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a b s t r a c t

Accurate depth assessment of burn wounds is a critical task to provide the right treatment

and care. Currently, laser Doppler imaging is able to provide better accuracy compared to the

standard clinical evaluation. However, its clinical applicability is limited by factors like

scanning distance, time, and cost. Precise diagnosis of burns requires adequate structural

and functional details. In this work, we evaluated the combined potential of two non-

invasive optical modalities, optical coherence tomography (OCT) and Raman spectroscopy

(RS), to identify degrees of burn wounds (superficial partial-thickness (SPT), deep partial-

thickness (DPT), and full-thickness (FT)). OCT provides morphological information, whereas,

RS provides biochemical aspects. OCT images and Raman spectra were obtained from burns

created on ex-vivo porcine skin. Algorithms were developed to segment skin region and

extract textural features from OCT images, and derive spectral wave features from RS. These

computed features were fed into machine learning classifiers for categorization of burns.

Histological results obtained from trichrome staining were used as ground-truth. The

combined performance of RS-OCT reported an overall average accuracy of 85% and ROC-

AUC=0.94, in distinguishing the burn wounds. The significant performance on ex vivo skin

motivates to assess the feasibility of combined RS-OCT in in vivo models.
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1. Introduction

1.1. Background

Burn injuries are a major cause of death in the United States [1].
Every year, nearly 450,000 patients receive hospital and
emergency room treatment for burns, of which, approximately
3400 burn injury deaths are reported [2]. Early decision on

treatments has shown to shorten stay in hospitals and reduce
infection [3,4]. Accurate assessment and in-time treatment
can greatly reduce morbidity and mortality due to burn
injuries.

Identification of burn wound magnitude plays a crucial role
in deciding the treatment to be given to patient. Clinically,
burn wound depth is assessed based on visual appearance,
amount of bleeding, capillary refill, and sensitivity remaining
in the burn area. Based on the extent of burn depth and healing
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time, burn wounds are classified mainly into four categories:
superficial, superficial partial-, deep partial-, and full-thick-
ness burns [5]. Superficial and superficial-partial burn wounds
heal in 1–2 weeks and require basic procedures, such as
application of antimicrobial creams, analgesic, and proper
monitoring of the wound. Deep partial- to full-thickness
wounds may require surgical intervention to perform excision
and skin grafting. However, identifying burn degree, even by
surgeons, is limited to 60–75% accuracy [6,7]. Furthermore, it is
subjective and can result in variations among multiple
clinicians [8,9]. Although clinical recognition of superficial-
and full-thickness burns can be reliable, this method is limited
for intermediate burns such as superficial partial- and deep
partial-thickness burns. Additionally, the dynamic nature of
wounds, which aggravates the extent of burn depth, is a
hindrance in making proper treatment decisions [10]. There-
fore, there is an essential need for a diagnostic approach to
accurately assess burn depths, which will provide precise
insights to determine appropriate treatment plans and burn
care management.

1.2. Current diagnostic technique and its limitations

The necessity for accurate assessment of burn depth and
intensity has stimulated evolution of a wide range of
diagnostic methods and modalities to assist evaluation of
wounds and provide proper burn care management. However,
among various techniques, laser Doppler imaging (LDI) has
been shown to stand out due to its accuracy and clinical
applicability [10]. It provides better accuracy in prediction of
wound healing compared to clinical assessment, especially for
superficial-partial and deep-partial wounds [11]. The tech-
nique works by measuring perfusion index (PI) of skin based on
Doppler shift of the reflected laser light penetrating through
the sample. Using LDI, varying burn depths were identified in
terms of PI, distinguishing superficial and deep burns [7,12]. In
addition, LDI could successfully identify burns that may or
may not heal by re-epithelialization within three weeks [13].

Despite positive results obtained through the use of LDI, the
modality is still vulnerable to certain physiological factors.
Changes in blood perfusion measured by LDI can substantially
vary in individual patients, as it is sensitive to changes in blood
pressure, skin temperature, anemia, and presence of infection
[14]. This makes interpretation of PI maps unclear. Further,
external factors such as scanning distance, thickness of
antimicrobial dressings, and curvature of the tissue surface
alter LDI outputs [15]. Limited accuracy of LDI alone to
diagnose burn depth within the first 48h has been reported
as well [16]. The time taken by an LDI device to scan over large
surface areas and obtain a higher resolution takes minutes and
requires patients to remain motionless for the entire duration
[17]. Moreover, the commercial cost of LDI devices is expen-
sive, limiting its availability to only a few burn centers [18].

1.3. Proposed diagnostic techniques

1.3.1. Optical coherence tomography (OCT)
It is a non-invasive imaging technique based on low-coher-
ence interferometry, which produces micro-resolution, two-
dimensional, cross-sectional images of biological tissue. The

images are produced by capturing reflected or scattered light
from the target tissue, a principle that is analogous to
ultrasonic pulse-echo imaging. In highly scattering tissues
such as skin, OCT can image small blood vessels and other
structures up to a depth of 1–2mm below the surface [19]. Light
reflected from a point on target surface constitutes one single
A-scan (Z-axis; axial depth); combining a series of A-scans
obtained through lateral scanning across the target surface
produces a B-scan (X–Z plane). Acquisition of multiple B-scans
over an area of target surface allows for three-dimensional
visualization of the tissue [20].

OCT of healthy skin allows visualization of skin layers,
mainly, stratum corneum, epidermis, and dermis depending on
the thickness of skin area imaged. The technique has been
used in studies for anatomical, physiological, and pathological
evaluation of skin with different conditions [21]. In skin
abnormalities, such as skin tumors and inflamed skin, OCT
allows identification of the diseased regions, which are
characterized by homogeneous signal distribution, thickening
of epidermis, and signal attenuation in dermis [22,23]. The
birefringence property of skin reduces due to loss of collagen
after sustaining a burn, which results in lower penetration
depth of light. Consequently, reduction in signal corresponds
to low intensity regions on OCT images. Hence, the inverse
correlation between depth estimate derived from OCT and the
incident burn degree can be exploited for diagnostic purposes
[24]. Polarization-sensitive OCT (PS-OCT) is an extension of
conventional OCT which utilizes information contained in
polarized light. Reduction in collagen has been quantified
using PS-OCT in burned skin with a decreased phase
retardation rate, and also correlated with burn depth [25,26].
Extending its capability of providing structural morphology of
the tissue, OCT has also been used to capture the flow of blood
in blood vessel networks. Such non-invasive OCT angiography
(OCTA) techniques acquire images at a very high frame rate
and distinguish the blood vessel from static tissue by analyzing
the changes in OCT signal due to the blood flow [27–29]. In vivo
studies on various skin conditions such as, actinic keratoses,
squamous cell and basal carcinomas, and Bowen’s disease,
have distinguished the vascular patterns using OCTA [30,31].
Further, OCTA was also used in cross-sectional and longitudi-
nal studies for assessment of burn scars [32,33], and monitor-
ing the effect of laser fractionation [34]. While OCT images can
provide structural information, they do not provide details on
compositional aspects of tissue [35].

1.3.2. Raman spectroscopy (RS)
It is a non-invasive technique that provides information about
molecular vibrations of a sample; specifically, the chemical
framework of a sample is obtained in terms of shift in
wavelength (Raman shift) of the inelastically scattered inci-
dent light. The shift in wavelength is due to interactions
between incident electromagnetic waves and vibrational
energy levels in molecules of a given sample, and hence,
can be used for sample identification [36]. Biological molecules
such as nucleic acids, proteins, and lipids are manifested with
specific spectral sensitivity; these spectral features can be
quantified and used for various applications. One such
spectral sensitivity is noted in burn wounds, where the
constituent proteins of skin tissue are denatured [37]. Hence,
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it may be speculated that these changes correspond to the
variations in the acquired spectra.

An in vitro study has shown variation in Raman spectra (RS)
associated with changes in lipid content of stratum corneum in
human skin [38]. RS also successfully classified malignant and
benign skin lesions with sensitivity between 95%–99% [39].
Confocal RS has demonstrated the ability to differentiate types
of malignant melanoma and basal cell carcinoma [40];
additionally it provided differential diagnosis of non-melano-
ma skin cancers [41]. RS was also successful in extracting
hydration information from skin, which can be essential in
skin burn assessment [42]. A previous study has identified
burn-induced heterotopic ossification using RS [43], thereby,
demonstrating RS as a potential modality in the assessment of
burn skin and burn degree categorization.

Accurate diagnosis and systemic burn care management
entails availability of considerable structural and functional
information. The ability of OCT to image microstructures at
high-frame rates when combined with the caliber of RS to
provide biochemical specificity might overcome constraints of
each other, and provide more reliable diagnosis. Previous work
has shown that fusion of two complementary technologies,
such as frequency domain imaging with laser speckle imaging
and OCT imaging with pulse speckle imaging, confocal
microscopy with RS, yielded successful results for burn
wounds [24,44,45]. Studies have also demonstrated the
effective implementation of combined RS-OCT in identifying
pre-cancer and cancer skin lesions, and classifying different
tissues such as kidney, liver, and small intestine [46,47].

Here, we report our assessment on the combined power of
RS and OCT modalities to classify burn wounds. OCT images
were obtained using a commercial OCT system (Thorlabs Inc.,
Newton, NJ); RS data was obtained using a prototype device
built at Vanderbilt University (Nashville, TN). We developed
processing algorithms for OCT images and RS spectra to
identify regions of interest (ROI) and extract specific features.
In addition, we implemented machine learning (ML) algo-
rithms to classify burn degree/type depending on collective
features acquired and/or derived from RS and OCT data. The
results from this work may encourage the concept of a unified
RS-OCT device for non-invasive, reliable diagnosis of burn
injury, and is a cost-effective method, making it affordable for
clinical applications.

2. Methods

2.1. Burn wound experiment

Burn wounds were created on cadaver skin samples of a pig.
Prior to creation of burn wounds pig skin samples were thawed
using phosphate-buffered saline (PBS) for at least one hour.
Burn severity is related to the burn temperature, contact
duration, and resistance offered by the skin [48,49]. To produce
consistent burn wounds, a protocol similar to the one adapted
by Ponticorvo et al. was followed [44]. The tip of a soldering rod
at a temperature of 140�C (the lowest temperature that could
be set on the soldering rod) was used to create different degrees
of burn by holding the rod against the pig skin for 5, 10, and 15s.
To ensure sufficient sample size for data analysis and

validation of algorithms, 26 burn wounds for each burn time
were created (5s: N=26; 10s: N=26; 15s: N=26). An example of
burn wounds created for all burn times at 4 different spots is
shown in Fig. 1.

The histology of burn wounds was obtained using
trichrome staining and the degree of each burn was deter-
mined. Exposure to heat denatures the collagen in the skin
(loss of original structure), thus, leading to coagulation (dense-
packed structure like appearance). The amount of coagulation
is proportional to the burn intensity and duration of burn
contact [49] and, can be observed using histological staining
[50]. The degree of burn was measured as the ratio of
coagulated collagen to total collagen thickness (or skin sample
thickness) [44]. The histological image of a 10s burn wound is
represented in Fig. 2. The coagulated to total collagen ratio was
obtained manually using calipers on each histology slide and
an average of up to 20 points per slide was taken, based on the
quality of the slide. Wounds with typical ratio values of below
0.35 were classified as superficial partial-thickness (SPT);
wounds with collagen coagulation ratio between 0.35 and 0.65,
were classified as deep-partial thickness (DPT), whereas, full-
thickness (FT) burn wounds were identified as those with
ratios greater than 0.65.

2.2. Data acquisition

2.2.1. OCT scanning
The images of each burn wound were acquired using the OCT
device, Thorlabs Telesto (TEL1300V2-BU). Images were obtained
at an acquisition time of 0.201s and 76kHz imaging speed. Each
image was averaged over 20 horizontal B-scans of 9mm length
and had a depth resolution of 5.5mm in air (4.2mm in water).
After creation of burn wounds, the respective skin regions
were imaged, such that the acquired scan consisted of small

Fig. 1 – Burn wounds created on porcine skin sample at 4
spots (S1:S4) for 4 contact times (1s, 5s, 10s and 15s). (NOTE:
1s wounds were not used for analysis).
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portion of adjacent normal (control) skin as well. Fig. 3 shows a
sample white-light image and corresponding OCT image.

2.2.2. Raman spectra
The spectra were captured using the prototype RS device built
at Vanderbilt University [51]. It consisted of a 785nm laser
source (at 80mW) and a fiber optics probe (EmVision LLC, USA)
with an excitation fiber of 200mm and 10 collection fibers of
300mm. The wavenumber was calibrated using a neon argon
lamp, acetaminophen, and naphthalene. Green glass and
white light were used for calibration of intensity to account for
the response of the detector. The effective area on the skin
sample that can be scanned by the RS device was 19.6mm2. The
locations for acquiring the spectra were drawn on the petri
dish containing the skin sample, and RS was approximately
obtained over these marked regions. Raman spectra was
collected four times from each spot with an integration time of
3s and 20 accumulations. RS data was collected at each point,
both before (control spectra) and after (burn spectra) burn
wound creation. The acquired spectra was post-processed
with fluorescence background subtraction and noise reduc-
tion techniques, following methods developed by Lieber et al.

[52]. These methods involve binning data to half the spectral
resolution and noise filtering using a 2nd order Savitzky-Golay
filter [53], with window size set to twice the spectral resolution,
and background auto-fluorescence subtraction using a modi-
fied polynomial-fitting algorithm. Resolving for any intensity
variation the final spectra were also mean normalized.

2.3. Data analysis

2.3.1. OCT processing
OCT images were processed using a customized algorithm
developed in MATLAB (MathWorks, Inc., Natick, MA). The
main objective of the algorithm was to extract skin region and
estimate depth (thickness) of skin. All the processing steps
were performed on grayscale OCT images of skin. Initially, to
enhance contrast of the image, histogram equalization was
performed. Histogram equalization enhances low contrast
areas by spreading the most frequently occurring intensity
values globally across the image. Next, the enhanced image
was converted to binary image using Otsu’s thresholding
method [54]. This step replaces all pixel values above a certain
threshold to ones and others to zeros. The selection of an

Fig. 2 – Histology of 10s burn wound (Superficial partial-thickness) (Scale: 500mm). Shorter double-arrow line indicates
coagulated collagen (top brown colored region) and the longer double-arrow line indicates total collagen thickness (ratio<0.35).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3 – LEFT White light image of superficial partial-thickness (SPT) burn; arrow indicates region and direction of scan; red-
rectangular box indicates control skin region. RIGHT: corresponding OCT B-scan (Scale: 250mm); region inside the red box is
normal skin, and that outside is burn region. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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adequate threshold is important to extract a region of interest.
Otsu’s method selects an optimum threshold value by
maximizing the measure of separability of resulting classes
in gray-level.

In the next step of segmentation, in order to segregate skin
region from background, the flood-fill algorithm was used to
identify maximum number of connected pixels. The algorithm
considers an initial node or pixel, and recursively searches for
adjacent pixels connected to it and marks them. Skin region,
with these labeled pixels in the binary image were subtracted
from background region (unlabeled pixels) having least
connectivity. The extracted skin region was further refined
to eliminate any isolated regions. Morphological operations
were used to fill in any spaces and small discontinuous regions
with area less than 10 pixels were identified and set to zero.
The final binary image was combined, using logical AND
operation, with the initial grayscale image to retain the original
intensity values. The logical AND operator retains locations of
only those pixels which contain non-zero values in both
grayscale and binary images, thus retaining only the region of
interest.

The segmented images of the skin were used to estimate
the OCT-derived visible thickness [addressed as ‘depth’
throughout the paper] of the extracted skin region [24]. As
the OCT image consisted of both control (normal) and burn
regions, two depth measures were obtained per image. The
depth for burn region was calculated at the central portion of
the burn wound. A 300-column range was selected for both
regions (control and burn) in each wound. The total number of
non-zero pixels in each column was counted and averaged
over 300 columns. The average measure was then multiplied
by 2.46mm (depth resolution) and converted to millimeters.

In addition to depth measurement, the texture of the OCT
skin image was also evaluated. Statistical texture metrics like
mean and variance of pixel intensities, entropy, and smooth-
ness were calculated. Entropy is the estimate of the random-
ness of pixel intensities and is zero for a constant image.
Smoothness is similar to variance; it gives a relative estimate
of texture of the image (smoother or coarser). Smoothness and
entropy estimates were made based on formulas presented in
Gonzalez and Woods [55]. The statistical metrics were
obtained over 300 columns for both control and burn regions.
Mean intensity and variance were calculated across two
regions considering only the non-zero pixels.

2.3.2. Raman spectral analysis
The RS data contains details of tissue composition at different
wavenumbers. The wavenumbers in the range 800–1800cm�1

were considered for analysis, as they contain useful informa-
tion. Mean normalized spectra obtained four times from each
burn wound/spot were averaged, producing one spectrum per
spot. The averaged spectra were further divided into segments
using a peak-detection algorithm resulting in 18 segments for
each burn wound. The algorithm was applied to obtain the
local minima across the spectrum, and the band of wave
numbers lying between two successive minima (valley points)
was grouped into one segment. To adjust for any spectral
artefacts introduced by skin heterogeneity, quantitative
metrics and features to analyze the spectra for burn wounds
were obtained relative to control spectra (Method I, relative RS

features). Specifically, three main metrics were estimated for
each segment: (1) difference of area under intensity curve
(AUC); (2) cosine similarity, measure of angle between two
vectors and (3) peak-intensity ratio (maximum intensity in a
given segment) between corresponding control and burn
segments. These metrics were obtained for each of the
18 segments, resulting in 54 features per burn wound.

Although 54 features obtained from Raman spectra
compensated for skin inhomogeneity, this may not be
achievable in a real-time scenario. Therefore, we also obtained
an additional set of absolute features considering only burn
spectra and not difference with respect to control (Method II,
absolute RS features). Previous studies on skin cancer, have
observed changes in certain lipid-specific bands [39,56]. Peak
intensity (maximum intensity) ratios at such significant
wavenumbers were estimated (3 features). In addition, areas
under the curves (AUC) for each of the 18 segments were also
calculated (3+18=21 features per wound).

2.4. Classification of burn types

Classification of burn types was conducted for three sets,
based on features derived from: OCT alone, RS alone and
combined RS-OCT. Classification performance was evaluated
using three supervised machine learning (ML)-classifiers:
Logistic Regression (LR), Linear Support Vector Machines
(SVM) and Random Forest (RF); based on the number of
features and training data size, the classifiers were chosen
among various ML algorithms, to classify burn types with high
reliability and robustness [57–59]. Training models built using
these classifiers were validated using 10-fold cross validation.
All the classifiers were implemented using Waikato Environ-
ment for Knowledge Analysis (WEKA) software (The University
of Waikato, Hamilton, New Zealand) [60].

The candidate classifiers were trained on RS features
extracted from two methods: (I) using relative RS features (RS:
54 features; OCT: 5 features; RS-OCT: 59 features), (II) using
absolute RS features (RS: 21 features; OCT: 5 features; RS-OCT:
26 features). Fig. 4 presents the input features derived from
each modality, and the order of inputs provided to each of the
three candidate ML classifiers.

3. Results

All the burn wounds were classified as SPT, DPT, and FT burn
types based on histology. Two of the burn wounds were
inconclusive due to degradation in the quality of histology
slide, and hence, were excluded from analysis. Thus, number
of samples (burn wounds) for each burn type, based on
histology, was 28 -SPT, 22 -DPT, and 26 -FT. The correlation
between burn spots created at different durations (5s, 10s, 15s)
for a constant temperature and the ground truth as assessed by
histological grading, was statistically significant (r=0.87;
p<0.01). No OCT image was discarded due to image quality
issues.

Fig. 5 illustrates raw and segmented OCT scans of an SPT
burn wound; bottom image represents the region of interest,
extracted using our customized algorithm. No visible shadow
regions due to presence of hair were observed in the OCT
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images as the porcine skin samples were devoid of any hair
(samples obtained from a local meat store). As visually
perceived, a slight decrease in depth penetration is observed
over the burn region. Control region exhibits a uniform
distribution of intensities, compared to burn region; in
addition to decrease in intensity, change in texture is also
noticed across burn. Depth and texture estimates were
obtained across the regions, control (300-columns) and burn
(300-columns), which are indicated by red-rectangular boxes.
Mean depth and texture metrics, thus, computed over control
and burn regions for the three burn types SPT, DPT and FT are
listed in Table 1. Mean depth for control and burn regions were
significantly different in SPT and FT burns (p<0.01), but not in
DPT burns (p=0.23). Depth and entropy values decreased from
SPT to FT in the burn region (p<0.01); whereas, other texture
measures were not significantly different (p>0.05).

The mean normalized spectra averaged across all burn
regions and corresponding control spectra is illustrated in
Fig. 6. As it can be observed the corresponding spectra for each
burn wound/type follow the control (pre-burn) spectra closely.
This may indicate that RS is sensitive to heterogeneities in skin

tissue, not just across individuals, but also skin tissues at
different parts of the body in specific individual. Fig. 7 shows
mean normalized and averaged RS for control and burns
across all burn types, over one spot each. The dotted lines
indicate end of each segment (total 18 segments), which were
divided using local minima (valley points), obtained from
peak-detection algorithm. Metrics relative to control (Method
I) were obtained from these 18 segments; peak intensity points
(maximum intensity values in a given segment) are indicated
with circular marks. Averaged spectra for only burn wounds,
with peak intensity values at wavenumbers relevant to skin
tissue (943, 971, 1268, 1300, 1450 and 1660cm�1), indicated by
dashed-lines, is represented in Fig. 8. Peak intensity ratios of
wavenumbers, 943/971cm�1 (NCaC/CC proline ring), 1300/
1268cm�1 (CH bending/Amide III), and 1450/1660cm�1 (CH2

bending/Amide ICO stretch), were recorded and served as 3 of
the 21 features per wound, which were eventually given as
inputs to ML classifiers.

Tables 2 and 3 show the accuracy and AUC-ROC for
individual classes obtained from all three classifiers on test
sets, using relative and absolute RS features (Methods- I & II,

Fig. 4 – Flowchart indicating the features derived from each modality and the workflow using machine Learning (ML) classifiers
to identify the burn types. Red-dashed line in the “classification” block shows segregation of input features to the respective ML
classifiers. These classifiers take features from OCT alone, RS (Method I) alone, RS (Method II) alone, RS (I)-OCT and RS (II)-OCT,
respectively to perform a 3-class classification.
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respectively). OCT-features for both the methods remain same
and provide AUC-ROC and accuracy values that range between
0.76–0.85 and 67–69%, respectively across all the three
classifiers [61].

With relative RS features as inputs (Method I), RS alone
provides accuracy of 80–84% and AUC-ROC of 0.88–0.95;
whereas, combined RS-OCT features provide accuracy of
about 78–88% and ROC area of 0.90–0.95. When absolute RS
features (Method II) were given as inputs to the classifiers, RS’s
performance (accuracy=83–87%; AUC-ROC=0.90–0.95) was
consistent with that of Method I (not significantly different
at p=0.05). Accuracy and AUC-ROC for RS-OCT was recorded as
82–85% and 0.92–0.96, respectively, for Method II (not

significantly different from Method I at p=0.05). In addition,
for both methods, RS-OCT and RS alone offered similar
performance. The results demonstrate that features derived
from the Raman spectra (with and without taking a difference
with respective control spectra) provide robust discrimination
across all three burn categories.

4. Discussion

RS and OCT techniques have previously been combined to
improve diagnostic accuracy of skin lesions (mainly, cancer)
[39,56,35]. In this study, as a primary goal we extended RS-OCT

Fig. 5 – TOP- Raw unprocessed OCT image of superficial-partial thickness burn. BOTTOM- Segmented image. Average depth
values of control and burn regions are 0.66mm and 0.58mm, respectively. Entropy values are 2.56 and 2.27, respectively (Scale:
250mm).

Table 1 – OCT depth and textural metrics of control and burn skin regions averaged over all wounds in each type.

Burn type Mean intensity (Mean
�SD)

Variance (Mean
�SD)

Entropy (Mean
�SD)

Smoothness
(Mean�SD)

Depth [mm] (Mean
�SD)

Control Burn Control Burn Control Burn Control Burn Control Burn

Full-thickness (FT)
(N=26)

126.90�7.29 110.81�6.34 0.48�0.04 0.37�0.06 2.48�0.14 1.86�0.40 0.19�0.03 0.12�0.03 0.60�0.05 0.44�0.12

Deep partial-
thickness (DPT)
(N=22)

124.30�5.78 109.18�6.39 0.48�0.03 0.31�0.09 2.33�0.21 2.09�0.51 0.19�0.02 0.09�0.05 0.56�0.06 0.52�0.15

Superficial partial-
thickness (SPT)
(N=28)

126.41�7.42 112.55�3.98 0.49�0.05 0.35�0.05 2.28�0.14 2.68�0.22 0.19�0.03 0.11�0.03 0.55�0.04 0.69�0.07

Bold values signifies Average AUC-ROC and overall accuracy.
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application for ex vivo skin burns. We have developed an
analytical pipeline to perform image processing and classifi-
cation to diagnose burn wounds using RS and OCT data. Our
prime focus is to demonstrate a proof-of-concept by leveraging
appropriate, existing ML algorithms to perform burn wound
classification.

Creation of consistent burn wounds at various spots, as
evident from significant correlation (r=0.87, p<0.01), resulted
in proper classification of burn wounds into SPT, DPT, and FT,
which were identified through histological staining. The
ground truth, thus, obtained were used in training the
supervised ML classifiers. We tested Method I of extracting
RS features (relative), because it was evident (Fig. 6) that
acquired RS spectra pairs (control and burn) vary between
different skin regions and the burn spectra closely follows the

control spectra if acquired from the same spot. The difference
between control and corresponding burn spectra helps us to
capture only changes due to the inflicted burn. Method II
(absolute RS features) is more practical as it may not be feasible
to find co-located normal skin in burn-injured patients to
implement Method I. Method II, based on inputs from experts,
uses only 21 RS features compared to 54 features of Method I,
and yields similar performance which is evident from the
average AUC-ROC values across all 3 ML classifiers (RS (I): AUC-
ROC=0.92; RS (II): AUC-ROC=0.93). These results demonstrate
that Method II (using only the burn spectra) can be adopted for
clinical use.

The results obtained using ML-based classifiers show value
in combining RS-OCT (average AUC-ROC=0.94), although RS
(average AUC-ROC=0.93) by itself provides highly accurate

Fig. 6 – Mean-normalized Raman spectra averaged across all wounds in each burn type. The closeness of burn and
corresponding control spectra indicates skin heterogeneity captured by RS.

Fig. 7 – Mean normalized and averaged Raman spectra across control and all types of burns. Dotted delimiters indicate segment
boundaries (18 segments), which were divided using local minima (valley points), obtained from peak detection algorithm.
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Fig. 8 – Mean normalized Raman spectra for only burn wounds. Dashed-lines indicate clinically-relevant wavenumbers specific
to skin tissue. Peak intensity ratios, i.e., 943/971cm�1 (NCaC/CC proline ring), 1300/1268cm�1 (CH bending/Amide III), and 1450/
1660cm�1 (CH2 bending/Amide ICO stretch), were computed. The relevant peaks are marked as colored circles on the plot.

Table 2 – Method I: Classification performance metrics (area under ROC curve [AUC-ROC] and accuracy) of three classifiers on
OCT, RS (relative to control), and RS-OCT features. The classifiers are implemented to solve a 3-class problem (Class 1: FT;
Class 2: DPT and Class 3: ST).

Performance measures Logistic regression Linear SVM Random forest

OCT RS RS-OCT OCT RS RS-OCT OCT RS RS-OCT

AUC-ROC: Class-1 (FT burns) 0.90 0.95 0.96 0.84 0.88 0.91 0.92 0.96 0.98
AUC-ROC: Class-2 (DPT burns) 0.80 0.87 0.89 0.64 0.82 0.85 0.76 0.90 0.89
AUC-ROC: Class-3 (ST burns) 0.84 0.98 0.99 0.76 0.93 0.94 0.85 0.97 0.97
Average AUC-ROC (FT, DPT and ST burns) 0.87 0.94 0.95 0.76 0.88 0.90 0.85 0.95 0.95
Overall accuracy (%) 67.11 80.26 86.84 68.42 84.21 86.88 69.74 81.58 78.95

Bold values signifies Average AUC-ROC and overall accuracy.

Table 3 – Method II: Classification performance metrics (area under ROC curve [AUC-ROC] and accuracy) of three classifiers on
OCT, RS (absolute-only burn), and RS-OCT features. The classifiers are implemented to solve a 3-class problem (Class 1: FT;
Class 2: DPT and Class 3: ST).

Performance measures Logistic regression Linear SVM Random forest

OCT RS RS-OCT OCT RS RS-OCT OCT RS RS-OCT

AUC-ROC: Class-1 (FT burns) 0.90 0.92 0.93 0.84 0.89 0.91 0.92 0.95 0.97
AUC-ROC: Class-2 (DPT burns) 0.80 0.89 0.86 0.64 0.81 0.87 0.76 0.92 0.93
AUC-ROC: Class-3 (ST burns) 0.84 0.99 0.99 0.76 0.98 0.98 0.85 0.99 0.99
Average AUC-ROC (FT, DPT and ST burns) 0.87 0.94 0.93 0.76 0.90 0.92 0.85 0.95 0.96
Overall accuracy (%) 67.11 82.89 84.21 68.42 86.84 89.47 69.74 85.53 85.53
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classification results compared to OCT alone (average AUC-
ROC=0.83). The high accuracy provided by RS features alone, in
both methods, implies the significance of biochemical infor-
mation. To identify the relevance of OCT, feature selection
methods via WEKA were implemented to identify top
10 features from RS-OCT pool of features. The 10 features
that were frequently selected by all the feature selection
methods are shown in Table 4. It is evident from Table 4, that
depth and entropy computed from OCT images are two of the
top 10 features selected when pooling RS and OCT features.
Frequent selection of OCT-derived depth information may be
justified, as depth variation among SPT (0.69�0.07mm), DPT
(0.52�0.14mm) and FT (0.44�0.12mm) wounds was signifi-
cant (p<0.01). Similarly, the difference in mean entropy values
was also statistically significant (p<0.01) (SPT=2.68�0.22;
DPT=2.09�0.51; FT=1.86�0.40). These results indicate that
despite superior performance from RS, features derived from
OCT cannot be discounted.

Classification power is dependent on discriminating power
of input features, training data size, and the characteristic of
the classification method [62]. To avoid any overfitting while
training the ML models, 10-fold cross validation was used and
the resulting accuracies and AUC-ROC were reported [63]. In
order to evaluate the efficacy of RS and OCT features, we
employed simple to complex ML models (LR, Linear SVM, and
RF). In our case, LR (AUC-ROC=0.92) and RF (AUC-ROC=0.92)
slightly outperform linear SVM (AUC-ROC=0.86) method
(Tables 2 and 3) across all types of input features (RS, OCT,
RS-OCT) (Fig. 5). Here, we have performed a feature-level
classification by concatenating the features acquired from RS
and OCT modalities before classification by a ML algorithm.
Decision-level classification involves fusing the classification
results obtained separately on RS and OCT features [64]. This
classification scheme will be explored in future in vivo animal
studies.

The average AUC-ROC obtained in the current work for
classification of burn types is 0.94 (across all 3 candidate
classifiers for RS(I)-OCT and RS(II)-OCT), which is higher in
comparison to a previous study that employed PSI and OCT
imaging modalities [24]. The investigators obtained an

aggregate AUC-ROC of 0.86 across three distinct burn wound
categories (superficial thickness, partial thickness, and full
thickness burns) with the PSI-OCT combination. However, the
study was performed on in vivo porcine models. A good
reproducibility in terms of performance by the current RS-OCT
method across in vivo models will further strengthen the
system’s capability, and can serve as a lesser expensive option
than PSI-OCT.

Features derived from Raman spectra, using both methods,
yielded highly promising results on ex vivo skin. However, we
need to further investigate its feasibility on in vivo skin, where
the outcomes of the burnt skin may differ due to the presence
of blood flow, and also address the influence of other factors
such as occurrence of edema, inter- and intra-variation in skin
thickness, skin color, presence of hair, and respiration.
Furthermore, the weak nature of inelastic Raman scattering
makes it a point-and-shoot method. This limitation of RS can
be overcome by using OCT, which can acquire skin depth
profile across a length/region, to guide the RS probe. In future,
we intend to carry out the analysis for in vivo porcine studies,
develop a unified RS-OCT probe and algorithms to perform
OCT guided RS. Replacing manual marking of RS acquisition
locations with advanced registration algorithms will be
focused. We also aim to refine our algorithms adjusting for
any variations due to physiological parameters in in vivo
porcine models, and optimize ML methods, accordingly, to
classify the degree of burns.

In summary, through this work on ex vivo porcine skin we
demonstrated the usefulness of combined approach of RS-
OCT to diagnose clinically relevant superficial partial-, deep
partial- and full-thickness burns with an average accuracy of
85% and AUC-ROC=0.94. The high performance reported on ex
vivo skin data provides encouragement to perform in vivo
animal model studies to gather evidence on RS-OCT discrimi-
nating power for burn wound diagnosis (within 48h post
injury).
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