E(y,x,h) = −hTWx− bTx− cTh− dTy − hTUy. (1)

As with most generative models, computing the joint probability p(y,x) is intractable,
but the conditional distribution P (ŷ|x) can be computed exactly [39] as

p(ŷ|x) =
edŷ+

∑n
j=1 σ(cj+Ujŷ+

∑m
f=1 Wjfxf )∑C

k=1 e
dk+

∑n
j=1 σ(cj+Ujk+

∑m
f=1 Wjfxf )

. (2)

In (2), σ(z) = ez /
∑
i e
z
i , the logistic softmax function and the index f sums over

all the features xf of a training example x. During learning, the log-likelihood function
is maximized to compute the DRBM parameters Θ. The gradient of the conditional
probability (Eqn. 2) can be computed as:

∂

∂θ
log p(ŷi|xi) =

n∑
j=1

σ (oŷj(xi))
∂oŷj(xi)

∂θ
+

C∑
k=1

n∑
j=1

σ (okj(xi)) p(k|xi)
∂okj(xi)

∂θ
.

(3)

In (3), oŷj(xi) = cj + Ujŷ +
∑m
f=1 Wjfxif , where x refers to random-walk features

for every training example. As mentioned earlier, we assume that input features are
modeled using a multinomial distribution. To consider counts as multinomials, we use
an upper bound on counts: 2max(count(xji )) for every feature; bounds are the same
for both train and test sets to avoid overfitting. In other words, the bound is simply
twice the max feature count over all the examples of the training set. We can choose
the scaling factor through cross-validation, but value 2 seems to be a reasonable scale
in our experiments. For the test examples, we can use the random walks to generate the
features and the RBM layers to generate predictions from these features.



Algorithm 1 LearnRRBM(T, G, P): Relational Restricted Boltzmann Machines
Input T(t1, t2): target predicate, G: lifted graph over types, m: number of features
1: . Generate m random walks between t1 and t2
2: rw := PerformRandomWalks(G, t1, t2, m)
3: for 0 ≤ j < l do . Iterate over all training examples
4: . Generate features for T(a1j, a2j)
5: for 0 ≤ p < m do . Iterate over all the paths
6: . pth feature computed from the arguments of xj
7: xj [p] := gc(a1j, a2j, rw[p])
8: end for
9: end for

10: x := {xj} . Input matrix
11: . Learn DRBM from the features and examples
12: Θ := LearnDRBM(x, y)
13: return RRBM(Θ, rw)

RRBM Algorithm: The complete approach to learn Relational RRBMs is shown in
Algorithm 1. In Step 1, we generate type-restricted random walks using PRA. These
random walks (rw) are used to construct the feature matrix. For each example, we
obtain exact counts for each random walk, which becomes the corresponding feature
value for that example. A DRBM can be trained on the features as explained in Step 3.

Relation to Probabilistic Relational Models

The random walks can be interpreted as logical clauses (that are used to generate fea-
tures) and the DRBM input feature weights b in (1) can be interpreted as clause weights
(wp). This interpretation highlights connections between our approach and Markov
logic networks. Intuitively, the relational transformation layer captures the structure
of MLNs and the RBM layer captures the weights of the MLNs. More concretely,
exp(bTx) in (1) can be viewed as exp(

∑
p wpnp(x)) in the probability distribution for

MLNs. To verify this intuition, we compare the weights learned for clauses in MLNs
to weights learned by RRBM-C. We generated a synthetic data set for a university do-
main with varying number of objects (professors and students). We picked a subset
of professor− student pairs to have an advisedBy relationship and add common
papers or common courses based on the following two clauses:

1. author(A, P) ∧ author(B, P)→ advisedBy(A, B)
2. teach(A, C) ∧ registered(B, C)→ advisedBy(A, B)

The first clause states that if a professor A co-authors a paper P with the student B,
then A advises B. The second states that if a student B registers for a course C taught by
professor A then A advises B. Figure 2 shows the weights learned by discriminative and
generative weight learning in Alchemy and RRBM for these two clauses as a function
of the number of objects in the domain. Recall that in MLNs, the weight of a rule
captures the confidence in that rule — the higher the number of instances satisfying
a rule,the higher is the weight of the rule. As a result, the weight of the rule learned



(a) Co-author clause (b) Course clause

Fig. 2: Weights learned by Alchemy and RRBMs for a clause vs. size of the domain.

by Alchemy also increases in Figure 2. We observe a similar behavior with the weight
learned for this feature in our RRBM formulation as well. While the exact values differ
due to difference in the model formulation, this illustrates clearly that the intuitions of
the model parameters from standard PLMs are still applicable.

In contrast to standard PLMs, RRBMs are not a shallow architecture. This can be
better understood by looking at the rows of the weights W in the energy function
(1): they act as additional filter features, combining different clause counts. That is,
E(y,x,h) looks at how well the usage profile of a clause aligns with different filters
associated with rows Wj·. These filters are shared across different clauses, but different
clauses will make comparisons with different filters by controlling clause-dependent bi-
ases Ujy in the σ terms. Notice also, that two similar clauses could share some filters in
W , that is, both could simultaneously have large positive values of Ujy for some rows
Wj·. This can be viewed as a form of statistical predicate invention as it discovers new
concepts and is akin to (discriminative) second-order MLNs. In contrast to second-order
MLNs, however, no second-order rules are required as input to discover new concepts.
While MLNs can learn arbitraryN -ary target predicates, due to the definition of random
walks in the original work, we are restricted to learning binary relations.

Experiments

To compare RRBM approaches to state-of-the-art algorithms, we consider RRBM-E,
RRBM-C and RRBM-CE. The last approach, RRBM-CE combines features from both exis-
tential and count RRBMs (i.e., union of count and existential features). Our experiments
seek to answer the following questions:

Q1: How do RRBM-E and RRBM-C compare to baseline MLNs and Decision Trees?
Q2: How do RRBM-E and RRBM-C compare to the state-of-the-art SRL approaches?
Q3: How do RRBM-E, RRBM-C, and RRBM-CE generalize across all domains?
Q4: How do random-walk generated features compare to propositionalization?



To answer Q1, we compare RRBMs to Learning with Structural Motifs (LSM,
[24]). Specifically, we perform structure learning with LSM followed by weight learn-
ing with Alchemy [25] and denote this as MLN. We would also like to answer the
question: how crucial is it to use a RBM, and not some other ML algorithm? We use
decision trees [36] as a proof-of-concept for demonstrating that a good probabilistic
model when combined with our random walk features can potentially yield better re-
sults than naive combination of ML algorithm with features. We denote the decision
tree model Tree-C. For LSM, we used the parameters recommended by [24]. However,
we set the maximum path length of random walks of LSM structure learning to 6 to be
consistent with the maximum path length used in RRBM. We used both discriminative
and generative weight-learning for Alchemy and present the best-performing result.

To answer Q2, we compare RRBM-C to MLN-Boost [22], and RRBM-E to RDN-
Boost [32] both of which are SRL models that learn the structure and parameters si-
multaneously. For MLN-Boost and RDN-Boost, we used default settings and 20 gra-
dient steps. For RRBM, since path-constrained random walks [28] are performed on
binary predicates, we convert unary and ternary predicates into binary predicates. For
example, predicates such as teach(a1, a2, a3) are converted to three binary predicates:
teachArg1(id, a1), teachArg2(id, a2), teachArg3(id, a3) where id is the unique
identifier for a predicate. As another example, unary predicates such as student(s1)
are converted to binary predicates of the form isa(s1, student). To ensure fairness,
we used binary predicates as inputs to all the methods considered here. We also allow
inverse relations in random walks, that is, we consider a relation and its inverse to be
distinct relations. For one-to-one and one-to-many relations, this sometimes leads to
uninteresting random walks of the form relation → relation−1 → relation. In
order to avoid this situation, we add additional sanity constraints on walks that prevent
relations and their inverses from immediately following one another and avoid loops.

To answer Q4, we compare our method with Bottom Clause Propositionalization [13]
(BCP-RBM), which generates one bottom clause for each example and considers each
atom in the body of the bottom clause to be a unique feature. We utilize Progol [38] to
generate bottom clauses by using its default configuartion but setting variable depth = 1
to handle large data sets. Contrary to the original work [13] that uses a neural network,
we use RBM as the learning model, as our goal is to demonstrate the usefulness of
random walks to generate features.

In our experiments, we subsample training examples at a 2 : 1 ratio of negatives to
positives during training. The number of RBM hidden nodes are set to 60% of visible
nodes, the learning rate, η = 0.05 and the number of epochs to 5. These hyperparame-
ters have been optimized by line search.

A Note On Hyperparameter Selection: An important hyperparameter for RRBMs is
the maximum path length of random walks, which influences the number of RRBM
features. Fig. 3 shows that the number of features generated grows exponentially with
maximum path length. We restricted the maximum path length of random walks to λ =
6 in order to strike a balance between tractability and performance; λ = 6 demonstrated
consistently good performance across a variety of data sets, while keeping the feature



Fig. 3: The number of RRBM features grows exponentially with maximum path length
of random walks. We set λ = 6 to balance tractability with performance.

size tractable. As mentioned above, other benchmark methods such as LSM were also
restricted to a maximum random walk length of 6 for consistency and fairness.

Hyperparameter selection is an open issue in both relational learning as well as deep
learning; in the latter, careful tuning of hyperparameters and architectures such as regu-
larization constants and number of layers is critical. Recent work on automated hyper-
parameter selection can also be used with RRBMs, if a more systematic approach to hy-
perparameter selection for RRBMs is desired, especially in practical settings. Bergstra
and Bengio [2] demonstrated that random search is more efficient for hyperparameter
optimization than grid search or manual tuning. This approach can be used to select
optimal η and λ jointly. Snoek et al [40] recently used Bayesian optimization for au-
tomated hyperparameter tuning. While this approach was shown to be highly effective
across diverse machine learning formalisms including for support vector machines [6],
latent Dirichlet allocation [3] and convolutional neural networks [16], it requires power-
ful computational capabilities and parallel processing to be feasible in practical settings.

Data Sets

We used several benchmark data sets to evaluate the performance of our algorithms. We
compare several approaches using conditional log-likelihood (CLL), area under ROC
curve (AUC-ROC), and area under precision-recall curve (AUC-PR). Measuring PR
performance on skewed relational data sets yields a more conservative view of learning
performance [8]. As a result, we use this metric to report statistical significant improve-
ments at p = 0.05. We employ 5-fold cross validation across all data sets.

UW-CSE: The UW-CSE data set [37] is a standard benchmark that consists of pred-
icates and relations such as professor, student, publication, hasPosition and
taughtBy etc. The data set contains information from five different areas of computer
science about professors, students and courses, and the task is to predict the advisedBy
relationship between a professor and a student. For MLNs, we present results from gen-
erative weight learning as it performed better than discriminative weight learning.



Mutagenesis: The MUTAGENESIS data set2 has two entities: atom and molecule,
and consists of predicates that describe attributes of atoms and molecules, as well as
the types of relationships that exist between atom and molecule. The target predicate
is moleatm(aid, mid), to predict whether a molecule contains a particular atom. For
MLN, we present generative weight learning as it had better results.

Cora Entity Resolution is a citation matching data set [35]; in the citation-matching
problem, a “group” is a set of citations that refer to the same publication. Here, a large
fraction of publications belong to non-trivial groups, that is, groups that have more
than one citation; the largest group contains as many as 54 citations, which makes
this a challenging problem. It contains the predicates such as Author, Title, Venue,
HasWordTitle, SameAuthor and the target predicate is SameVenue. Alchemy did not
complete running after 36 hours and therefore we report results from [22].

IMDB: This data set was first created by Mihalkova and Mooney [31] and contains nine
predicates: gender, genre, movie, samegender, samegenre, samemovie, sameperson,
workedunder, actor and director; we predict the workedUnder relation. Since
actor and director are unary predicates, we converted them to one binary predi-
cate isa(person, designation) where designation can take two values - actor and
director. For MLNs, we report the generative weight learning results here.

Yeast: contains millions of facts [28] from papers published between 1950 and 2012 on
the yeast organism Saccharomyces cerevisiae. It includes predicates like gene, journal,
author, title, chem, etc. The target predicate is cites, that is, we predict the citation
link between papers. As in the original paper, we need to prevent models from using
information obtained later than the publication date. While calculating features for a
citation link, we only considered facts that were earlier than a publication date. Since
we cannot enforce this constraint in LSM, we do not report Alchemy results for Yeast.

Sports: NELL [5] is an online3 never-ending learning system that extracts information
from online text data, and converts this into a probabilistic knowledge base. We consider
NELL data from the sports domain consisting of information about players and teams.
The task is to predict whether a team plays a particular sport or not. Alchemy did not
complete its run after 36 hours, thus we do not report its result for this data set.

Results

Q1: Fig. 4 compares our approaches to baseline MLNs and decision trees to answer Q1.
RRBM-E and RRBM-C have significant improvement over Tree-C on UW and Yeast data
sets, with comparable performance on the other four. Across all data sets (except Cora)
and all metrics, RRBM-E and RRBM-C beat the baseline MLN approach. Thus, we can
answer Q1 affirmatively: RRBM models outperform baseline approaches in most cases.

2 cs.sfu.ca/∼oschulte/BayesBase/input
3 rtw.ml.cmu.edu/rtw/



Fig. 4: (Q1): Results show that RRBMs generally outperform baseline MLN and
decision-tree (Tree-C) models.

Fig. 5: (Q2) Results show better or comparable performance of RRBM-C and RRBM-CE to
MLN-Boost, which all use counts.

Fig. 6: (Q2) Results show better or comparable performance of RRBM-E and RRBM-CE to
RDN-Boost, which all use existentials.

Q2: We compare RRBM-C to MLN-Boost (count-based models) and RRBM-E to RDN-
Boost (existential-based models) in Figs. 5 and 6. Compared to MLN-Boost on CLL,
RRBM-C has a statistically significant improvement or is comparable on all data sets.
RRBM-E is comparable to RDN-Boost on all the data sets with statistical significant
CLL improvement on Cora. We also see significant AUC-ROC improvement of RRBM-
C on Cora and RRBM-E on IMDB. Thus, we confirm that RRBM-E and RRBM-C are better



Fig. 7: (Q4) Results show better or comparable performance of our random-walk-based
feature generation approach (RRBM) compared to propositionalization (BCP-RBM).

or comparable to the current best structure learning methods.

Q3: Broadly, the results show that RRBM approaches generalize well across different
data sets. The results also indicate that RRBM-CE generally improves upon RRBM-C and
has comparable performance to RRBM-E. This shows that existential features are suffi-
cient or better at modeling. This is also seen in the boosting approaches, where RDN-
Boost (existential semantics), generally outperforms MLN-Boost (count semantics).

Q4: Since BCP-RBM only generates existential features, we compare BCP-RBM with
RRBM-E to answer Q4. Fig. 7 shows that RRBM-E has statistically significantly better
performance than BCP-RBM on three data sets on CLL. Further, RRBM-E demonstrates
significantly better performance than BCP-RBM on four data sets: Cora, Mutagenesis,
IMDB and Sports - both on AUC-ROC and AUC-PR. This allows us to state positively
that random-walk features yield better or comparable performance than propositional-
ization. For IMDB, BCP-RBM generated identical bottom clauses for all positive exam-
ples, resulting in an extreme case of just a single positive example to be fed into RBM.
This results in a huge skew (distinctly observable in AUC-PR of IMDB for BCP-RBM).

Conclusion

Relational data and knowledge bases are useful in many tasks, but feeding them to deep
learners is a challenge. To address this problem, we have presented a combination of
deep and statistical relational learning, which gives rise to a powerful deep architecture
for relational classification tasks, called Relational RBMs. In contrast to propositional
approaches that use deep learning features as inputs to log-linear models (e.g. [10]), we
proposed and explored a paradigm connecting PLM features as inputs to deep learning.
While statistical relational models depend much more on the discriminative quality of
the clauses that are fed as input, Relational RBMs can learn useful hierarchical rela-
tional features through its hidden layer and model non-linear decision boundaries. The
benefits were illustrated on several SRL benchmark data sets, where RRBMs outper-
formed state-of-the-art structure learning approaches—showing the tight integration of
deep learning and statistical relational learning.



Our work suggests several interesting avenues for future work. First, one should ex-
plore stacking several RRBMs. Since the relational feature extraction is separated from
the deep learning method, different types of deep learning methods can easily be used
and should be explored. Alternatively, one could explore to jointly learn the underlying
relational model and the deep model using stochastic EM. This “deep predicate inven-
tion” holds promise to boost relational learning. Ultimately, one should close the loop
and feed the deep learning features back into a (relational) log-linear model.
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