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Abstract

We consider the problem of learning Relational Logistic Re-
gression (RLR). Unlike standard logistic regression, the fea-
tures of RLRs are first-order formulae with associated weight
vectors instead of scalar weights. We turn the problem of
learning RLR to learning these vector-weighted formulae and
develop a learning algorithm based on the recently successful
functional-gradient boosting methods for probabilistic logic
models. We derive the functional gradients and show how
weights can be learned simultaneously in an efficient man-
ner. Our empirical evaluation on standard and novel data sets
demonstrates the superiority of our approach over other meth-
ods for learning RLR.

Introduction
Statistical Relational Learning models (SRL) (Getoor and
Taskar 2007; Raedt et al. 2016) combine the representa-
tional power of logic with the ability of probability the-
ory specifically, and statistical models in general to model
noise and uncertainty. They have generally ranged from di-
rected models (Kersting and De Raedt 2007; Koller 1999;
Heckerman, Meek, and Koller 2007; Kazemi et al. 2014a;
Neville and Jensen 2007; Kazemi and Poole 2018) to undi-
rected models (Richardson and Domingos 2006; Taskar et
al. 2007; Kimmig et al. 2012). We consider the more recent,
well-understood directed model of Relational Logistic Re-
gression (RLR) (Kazemi et al. 2014a; Kazemi et al. 2014b;
Fatemi, Kazemi, and Poole 2016). One of the key advan-
tages of RLR is that they scale well with population size un-
like other methods such as Markov Logic Networks (Poole
et al. 2014) and hence can potentially be used as a powerful
modeling tool for many tasks.

While the models are attractive from the modeling per-
spective, learning these models is computationally intensive.
This is due to the fact that (like the field of Inductive Logic
Programming) learning occurs at multiple levels of abstrac-
tion, that of the level of objects, sub-group of objects and
relations and possibly at the individual instances of the ob-
jects. Hence, most methods for learning these models have
so far focused on the task of learning the so-called param-
eters (weights of the logistic function) where the rules (or
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relational features) are provided by the human expert and
the data is merely used to learn the parameters.

We consider the problem of full model learning, also
known as structure learning of RLR models. A simple so-
lution to learning these models could be to learn the rules
separately using a logic learner and then employ the param-
eter learning strategies (Huynh and Mooney 2008). While
reasonably easy to implement, the key issue is that the dis-
connect between rule and parameter learning can result in
poor predictive performance as shown repeatedly in the lit-
erature (Natarajan et al. 2012; Richardson and Domingos
2006). Inspired by the success of non-parametric learning
methods for SRL models, we develop a learning method for
full model learning of RLR models.

More specifically, we develop a gradient-boosting tech-
nique for learning RLR models. We derive the gradients for
the different weights of RLR and show how the rules of
the logistic function are learned simultaneously with their
corresponding weights. Unlike the standard adaptations of
the functional gradients, RLR requires learning a different
set of weights per rule in each gradient step and hence re-
quires learning multiple weights jointly for a single rule. As
we explain later, the gradients correspond to a set of vec-
tor weighted clauses that are learned in a sequential manner.
We derive the gradients for these clauses and illustrate how
to optimize them.

Each clause can be seen as a relational feature for the
logistic function. We also note that RLR can be viewed as
a probabilistic combination function in that it can stochasti-
cally combine the distributions due to different set of parents
(in graphical model terminology). Hence, if our learning
technique is employed in the context of learning joint mod-
els, our work can be seen as a new interpretation of learning
boosted Relational Dependency Networks (RDNs) (Neville
and Jensen 2007; Natarajan et al. 2012), where the standard
aggregators are replaced with a logistic regression combi-
nation function which could potentially yield interesting in-
sights into directed SRL models. We demonstrate the effec-
tiveness of this combination function on real data sets and
compare against several baselines including the state-of-the-
art MLN learning algorithms.

The rest of the paper is organized as follows: first we in-
troduce the necessary background and introduce the nota-
tions. Next we derive the gradients and present the algorithm
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for learning RLR models. Finally, we conclude the paper by
presenting our extensive experimental evaluations on stan-
dard SRL data sets and a NLP data set and outlining the
areas for future research.

Background and Notation
In this section, we define our notation and provide necessary
background for our readers to follow the rest of the paper.
Throughout the paper, we assume True is represented by 1
and False is represented by 0.

Logistic Regression
Let Q be a Boolean random variable with range {1, 0}
whose value depends on a set {X1, X2, . . . , Xn} of random
variables. Logistic regression (McCullagh 1984) defines the
conditional probability of Q given X1, X2, . . . , Xn as the
sigmoid of a weighted sum of Xis:

Prob(Q = 1 | X1, . . . , Xn) = σ(w0+w1X1+· · ·+wnXn)
(1)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function.

Finite-Domain, Function-Free, First-Order Logic
A population is a finite set of objects. We assume for every
object, there is a unique constant denoting that object. A
logical variable (logvar) is typed with a population. A term
is a logvar or a constant. We show logvars with lower-case
letters (e.g., x) , constants with upper-case letters (e.g., X),
the population associated with a logvar x with Πx, and the
size/cardinality of the population with |Πx|. A lower-case
letter in bold represents a tuple of logvars (e.g., x), and an
upper-case letter in bold is a tuple of constants (e.g., X).

An atom is of the form Q(t1, . . . , tk) where Q is a func-
tor and each ti is a term. When range(Q) = {1, 0},
Q is a predicate. A substitution is of the form θ =
{〈x1, . . . , xk〉/〈t1, . . . , tk〉} where xis are logvars and tis
are terms. A grounding of an atom with logvars x1, . . . , xk
is a substitution {〈x1, . . . , xk〉/〈X1, . . . , Xk〉} mapping
each of its logvars to a constant in the population of the
logvar. For a set A of atoms, G(A) represents the set of
all possible groundings for the atoms in A. A literal is an
atom or its negation. A formula ϕ is a literal, the con-
junction of two formulae ϕ1 ∧ ϕ2, or a disjunction of two
formulae ϕ1 ∨ ϕ2. The application of a substitution θ =
{〈x1, . . . , xk〉/〈t1, . . . , tk〉} on a formula ϕ is represented
as ϕθ and replaces each xi in ϕwith ti. An instance of a for-
mula ϕ is obtained by replacing each logvar x in ϕ by one of
the objects in Πx. A conjunctive formula contains no dis-
junction. A weighted formula (WF) is a triple 〈ϕ,wT , wF 〉
where ϕ is a formula and wT and wF are real numbers.

Relational Logistic Regression
Let Q(x) be a Boolean atom whose probability depends on
a set A of atoms such that Q /∈ A. We refer to A as the
parents of Q. Let ψ be a set of WFs containing only atoms
from A, J be a function from groundings in G(A) to truth
values, and θ = {x/X} be a substitution from logvars in
x to constants in X. Relational logistic regression (RLR)

(Kazemi et al. 2014a) defines the probability of Q(X) given
J as follows:

Probψ(Q(X) = 1 | J)

= σ

w0 +
∑

〈ϕ,wT ,wF 〉∈ψ

wT · ηT (ϕθ, J) + wF · ηF (ϕθ, J)


(2)

where w0 is a bias/intercept, ηT (ϕθ, J) is the number of in-
stances of ϕθ that are true with respect to J , and ηF (ϕθ, J)
is the number of instances of ϕθ that are false with respect
to J . Note that ηT (True, J) = 1. Also note that the bias can
be considered as a WF whose formula is True. Following
Kazemi et al. (Kazemi et al. 2014a), without loss of general-
ity we assume the formulae of all WFs for RLR models are
conjunctive.
Example 1 Let Active(p), AdvisedBy(s, p), and PhD(s) be
three atoms representing respectively whether a professor
is active, whether a student is advised by a professor, and
whether a student is a PhD student. Suppose we want to de-
fine the conditional probability of Active(p) given the atoms
A = {AdvisedBy(s, p),PhD(s)}. Consider an RLR model
with an intercept of −3.5 which uses only the following WF
to define this conditional probability:

ψ = {〈AdvisedBy(s, p) ∧ PhD(s), 1, 0〉}

According to this model, for an assignment J of truth values
to G(A):

Probψ(Active(P ) = 1 | J) =

σ(−3.5 + 1 · ηT (AdvisedBy(s, P ) ∧ PhD(s), J)),

where ηT (AdvisedBy(s, P ) ∧ PhD(s), J)) = #S ∈ Πs

s.t. AdvisedBy(S, P )∧PhD(S) according to J , correspond-
ing to the number of PhD students advised by P . When this
count is greater than or equal to 4, the probability of P be-
ing an active professor is closer to one than zero; otherwise,
the probability is closer to zero than one. Therefore, this RLR
model represents “a professor is active if the professor ad-
vises at least 4 PhD students”.
With this background on Relational Logistic Regression, we
introduce the Functional Gradient Boosting paradigm in the
following section. This enables us to formulate a learning
problem for RLR in which we learn both the structure and
the parameters simultaneously.

Functional Gradient Boosting
We discuss functional gradient boosting (FGB) approach
in the context of relational models. This approach is mo-
tivated by the intuition that finding many rough rules-of-
thumb of how to change one’s probabilistic predictions lo-
cally can be much easier than finding a single, highly accu-
rate model. Specifically, this approach turns the problem of
learning relational models into a series of relational func-
tion approximation problems using the ensemble method
of gradient-based boosting. This is achieved by the appli-
cation of Friedman’s (Friedman 2001) gradient boosting to



SRL models. That is, we represent the conditional proba-
bility distribution as a weighted sum of regression models
that are grown via a stage-wise optimization (Natarajan et
al. 2012; Khot et al. 2011).

The conditional probability of an example yi1 depends on
its parents xi = parents(yi). The goal of learning is to fit
a model Prob(y |x) ∝ eψ(y,x), and can be expressed non-
parametrically in terms of a potential function ψ(yi; xi):

Prob(yi |xi) =
eψ(yi;xi)∑
y′ e

ψ(y′;xi)
(3)

At a high-level, we are interested in successively approx-
imating the function ψ as a sum of weak learners, which are
relational regression clauses, in our setting. Functional gra-
dient ascent starts with an initial potential ψ0 and iteratively
adds gradients ∆i. After m iterations, the potential is given
by ψm = ψ0 + ∆1 + ...+ ∆m. Here, ∆m is the functional
gradient at episode m and is

∆m = ηm · Ex,y

[
∂

∂ψm−1
log P (y | x; ψm−1)

]
, (4)

where ηm is the learning rate. Dietterich et al. (Diet-
terich, Ashenfelter, and Bulatov 2004) suggested evaluat-
ing the gradient at every position in every training exam-
ple and fitting a regression tree to these derived exam-
ples i.e., fit a regression tree hm on the training examples
[(xi, yi),∆m(yi;xi)]. They point out that although the fit-
ted function hm is not exactly the same as the desired ∆m,
it will point in the same direction (assuming that there are
enough training examples). Thus, ascent in the direction of
hm will approximate the true functional gradient.

Note that in the functional gradient presented in (4), the
expectation Ex,y cannot be computed as the joint distribu-
tion P (x, y) is unknown. Instead of computing the func-
tional gradients over the potential function, they are instead
computed pointwise for each labeled training example i:
〈xi, yi〉. Now, this set of local gradients become the train-
ing examples to learn a weak regression model that approx-
imates the gradient ∆m at stage m.

The functional gradient with respect to ψ(yi = 1; xi) of
the likelihood for each example 〈yi,xi〉 can be shown to be:

∂ logProb(yi; xi)

∂ψ(yi = 1; xi)
= I(yi = 1;xi)− P (yi = 1;xi) (5)

where I is the indicator function, that is 1, if yi = 1, and
0 otherwise. This expression is simply the adjustment re-
quired to match the predicted probability with the true label
of the example. If the example is positive and the predicted
probability is less than 1, this gradient is positive indicating
that the predicted probability should move towards 1. Con-
versely, if the example is negative and the predicted proba-
bility is greater than 0, the gradient is negative driving the
value the other way.

1We use the term example to mean the grounded target literal.
Hence yi = 1 denotes that the grounding Q(X) = 1 i.e., the
grounded target predicate is true. Following standard Bayesian net-
works terminology, we denote the parents A(Q) to include the set
of formulae ψ that influence the current predicate Q.

This elegant gradient expression might appear simple, but
in fact, naturally and intuitively captures, example-wise, the
general direction that the overall model should be grown in.
The I−P form of the functional gradients is a consequence
of the sigmoid function as a modeling choice, and is a defin-
ing characteristic of FGB methods. As we show below, our
proposed approach to RLR also has a similar form. The sig-
nificant difference, however, is in the novel definition of the
potential function ψ.

In prior work, relational regression trees (RRTs) (Bloc-
keel 1999) were used to fit the gradient function ∆m to the
pointwise gradients for every training example. Each RRT
can be viewed as defining several new feature combinations,
one corresponding to each path from the root to a leaf. A key
difference in our work is that we employ the use of weighted
formulae (vector-weighted clauses2, to be precise) as we
explain later. From this perspective, our work is closer to
the boosting MLN work that employed the use of weighted
clauses. We generalize this by learning a weight vector per
clause that allows for a more compact representation of the
true and false instances of the formula. An example of a
weighted clause is provided in Figure 1 where there are four
clauses for predicting advisedBy(A,B). Note that while we
show the standard weighted clauses similar to a MLN, our
weighted clauses have an important distinction - correspond-
ing to each clause is a weight vector instead of a single scalar
weight which captures the weight of true groundings, false
groundings and the uninformed prior weights of the clause.
The gradient-boosting that we develop in the next section
builds upon these clauses and as mentioned earlier is similar
to MLN boosting with the key difference being that instead
of learning one weight per clause, we learn three weights in
the vector.

The key intuition with boosting regression clauses is that
each clause will define a new feature combination and the
different clauses together capture the latent relationships
that are learned from the data. While the final model itself is
linear (as it is the sum of the weighted groundings of all the
clauses), the clauses themselves define richer features thus
allowing for learning a more complex model than a sim-
ple linear one. Figure 2 presents the schematic for boosting.
The idea is that first a regression function (shown as a set
of clauses) is learned from the training examples and these
clauses are then used to determine the gradients (weights) of
each example in the next iteration. The gradient is typically
computed in the prior work as I−P . Once the examples are
weighted, a new set of clauses are induced from them. These
clauses are then considered together and the regression val-
ues are added when weighing the examples and the process
is iterated.

There are several benefits of the boosting approach for
learning RLR models. First, being a non-parametric ap-
proach (i.e., the model size is not chosen in advance), the
number of parameters naturally grows as the number of
training episodes increases. In turn, relational features as
clauses are introduced only as necessary, so that a potentially
large search space is not explicitly considered. Second, such

2We use formulae and clauses interchangeably from hereon.



Figure 1: Example of an RRC. The task was to predict if A is AdvisedBy B, given the relations of people at a university.

Figure 2: Relational Functional Gradient Boosting. This is similar to standard functional gradient boosting (FGB) where trees
are induced stage-wise; the key difference is that these trees are relational regression clauses (RRCs).

an algorithm is fast and straightforward to implement. One
could potentially employ any relational regression learner
in the inner loop to learn several types of models. Third,
as with previous relational models, the use of boosting for
learning RLR models makes it possible to learn the struc-
ture and parameters simultaneously making them an at-
tractive choice for learning from large scale data sets (Malec
et al. 2016; Yang et al. 2017).

Functional Gradient Boosting for RLR
Preliminaries
Given the background on RLR and the gradient-boosting ap-
proach, we now focus on the learning task of RLR. Let us
rewrite the conditional probability of an example y given
weighted formulae 〈ϕ1, wT1, wF1〉 , · · · , 〈ϕk, wTk, wFk〉
corresponding parents J1, · · · , Jk in the RLR model as:

Prob(y = 1 | J1, · · · , Jk) =

σ(w0 + wT1ηT (ϕ1θ, J1) + wF1 · ηF (ϕ1θ, J1)

+ · · ·
+ wTkηT (ϕkθ, Jk) + wFk · ηF (ϕkθ, Jk)) (6)

where σ(·) is the sigmoid function. For example, let
y = Popularity(a) indicate the popularity of a professor
a. Consider two formulae φ1=Publication(A,P ) and
φ2=AdvisedBy(A,S). The weights of the first formula
control the influence of the number of publications on the
popularity of the professor where J1 = Publication(a, P ).
Similarly the second formula controls the influence of

the number of students advised by the professor. For
learning a model for RLR, we thus need to learn these
clauses φi and their weights wTi, wFi (the parents are
determined by the structure of the clause). Also, we can
assume that the bias term w0 can be part of the weight
vectors for all the learned clauses. This allows a greedy
approach that incrementally adds new clauses, such as
FGB, to automatically update the bias term by learning w0

for each new clause. Our learning problem can be defined as:

Given: A set of grounded facts (features) and the
corresponding positive and negative grounded literals
(examples)
To Do: Learn the set of formulae ϕi with their corre-
sponding weight vector wi = [w0, w1, w2].

To simplify the learning problem, we introduce vector-
weighted clauses (formulae), denoted as {w : Clause},
that are a generalization of traditional weighted clauses with
single weights. More specifically, our weighted clauses em-
ploy three dimensions, that is w = [w0, w1, w2]T , where
w0 is a bias/intercept, w1 is the weight over the satisfiable
groundings of the current clause (analogous to wTi) and w2

is the weight of the unsatisfiable groundings of the current
clause (analogous to wFi). We also use a short hand nota-
tion ti and fi for the two grounding counts ηT (ϕ1θ, J1) and
ηF (ϕ1θ, J1) respectively in Equation 6.

Example 2 Consider an RLR model for defining the condi-
tional probability of y = Popularity(a) which has only one



WF:

〈Publication(A,B), wT , wF 〉 ≡
[w0, w1, w2] : Popularity(A) :− Publication(A,B)

Let ty =
∑
b Publication(a, b) be the number of

instances of b for which Publication(a, b) is true for
the current grounding of y, and let fy =

∑
b (1 −

Publication(a, b)) be the number of instances of b for which
Publication(a, b) is false for the example y. Using vector-
weighted clauses in the RLR model, we can compute

Prob(Popularity(a) |Publication(a,B)) =

σ (w0 + w1 · ty + w2 · fy) , ∀a.

RFGB for RLR
Our goal is to learn the full structure of the model, which
involves learning two concepts – the structure (formu-
lae/clauses) and their associate parameters (the weight vec-
tors). To adapt functional gradient boosting to the task of
learning RLR, we map this probability definition over the
parameter space w0, w1, w2 to the functional space, ψ:

P (yi = 1 |xi) = σ(ψ (yi; xi))

= σ (w0 + w1 · ti + w2 · fi)
(7)

Recall that in FGB, the gradients of the likelihood func-
tion with respect to the potential function are computed sep-
arately for each example. Correspondingly, the regression
function ψ for the i-th example needs to be clearly defined
and is:

ψ(yi; xi) = w0 + w1 · ti + w2 · fi. (8)

The key difference to the existing gradient boosting methods
for RDNs (Natarajan et al. 2012) and MLNs (Khot et al.
2011) is that the RLR learning algorithm needs to learn a
weight vector per clause instead of a single weight.

Also, recall that while in traditional parametric gradient-
descent, one would compute the parametric gradient over
the loss function and iteratively update the parameters with
these gradients, for gradient boosting, we first compute the
functional gradients over the log-likelihood given by:

∆(yi; xi) = I(yi = 1) − P (yi = 1; xi) (9)

where I is the indicator function. As with other relational
functional gradients (see Section Functional Gradient Boost-
ing), this elegant expression naturally falls out when the log-
likelihood of the sigmoid is differentiated with respect to the
function. As before, the gradient is simply the adjustment re-
quired for the probabilities to match the observed value (yi)
in the training data for each example. Note that this is sim-
ply the outer gradient, that is, the gradient is computed for
each example and a single vector-weighted clause needs to
be learned for this set of gradients. While learning the clause
itself, we must optimize a different loss function as we show
next.

In order to generalize beyond the training examples, we
fit a regression function ψ (which is essentially a vector-
weighted clause) over the training examples such that the

squared error between ψ(yi; xi) and the functional gradi-
ent ∆(yi; xi) is minimized over all the examples. The in-
ner loop thus amounts to learning vector-weighted clauses
such that we minimize the (regularized) squared error be-
tween the RLR model and the functional gradients over the
n training examples:

minimize
w0,w1,w2

n∑
i=1

(w0 + w1ti + w2fi − ∆(yi; xi))
2

+ λ (w2
0 + w2

1 + w2
2),

(10)
where λ > 0 is a regularization parameter. In principle,
λ can be chosen using a line search with a validation set
when the size of the data sets are large. However, in our
data sets, we only considered a few λ values from the set
of {102, 102.5, 103, 103.5} and chose to present the best λ
corresponding to the test set.

Close inspection of the loss function above reveals that
solving this optimization problem amounts to fitting count
features: ci = [1, ti, fi] for each grounded example i
to the corresponding functional gradient, ∆i. Note that the
equation (10) can be viewed as a regularized least-squares
regression problem to identify weights w = [w0, w1, w2]T .
The problem (10) can be written in vector form as

min
w
‖Cw − ∆‖2 + λ‖w‖2

where the i-th row of the count matrix C are the count fea-
tures ci of the i-th example. This problem has a closed-form
solution that can be computed efficiently:

w = (CTC + λI)−1 CT∆. (11)

The quantity CTC captures the count covariance across
examples, while the quantity CT∆ captures the count-
weighted gradients:

CTC =

 n
∑n
i=1 ti

∑n
i=1 fi∑n

i=1 ti
∑n
i=1 t

2
i

∑n
i=1 tifi∑n

i=1 fi
∑n
i=1 tifi

∑n
i=1 f

2
i

 ,
CT∆ =


∑n
i=1 ∆i∑n
i=1 ti∆i∑n
i=1 fi∆i

 .
(12)

In this manner, functional gradient boosting enables a nat-
ural combination of conditionals over all the examples. This
weight update forms the backbone of our approach: boosted
relational logistic regression or B-RLR.

Algorithm for B-RLR
We outline the algorithm for boosted RLR (B-RLR) learning
in Algorithm 1. We initialize the regression function with
an uniform prior γ i.e. F0(yi) = γ (line 2). Given the in-
put training examples Y which correspond to the grounded
instances of the target predicate y and the set of facts, i,e.,
the grounded set of all other predicates (denoted as X) in
the domain, the goal is to learn the set of vector-weighted
clauses that influence the target predicate.



Since there could potentially be multiple target predicates
(when learning a joint model such as RDN where each in-
fluence relation is an RLR), we denote the current predi-
cate as p. In the mth iteration of functional-gradient boost-
ing, we compute the functional gradients for these exam-
ples using the current model Fm and the parents of y as
per this model (line 7). Given these regression examples Sp,
we learn a vector-weighted clause using FITREGRESSION.
This function uses all the other facts X to learn the structure
and parameters of the clause. We then add this regression
function, ψ̂m approximating the functional gradients to the
current model, Fm. We repeat this over M iterations where
M is typically set to 10 in our experiments.

Algorithm 1 Boosted Relational Logistic Regression (B-
RLR) learning

1: function B-RLR(Y , X , p)
2: F0 := γ
3: for 1 ≤ m ≤M do . M gradient steps
4: Fm := Fm−1
5: . Compute gradients, ∆i for yi ∈ Yp
6: Sp := COMPUTEGRADIENTS(Yp, X , Fm)
7: ψ̂m := FITREGRESSION(Sp, X,Yp) . Learn

vector-weighted regression clause
8: Fm := Fm + ψ̂m . Update model
9: end for

10: return Fm
11: end function

Next, we describe FITREGRESSION to learn vector-
weighted clauses from input regression examples S, facts D
and target predicate p(x) in Algorithm 2. We initialize the
vector-weighted clause with empty body and zero weights
i.e. [0, 0, 0]T : y :− ∅. We first create all possible literals
that can be added to the clause given the current body (line
5). We use modes (Muggleton and De Raedt 1994) from in-
ductive logic programming (ILP) to efficiently find the rele-
vant literals here.

For each literal l in this set, we calculate the true and
false groundings for the newly generated clause by adding
the literal to the body (line 9). To perform this calculation,
we ground the left hand side of the horn clause (i.e., the
query literal) and count the number of groundings of the
body corresponding to the query grounding. For instance if
the grounding of the query is advisedBy(John,Mary) cor-
responding to advisedBy(student,prof), then we count the
number of instances of the body that correspond to John
and Mary. If the body contains the publications in common,
they are counted accordingly. If the body is about courses
John took, they are counted correspondingly. This is sim-
ilar to counting in any relational probabilistic model such
as MLNs or BLPs. Following standard SRL models, we as-
sume closed-world. This allows us to deduce the number of
false groundings as the difference between the total number
of possible groundings and the number of counted (positive)
groundings.

We can then calculate the count matrix C` and weights w
as described earlier (line 11–12). We score each literal based

on the squared error and greedily pick the best scoring literal
l̂. We repeat this process till the clause reaches its maximum
allowed length (set to 4 in our experiments).

Algorithm 2 Vector-weighted regression clause learning
1: function FITREGRESSION(S, D, y)
2: where S = {〈yi,∆i〉}
3: body := ∅; w := [0, 0, 0]T . Initialize empty

clause
4: while len(body) ≤ C do
5: L := POSSIBLELITERALS(p(x), body) .

Generate potential literals
6: for ` ∈ L do . Score each literal
7: clause := ‘y :− body ∧ `.’
8: for xi ∈ X do . Calculate groundings per

example
9: ti, fi = CALCULATEGROUNDINGS(yi,
D, clause)

10: end for
11: Cl := CREATECOUNTMATRIX({ti, fi})
12: w(`) := (CTC + λI)−1 CT∆.
13: score(`) := SCOREFIT(w(`),∆)
14: end for
15: ˆ̀ := arg min` score(`)

16: w := w(ˆ̀)

17: body := body ∧ ˆ̀

18: end while
19: return w: y :− body.
20: end function

To summarize, given a target, the algorithm computes the
gradient for all the examples based on the expression I −P .
Given these gradients, the inner loop searches over the pos-
sible clauses such that the MSE is minimized. The resulting
vector-weighted clauses are then added to the set of formula
and are then used for the subsequent steps of gradient com-
putations. The procedure is repeated until convergence or a
preset number of formulae are learned. The search for the
most optimal clause can be guided by experts by provid-
ing relevant search information as modes (Muggleton and
De Raedt 1994). The overall procedure is similar to RDNs
and MLNs with two significant differences - the need for
multiple weights in the clauses and correspondingly the dif-
ferent optimization function inside the inner loop of the al-
gorithm.

Given that we have outlined the B-RLR algorithm in de-
tail, we now turn our focus to empirical evaluation of this
algorithm.

Experiments and Results
Our experiments will aim to answer the following questions
in order to demonstrate the benefits of B-RLR:

Q1 How does functional gradient boosting perform when
compared to traditional learning approaches for clauses
and weights?

Q2 How does the boosted method perform compared to a sig-
nificant feature engineered logistic regression approach?



Domains Sample Features
WorkedUnder (IMDB)
5 features constructed count genres acted, count movies acted

AdvisedBy (UWCS)
8 features constructed count publications, count taughtby

Female (Movie lens)
8 features constructed count movies, average ratings

Cancer (SmCaFr)
3 features constructed no of friends, no of friends smoke

Faculty (WebKB)
4 features constructed count project, count courseta

Table 1: This table shows the number of rules used by AGG-
RLR for each data set as well as the features with high
weights as picked by LR

Q3 How does boosting RLR compare to other relational
methods?

Q4 How sensitive is the behavior of the proposed approach
with respect to the regularization constant, λ?

Methods Considered
We now compare our B-RLR approach to: (1) the AGG-LR
approach, which is standard logistic regression (LR) using
the relational information, (2) the ILP-RLR approach where
rules are learned using a logic learner, followed by weight
learning for the formulae, and (3) MLN-B, which is a state-
of-the-art boosted MLN structure learning method. We eval-
uate our approach on 1 synthetic data set and 4 real world
data sets. Table 1 shows the sample aggregate (Relational)
features constructed with the highest weights as generated
by AGG-LR.

A natural question to ask is the comparison of our method
against the recently successful Boosted Relational Depen-
dency Networks (Natarajan et al. 2012) (bRDN) method. We
do not consider this comparison for two important reasons -
first is that the MLN-B has already been compared against
bRDN in the original work and the conclusion was that they
were nearly on par in performance in all the domains while
bRDN is more efficient due to the use of existentials instead
of counts when grounding clauses. Consequently, the second
reason is that since our AGG-LR approach heavily employs
counts, we considered the best learning method that employs
counts as an aggregator, namely the MLN-B method. Our
goal is not to demonstrate that AGG-LR is more effective
than the well-known MLN-B or the bRDN approaches, but
to demonstrate that boosting RLR does not sacrifice perfor-
mance of learners and that RLR can be boosted as effectively
as other relational probabilistic models.

In contrast to our approach, which performs parameter
and structure learning simultaneously, the ILP-RLR baseline
performs these steps sequentially. More specifically, we use
PROGOL (Muggleton 1995; Muggleton 1997) for structure
learning, followed by relational logistic regression for pa-
rameter learning. Table 3 shows the number of rules that
were learned for each data set by PROGOL. Table 3 also
shows some sample rules with the highest coverage scores
as generated by PROGOL.

To keep comparisons as fair as possible, we used the fol-
lowing protocol: while employing MLN-B, we set the max-
imum number of clauses to 3, the beam-width to 10 and
maximum clause length to 4. Similar configurations were
adopted in our clause-learning setting. Gradient steps for
MLN-B and B-RLR were picked as per the performance.

Data Sets
Smokes-Cancer-Friends: This is a synthetic data set,
where the goal is to predict who has cancer based on the
friends network of individuals and their observed smoking
habits. The data set has three predicates: Friends, Smokes
and Cancer. We evaluated the method over the Cancer pred-
icate using the other predicates with 4-fold cross-validation
and λ = 103.5.

UW-CSE: The UW-CSE data set (Richardson and Domin-
gos 2006) was created from the University of Washington’s
Computer Science and Engineering department’s student
database and consists of details about professors, students
and courses from 5 different subareas of computer science
(AI, programming languages, theory, system and graphics).
The data set includes predicates such as Professor, Student,
Publication, AdvisedBy, HasPosition, TaughtBy etc., Our
task is to learn, using the other predicates, to predict the
AdvisedBy relation between a student and a professor. There
are 4, 106, 841 possible AdvisedBy relations out of which
only 3380 are true. We employ 5-fold cross validation
where we learn from four areas and predict on the other area
with λ = 103.5 in our reported results.

IMDB: The IMDB data set was first used by Mihalkova
and Mooney (Mihalkova and Mooney 2007) and contains
five predicates: Actor, Director,Movie, Genre, Gender
and WorkedUnder. We predict the WorkedUnder relation
between an actor and director using the other predicates.
Following (Kok and Domingos 2009), we omitted the
four equality predicates. We set λ = 103 and employed
5-fold cross-validation using the folds generation strategy
suggested by Mihalkova and Mooney in (Mihalkova and
Mooney 2007) and averaged the results.

WebKB: The WebKB data set was first created by Craven
et al. (Craven et al. 1998) and contains information about
department webpages and the links between them. It
also contains the categories for each web-page and the
words within each page. This data set was converted by
Mihalkova and Mooney (Mihalkova and Mooney 2007)
to contain only the category of each web-page and links
between these pages. They created the following predi-
cates: Student, Faculty, CourseTA, CourseProf, Project
and SamePerson from these web-pages. We evaluated
the method over the Faculty predicate using the other
predicates and we performed 4-fold cross-validation where
each fold corresponds to one university with set λ set as 102.

Movie Lens: This is the well-known Movielens data
set (Harper and Konstan 2015) containing information
of about 940 users, 1682 movies, the movies rated by



Data Sets Target Types Predicates neg:pos Ratio
Sm-Ca-Fr Cancer 1 3 1.32

IMDB WorkedUnder 3 6 13.426
UW-CSE AdvisedBy 9 12 539.629
WebKB Faculty 3 6 4.159

Movie Lens FemaleGender 7 6 2.702

Table 2: Details of relational domains used in our experi-
ments. These data sets have high ratios of negative to posi-
tive examples, which is a key characteristic of relational data
sets.

each user containing 79, 778 user-movie pairs, and the
actual rating the user has given to a movie. It contains
predicates: Age, Genre, Occupation, Year, Ratings and
Gender. In our experiments, we ignored the actual ratings
and only considered whether a movie was rated by a user
or not. Also, since Gender can take only two values, we
convert the Gender(person, gender) predicate to a single
argument predicate FemaleGender(person). We learned
B-RLR models for predicting FemaleGender using 5-fold
cross-validation with λ = 103.

A key property of these relational data sets is the large
number of negative examples. This is depicted in Table 2,
which shows the size of various data sets used in our experi-
ments. This is because, in relational settings, a vast majority
of relations between objects are not true, and the number
of negative examples far outnumbers the number of posi-
tive examples. In these data sets, simply measuring accuracy
or log-likelihood can be misleading. Hence, we use metrics
which are reliable in imbalanced setting like ours.

Results
We present the results of our experiments in Figures 3
and 4, which compare the various methods on two metrics:
area under the ROC curve (AUC-ROC) and area under the
Precision-Recall curve (AUC-PR) respectively. From these
figures, certain observations can be made clearly.

First, the proposed B-RLR method is on par or better
than most methods across all data sets. On deeper inspec-
tion, it can be seen that the state-of-the-art boosting method
for MLNs appears to be more mixed at first glance in
ROC-space while B-RLR is generally better in PR-space. In
addition, in the WebKB, MovieLens and Smokes-Cancer-
Friends domain where we learn about a unary predicate, the
performance is significantly better. This yields an interesting
insight: RLR models can be natural aggregators over the
associated features. As we are in the unary predicate setting
(which corresponds to predicting an attribute of an object),
the counts of the instances of the body of the clause simply
means aggregating over the values of the body. This is typi-
cally done in several different ways such as mean, weighted
mean or noisy-or (Natarajan et al. 2008). We suggest the use
of logistic function with counts as an alternative aggregator
that seems effective in this domain and we hypothesize its
use for many relational tasks where aggregation can yield
to natural models. In contrast, MLNs only employ counts as
their features, while RLR allows for a more complex ag-

Figure 3: Comparing the area under the ROC curve for the
proposed B-RLR approach to (1) standard logistic regres-
sion with relational information (AGG-LR), (2) an approach
where rules are learned using a logic learner followed by
weight learning (ILP-RLR), and (3) state-of-the-art MLN
with boosted structure learning (MLN-B).

Figure 4: Comparing the area under the Precision-Recall
(PR) curve for the proposed B-RLR approach to (1) standard
logistic regression with relational information (AGG-LR), (2)
an approach where rules are learned using a logic learner fol-
lowed by weight learning (ILP-RLR), and (3) state-of-the-art
MLN with boosted structure learning (MLN-B).

gregation within the sigmoid function that can use count
features in its inner loop. Validating this positive aspect of
RLR models remains an interesting future research direc-
tion. These results help in answering Q3 affirmatively: that
B-RLR is on par or significantly better than MLN-B in all
domains.

Next, from the figures, it can be observed that B-RLR sig-
nificantly outperforms AGG-LR in several domains. At the
outset, this may not be surprising since relational models
have been shown to outperform non-relational models. How-
ever, the features that are created for the AGG-LR model are
the count features of the type defined in the original RLR
work and are more expressive than the standard features of
propositional models. This result is particularly insightful as
the B-RLR model that uses count features, predicates and
their combinations themselves in a formula is far more ex-
pressive than simple aggregate features. This allows us to an-



Target (Data Set) Sample rules generated for ILP-RLR using PROGOL
WorkedUnder (IMDB)

6 rules generated
WorkedUnder(A,B)⇐ isa(B, director), isa(A, actor),movie(C,A), movie(C,B).
WorkedUnder(A,B)⇐genre(B,C), gender(A,male).

AdvisedBy (UWCS)
16 rules generated

AdvisedBy(A,B)⇐ hasPosition(B,E), inPhase(A,D), publication(C,A), publication(C,B).
AdvisedBy(A,B)⇐ hasPosition(B,D), inPhase(A,E), publication(F,A).

Female (Movie Lens)
7 rules generated

Female(A)⇐ tmpRatingArg1(B,A), tmpRatingArg2(B,C), genre(C, g4).
Female(A)⇐ age(A, 4), occupation(A, o14).

Cancer (SmCaFr)
3 rules generated

Cancer(a)⇐friends(b, a), friends(b, c), smokes(c).
Cancer(a)⇐smokes(a).

Faculty (WebKB)
6 rules generated

Faculty(A)⇐ courseProf(B,A), courseTA(B,C).
Faculty(A)⇐ courseProf(B,A), project(C,A), samePerson(A,A).

Table 3: This table shows the number of rules used by ILP-RLR for each data set as well as the rules with the highest ‖P − N‖
coverage as returned by PROGOL.

Figure 5: Sensitivity of the proposed B-RLR approach is an-
alyzed by comparing the Area under the Precision-Recall
(PR) curve as λ changes.

swer Q2 strongly and affirmatively, in that the proposed ap-
proach is significantly better than an engineered (relational)
logistic regression approach.

Finally, comparing the proposed approach to a two-step
approach of learning clauses followed by the corresponding
weights; B-RLR appears to be significantly better in both
PR-space as well as ROC-space than ILP-RLR . Furthermore,
B-RLR also has the distinct advantage of simultaneous pa-
rameter and structure learning, thus avoiding a costly struc-
ture search compared to the ILP-based approach. Hence, Q1
can be answered: that B-RLR model outperforms ILP-based
two-stage learning in all the regions. We see from Figure 5
that Q4 is answered affirmatively: As long as λ is within the
set {102, 102.5, 103, 103.5}, our algorithm is not sensitive in
most domains. In addition, our parameter λ has a nice in-
tuitive interpretation: they reflect and incorporate the high
class imbalance that exists for real-world domains where this
is an important practical consideration.

We used paired t-test with p-values=0.05 for determining
the statistical significance. From the Figures 3 & 4, across
most domains, we observe that, B-RLR has tighter error
bounds compared to the baselines in majority of domains
indicating lower variance and subsequently higher general-
ization performance.

Table 4 reports the training time taken in seconds by each
method averaged over all the folds in every domain. Tim-

Learning Time (seconds)
Target (Data set) AGG-LR ILP-RLR MLN-B B-RLR

WorkedUnder (IMDB) 67.39 158.02 6.99 10.95
AdvisedBy (UWCS) 110.58 65.058 18.40 24.71
Female (Movie Lens) 91.27 78.57 6.66 16.51
Cancer (SmCaFr) 35.18 3.26 120.73 90.47
Faculty (WebKB) 51.73 2.18 5.68 5.86

Table 4: Comparing learning time (in seconds) for the
proposed B-RLR approach to (1) standard logistic regres-
sion with relational information (AGG-LR), (2) an approach
where rules are learned using a logic learner followed by
weight learning (ILP-RLR), and (3) state-of-the-art MLN
with boosted structure learning (MLN-B). Learning time in-
cludes time to learn the structure, counting the satisfied (or
unsatisfied) groundings and weight learning.

ings reported For AGG-LR include time taken for proposi-
tional feature construction and weight learning using WEKA
tool. For ILP-RLR it includes the total time taken to learn
rules, count satisfied instances, and learn weights for the
rules accordingly. The two boosted approaches timings are
reported from the full runs. The results show that the meth-
ods are comparable across all the domains - in the do-
mains where boosted methods are faster than the other base-
lines, grounding of the entire data set caused the increased
time for the baselines. Conversely, in the other domains, re-
peated counting of boosting increased the time in two of
the five domains. The results indicate that the proposed B-
RLRapproach does not sacrifice efficiency (time) for effec-
tiveness (performance).

In summary, our proposed boosted approach appears to
be promising across all a diversity of relational domains,
with the potential for scaling up relational logistic regres-
sion models to large data sets.

Conclusions
We considered the problem of learning relational logistic re-
gression (RLR) models using the machinery of functional-
gradient boosting. To this end, we introduce an alternative
interpretation of RLR models that allows us to consider both
the true and false groundings of a formula within a single
equation. This allowed us to learn vector-weighted clauses



that are more compact and expressive compared to standard
boosted SRL models. We derived gradients for the differ-
ent weights, and outlined a learning algorithm that learned
first-order features as clauses and the corresponding weights
simultaneously. We evaluated the algorithm on standard data
sets, and demonstrated the efficacy of the learning algorithm.

There are several possible extensions for future work –
currently, our method learns a model for a single target pred-
icate deterministically. As mentioned earlier, it is possible
to learn a joint model across multiple predicates in a man-
ner akin to learning a relational dependency network (RDN).
This can yield a new interpretation for RDNs based on com-
bining rules. Second, learning from truly hybrid data re-
mains a challenge for SRL models in general, and RFGB
in particular. Finally, given the recent surge of sequential
decision-making research, RLR can be seen as an effective
function approximator for relational Markov decision pro-
cesses (MDPs); employing this novel B-RLR model in the
context of relational reinforcement learning can be an excit-
ing and interesting future research direction.
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