
Fast Relational Probabilistic Inference and Learning:
Approximate Counting via Hypergraphs

Mayukh Das
University of Texas, Dallas
mayukh.das1@utdallas.edu

Devendra Singh Dhami
University of Texas, Dallas

devendra.dhami@utdallas.edu

Gautam Kunapuli
University of Texas, Dallas

gautam.kunapuli@utdallas.edu

Kristian Kersting
Technical University of Darmstadt

kersting@cs.tu-darmstadt.de

Sriraam Natarajan
University of Texas, Dallas

sriraam.natarajan@utdallas.edu

Abstract

Counting the number of true instances of a clause is arguably
a major bottleneck in relational probabilistic inference and
learning. We approximate counts in two steps: (1) transform
the fully grounded relational model to a large hypergraph, and
partially-instantiated clauses to hypergraph motifs; (2) since
the expected counts of the motifs are provably the clause
counts, approximate them using summary statistics (in/out-
degrees, edge counts, etc). Our experimental results demon-
strate the efficiency of these approximations, which can be
applied to many complex statistical relational models, and
can be significantly faster than state-of-the-art, both for in-
ference and learning, without sacrificing effectiveness.

Introduction
Significant advancements in research on Statistical Rela-
tional Learning (SRL) and AI (Getoor and Taskar 2007;
Raedt et al. 2016) and in lifted inference (Poole 2003;
Kersting, Ahmadi, and Natarajan 2009) have allowed for
exploiting the symmetries of the data and model during
learning and inference. The advantage of these algorithms
is that they can succinctly represent and reason with de-
pendencies among the attributes and relations of related ob-
jects. One of the key operations inside most, if not all, al-
gorithms is counting the satisfied groundings (instances) of
a partially instantiated relational rule (a first-order clause).
For instance, when learning the parameters or structure of a
Markov Logic Network (MLN) (Domingos and Lowd 2009;
Khot et al. 2011), or when performing lifted inference (Poole
2003) one has to compute the expected/true counts in the
model/data and inside a given cluster of objects.

Counting is a hard combinatorial search problem (#P -
complete). Consequently, algorithms for fast, approximate
counting have been developed (Das et al. 2016; Sarkhel et
al. 2016). The key observation is that computing exact counts
is not essential, particularly when the number of groundings
for an object/relation is high. For instance, knowing whether
a Professor published 300 papers or 319 papers does not sig-
nificantly change the belief over the popularity of the Profes-
sor. While reasonably successful, they make a few assump-
tions – including MLN-specific formulation and lack of sup-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

port for partial groundings (Sarkhel et al. 2016) or restricted
arity of relations (Das et al. 2016).

We relax these assumptions and present a general ap-
proximate counting technique that transforms the problem
of counting partially instantiated clauses to motif-matching
in equivalent hypergraph. Provably, counting in the original
data corresponds to computing the expected counts of the
motif occurrences in the transformed hypergraph: When
this expectation is computed exactly, one can retrieve the
true counts. In large data sets, this motivates the approxima-
tion of the expectation using summary statistics on the hy-
pergraph. Our experimental results across several domains
on both learning and inference tasks demonstrate clearly
that this approximation indeed relaxes the assumptions of
the previous methods and results in more efficient counting
while exhibiting on-par performance to exact counting.

The paper makes the following contributions - (1) We
present a method for converting structured data and rela-
tional/logic clauses to hypergraphs and motifs, respectively,
and pose the problem of counting the number of ground-
ings as counting over motifs-matches in the hypergraph. (2)
We present and justify an approximation technique and out-
line the algorithm for counting the number of motifs based
on the order of the variables that appear in the clauses. (3)
Finally, we demonstrate the efficiency of the proposed ap-
proach without sacrificing the effectiveness on standard do-
mains against state-of-the-art baselines on these tasks.

Background and Related Work
Our approach for efficient counting in SRL is inspired by
cardinality estimation for query optimization in relational
databases (Schiefer, Strain, and Yan 1998; Seputis 2000),
that use incremental statistics (histograms etc.) across ta-
bles and frequently executed queries. While successful on
standard benchmarks, these approaches are not directly ap-
plicable to our problem setting where we are interested in
learning from adhoc databases. Probabilistic Database sys-
tems, such as ‘Tuffy’ (Niu et al. 2011) exploit the power
of relational databases for persistence and computations in
SRL. Though successful, such systems may encounter chal-
lenges of relational databases including arbitrary join costs
and may require carefully designed join caches for optimiza-
tion. More importantly, they have not yet been applied to
the challenging task of full model learning in SRL (only

parameter-learning). Graph-based systems can potentially
alleviate such limitations while allowing seamless represen-
tation of logical assertions. However, cardinality approxima-
tion is an open problem in the context of Graph databases
(Neumann and Moerkotte 2011; Stocker et al. 2008).

Counting in SRL is akin to subgraph matching / enumer-
ation, a #P -complete (Valiant 1979; Vadhan 2001) prob-
lem. Our work relates to approximate sub-graph count-
ing, in a graph theoretic context (Slota and Madduri 2013;
Bhaskara et al. 2010). Most of these approaches focus, either
on exploiting high performance architectures via paralleliza-
tion, subject to resource availability, or on utilizing proper-
ties of restricted classes of graphs. FACT (Das et al. 2016)
approximates counts via summarization of in-memory Prop-
erty Graphs (Corby, Dieng, and Hébert 2000) encoded using
RDFs 1 but suffer from certain fundamental limitations such
as assuming binary relations and independence across rela-
tions sharing entities. ISMA (Demeyer et al. 2013) adopts
a search tree optimization and pruning approach for sub-
graph enumeration in large biological networks. It has simi-
lar limitations and returns all subgraphs instead of count es-
timates. Approximate matching has been extensively stud-
ied in graph theory, recently in the context of hypergraphs
(Dudek et al. 2014; Dudek et al. 2013). While these ap-
proaches are interesting with theoretical guarantees, they ap-
ply to specific classes of simple hypergraphs with bounded
degree and regularity which cannot model real-world multi-
relational data.

Fürer and Kasiviswanathan (2014) propose a polynomial
time sampling-based approximation strategy for counting
isomorphic subgraphs matching a given template leveraging
bounded-width ordered bipartite decompositions of the tem-
plates. A key feature of this approach is its provable general-
ization across varied classes of graphs. Ravkic et al. (2018)
extend this principle for parameter learning in SRL via effi-
cient computation of the decompositions. While potentially
applicable in our context, these approaches have major lim-
itations that include restricted arity of relations and require-
ment of decomposability of templates. Our approach relaxes
these limitations.

Approximate Counting via Hypergraphs
Our goal is to compute the counts of a potentially partially
instantiated clause given a database of ground assertions. We
proceed by transforming a SRL model into a directed graph
notation. Trivial conversion from a logic statement (essen-
tially a conjunctive rule) to a simple directed graph has an
important limitation of assumimng binary relations. Such
graphs, however, cannot represent n-ary relations, which are
very common. We employ hypergraphs (Berge and Minieka
1973), generalization of graphs in which a hyperedge joins
an arbitrary number of nodes/vertices, in contrast to a graph
in which an edge joins two vertices. Formally, a hypergraph
is a pair of sets of vertices and hyperedges: G ≡ (VG , EG).
Since a hypergraph has hyperedges that connect an arbitrary
number of nodes, a hyperedge itself is a set of nodes (making
EG a set of sets of nodes). Our problem is.

1https://www.w3.org/RDF/

Given: A set of grounded assertions (facts) F , a conjunctive
rule/clause C from a SRL model and a (possibly partial) sub-
stitution (instantiations) θ of variables C,
To Do: Return the counts of true groundings #(C | θ) of the
clause C,
Construct: A partially grounded structural hypergraph mo-
tif, M ≡ (VM, EM) that represents the clause C and
fully grounded hypergraph, G ≡ (VG , EG) that represents
grounded assertions (F), such that counting the number of
instances ofM in G yields an approximation to #(C | θ).

Example. A university domain has entity types (variables)
Professor (p), Student (s), Course (c), Term
(t), ResearchProject (r) and Year (y). We con-
sider two conjunctive rules in this domain:
AdvisedBy(s, p) ∧ Teaches(p, c, t) ∧ TA(s, c, t) (C1)

AdvisedBy(s, p) ∧ WorksIn(p, r, y)
∧ WorksIn(s, r, y)

(C2)

The first clause states that s is advised by p and is a TA for
c that =p teaches in t. The second states that s advised by
p works on r in a y. In SRL they are soft statements.

A full grounding refers to a total substitution of values (t)
to a set of variables (v), denoted θ = { v1/t1, . . . , vn/tn }.
A partial grounding is an incomplete substitution of values
to some variables. With a slight abuse of notation, we do
not distinguish between a partial and full grounding, denot-
ing both by θ. A partial grounding will contain a mixture
of constants and variables. It must be mentioned that while
we present conjunctive rules from a parameterized logi-
cal notation perspective, the same ideas can be easily ex-
tended to relational walks/paths in a relational database.
Our approach can easily be extended to clauses of any form
by logical transformation. They can be used in discrimina-
tive models that use definite clauses (if-then rules), the cov-
erage of the body (a conjunction) of the clause.
Definition 1 (Counts). For Relation(v1, . . . , vt), the
predicate counts are the number of true instances of that
predicate due to the assertions/facts F , given the (partial)
grounding θ of the its variables. We denote the predicate
counts of Relation (R) as nR = #(R | θ).

For a clause C, the clause counts are the number of true
instances of C in database F , given the partial groundings
θ of the variables in the clause. We denote the clause counts
for a clause C as nC = #(C | θ).
Example (continued). Consider the facts in Figure 1 (cen-
ter), where Amy teaches 3 courses {AI, ML, Opt}, teaching
AI twice in the Fa17 and Sp18 terms. Ben, is a TA for
AI, then the count for clause C1 given a partial grounding
θ1 = { p/Amy, s/Ben } is #(C1 | θ1) = 1, since Ben is
a TA for only one class. The count for C1 given a partial
grounding θ2 = { P/Amy, T/Fa17 } is #(C1 | θ2) = 1.

Das et al (2016) addressed a similar problem but they
were restricted to binary (and unary) predicates. But, pred-
icates in C1 and C2 are ternary, an issue that we can han-
dle. Our approach has 3 steps – (i) convert the ground asser-
tions (F) to a hypergraph G, (ii) convert a partially-grounded
clause to a partially-grounded structural motif (M), and (iii)
count the number of subgraphs matchingM in G.

Teaches(Amy, AI, Fa17),
Teaches(Amy, ML, Fa17)
Teaches(Amy, AI, Sp18),
Teaches(Amy, Opt, Sp18)
TA(Ben, AI, Fa17),
TA(Ena, ML, Fa17)
TA(Cam, AI, Sp18),
TA(Deb, Opt, Sp18)
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy)

Figure 1: (left) MotifM1 for C1; (center) Facts used to groundM1; (right) Ground graph, G1. Ternary predicates Teaches
and TA are represented as hyperedges in bothM1 and G1. The edges AdvisedBy(Deb, Amy) and AdvisedBy(Fei, Amy) also
appear in the grounding of C2 (see Fig. 2).

WorksIn(Amy, MLNs, 2017),
WorksIn(Amy, PRMs, 2017)
WorksIn(Hal, MLNs, 2018)
WorksIn(Ben, PRMs, 2017),
WorksIn(Fei, PRMs, 2017)
WorksIn(Fei, MLNs, 2018),
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy),
AdvisedBy(Fei, Hal),

Figure 2: (left) MotifM2 for C2; (center) Facts used to groundM2; (right) Ground graph, G. The ternary predicate WorksIn
are hyperedges inM2 and G2. The edges AdvisedBy(Deb, Amy) (Deb → Amy) and AdvisedBy(Fei, Amy) (Fei → Amy) also
appear in the grounding of C1 (see Fig. 1).

Definition 2 (Partially Grounded Structural Motif). A
motifM is a Partially Grounded Structural Motif (PGSM) if
it is a hypergraph representation of a clause C, where some
of the nodes are parameterized, while others are instantiated
to their respective values. That is, a PGSM is a structural
motif arising from a partial grounding.

Conversion to Hypergraphs
Given a clause C, we construct a hypergraph motif M as
follows. Each variable in every predicate of C is added as a
vertex to VM, the vertex set ofM. Next, all the arguments
of a predicate are connected by a hyperedge, which is added
to EM, the edge set ofM. Directed edges connect variables
appearing in binary predicates in the order in which they
appear, while an n-hyperedge connects the n variables ap-
pearing in a n-ary predicate. The nodes ofM correspond to
the variables in C (which can be partially grounded) and the
edges correspond to the predicates that contain the respec-
tive variables. Given facts (F), a fully-grounded hypergraph
G is similarly constructed. Each constant in F is added as a
vertex to VG , vertex set of G. Then, all constants appearing in
a fact in F are connected by a hyperedge, and added to EG ,
the edge set of G. The construction of G essentially amounts
to parsing assertions (in predicate logic), indexing and inser-
tion into a hypergraph database (Iordanov et al. 2010).

Example (continued). Figs. 1 and 2 (left) show motifsM1

andM2 for C1 and C2 respectively. Amy advises three stu-
dents: Deb, who is a teaching assistant, Fei, who is a re-

search assistant and Ben who is both. Thus, G1, the ground
graph for the given assertions (Fig. 1, middle & right) Sim-
ilarly, G2 (Fig. 2) based on the given assertions. Note that,
Ben is both a teaching and a research assistant and appears
in both G1 and G2. Also, a student may have more than one
advisors (Ex: Fei – 2 advisors: Amy and Hal). This high-
lights various complex interactions among entities and at-
tributes; counting these is critical in inference and learning.

An important aspect of our work is that, we exploit the no-
tion of ‘Partially-Ordered’ Hypergraphs (Feng et al. 2018).
In SRL, relations can be interpreted to have an implicit di-
rectionality based on the argument order. While translation
from argument ordering to normal directed graphs is con-
ceptually straightforward, it is non-trivial in the case of hy-
pergraphs. In directed graphs with loops, unary/binary rela-
tions are represented as directed loops/edges from the vertex
denoting the first argument to the vertex denoting the second
one. Naively, directed hyperedge may be conceived based on
the strict ordering of the arguments of an N-ary relation. But,
semantically, it is hard to justify. In some domains such strict
ordering may make sense while in others it may not.

Example. In the ternary relation ‘teaches(Amy, AI,
FA17)’ the ordering professor(p) ≺ course(c) ≺
term(t) seems most intuitive, considering “Amy teaches
the course AI in term FA17”. However, the statement
“The course that Amy teaches in FA17 is AI” is equally
valid, hence the ordering: p ≺ t ≺ c. A relation such

as CoAuthorIn(p, student(s), paper(pa)) is
even more ambiguous. Here the orderings, (1) p ≺ s ≺ pa,
(2) s ≺ p ≺ pa, (3) p ≺ pa ≺ s etc., are all semantically
similar. Thus strict total ordering is not reasonable.

A completely undirected representation is also not advan-
tageous since directions allow us to leverage certain proper-
ties in our formulation. Thus, we use ‘partially-ordered hy-
pergraphs’, where the loops and binary edges have the same
protocols as a normal directed graphs. However, for a hyper-
edge with n nodes (x1, . . . , xn), where the argument order
in the original n-ary predicate is 1 ≺ 2 ≺ . . . ≺ n, we as-
sume the last node xn to be the sink node (i.e., hyperedge
ends here) and all others as source nodes (hyperedge starts
here). It is partial-ordered since ordering exist only between
the sink node and a source node and not among the source
nodes themselves (x\n ≺ xn). It applies to both the ground
hypergraph of assertions as well as the PGSMs.

Approximate Counting via PGSMs
We consider the case of counts of conjunctive clauses. Par-
tial grounding in a clause C has 2 scenarios based on number
of substitutions. Let number of variables in C be `C.
(Case 1) When |θ| = `C, that is, when the clause is fully
grounded, #(C | θ) = 1 if M ∈ G else 0. Thus counting,
here, is equivalent to checking that the grounded motifM is
a subgraph of G.
(Case 2) When 0 ≤ |θ| < `C, that is, when the clause
is either fully lifted (`C = 0) or is partially grounded
(|θ| < `C), counting is considerably harder. This is the case
we address in the rest of this paper.

Now, for clause C with `C variables, we assume thatmC of
these variables are not grounded, and `C −mC variables are
grounded. Then, the task is to count the number of ground-
ings ofmC, termed as query variables, given assignments (θ)
to the `C−mC ground variables. Ex: For clause C1, `C1 = 4
and given a partial grounding θ = { p/Amy, s/Ben }, we
havemC1 = 2 lifted variables (courses c and terms t) which
we want to count over.

Without loss of generality, let the first mC variables in C
be the the ungrounded or query variables; that is, vi, i =
1, . . . ,mC. Given a motif M constructed from C, the max-
imum number of possible subgraphs that match M in G is∏mC

i=1 ni, where ni is the number of possible groundings for
query variable vi. Let P (e | G) denote the probability of a
hyperedge being present in G, then the count of the number
of matches ofM in G is also the clause count, #(C | θ):

P (M)
∏

v ∈VM

nv =

[∏
e∈EM

P (e | G)

]
·

[∏
v ∈VM

nv

]
(1)

Intuitively, P (e | G) is the fractional predicate count that
is the ratio of the predicate count given the partial substitu-
tions, to number of groundings of non-substituted variables.

Example. The probability P (Teaches(Amy, c, t) | G) can
be computed as the number of courses that Amy has taught
across all terms divided by the cross-product of the free vari-
ables (c and t) (total number of possible courses times the
number of possible terms). Using the partial substitution

Figure 3: The motif M ≡ ra(v1, v3) ∧ rb(v2, v3) ∧
rc(v3, v4) ∧ rd(v4, v5, v6). Note that rd is a hyperedge for
the ternary relation rd(v4, v5, v6).

θ = { p/Amy } we have, P (Teaches(Amy, c, t) | G) =
#(Teaches(p,c,t)|θ)

#(c)·#(t) . In Fig. 1, this is 4/(3 · 2) = 2/3.

Expression (1) presents the expected count. If P (M) is
computed exactly, we retrieve the true counts. Since that is
intractable we find an approximation.

To understand the intuition behind approximating P , con-
sider the motif in Figure 3. The maximum number of times
this motif can be present in the ground graph is

∏
v ∈VM nv .

The presence of each hyperedge e ∈ G is a Boolean con-
cept (i.e., present or absent in G). Without loss of generality,
the joint distribution P (ra, rb, rc, rd) for Fig 3 is,∏
e∈M

P (e | G) = P (ra) · P (rb) · P (rc | ra, rb) · P (rd | rc).

Thus, we now view identifying a motif in a graph as a search
in a directed model with Boolean variables, where finding
an edge depends on the previous edge being found. Note that
when any of the edges is absent, the motif will not be present
in the grounded graph, and this joint probability is automati-
cally driven to 0. The above expression resembles estimating
local models, which is commonly done in standard graphical
model estimation. In our case, we further approximate each
of these conditional distributions using summary statistics.

Reverting to (1), the first term is the product of the indi-
vidual edge distributions conditioned on the incoming edge,
and the second term is the cross-product of the total num-
ber of groundings of the query (ungrounded) variables in the
motif. The second term is computed a single pre-processing
step, followed by caching. For the first term, we employ
summary statistics to approximate this distribution.

Approximation of P
Summary Computation: In order to approximate the
joint distribution P , we employ graph summaries simi-
lar to the ones used in relational database query engines
for cardinality estimation (Schiefer, Strain, and Yan 1998;
Neumann and Moerkotte 2011; Seputis 2000). Note that
these summaries must be selected at the appropriate level
of granularity. For instance, finely-grained summaries will
correspond to searching the entire database, while highly-
aggregated summaries, on the other hand, such as average
in-degree and out-degree can lead to poor approximations.
Thus, we compute three summaries: (1) node and edge fre-
quencies, (2) node in- and out-degrees, and (3) dependency
summaries from hypergraph G = (VG , EG):
TYPESUM: The type summary captures frequencies of
node and edge types. Recall that every node in G corre-
sponds to an entity type, and every edge to a relation type

(edge label or predicate name). Let T be the set of entity
types, andR the set of predicate types. With the TypeOf(·),
which returns the node (variable) and edge (relation) types,
type summaries ∀ Ti ∈ T and ∀ Rj ∈ R are:

#(Ti) = # { v | v ∈ VG , TypeOf(v) = Ti } , (2)
#(Rj) = # { e | e ∈ EG , TypeOf(e) = Ri } . (3)

DEGREESUM: Degree summaries are the frequencies of in-
coming and outgoing edges of every node grouped by edge
labels. IncomingEdgesG(v) and OutgoingEdgesG(v) repre-
sent the sets of incoming and outgoing edges of v in G. The
degree summaries ∀ v ∈ VG and ∀ Rj ∈ R are:

InG(v | Rj) = # { e | e ∈ IncomingEdgesG(v),

TypeOf(e) = Rj } ,
(4)

OutG(v | Rj) = # { e | e ∈ OutgoingEdgesG(v),

TypeOf(e) = Rj } .
(5)

DEPENDENCYSUM: Most broadly, we seek to summarize
all the possible dependencies for a relation Rj : P (Rj |
R \ Rj), that is, the dependency of a Rj on all other rela-
tions R \ Rj , which is computationally expensive. Given z
relation types in R, we instead construct a z × z pairwise
dependency matrix, ∆, whose (i, j)-th element is δij =
P (Ri | Rj), ∀ i, j = 1, . . . , z. For a pair of relations Ri
and Rj , P (Ri | Rj) is estimated by sampling paths of length
2 from Rj → Rk. We use these paiwise dependency val-
ues for approximation. This matrix is not symmetric, since
P (Ri | Rj) will not be the same as P (Rj | Ri), except under
some specific circumstances.

The summary statistics (S) are pre-computed for a ground
hypergraph G, and approximate the local distributions:

S = [{#(Ti)}Ti∈T , #(Rj)}Rj∈R,
{ InG(v | Rj) }Rj∈R, {OutG(v | Rj) }Rj∈R,
∆ ≡ {P (Ri | Rj) }zi,j =1].

The computation of S is performed once as a pre-processing
step. The counts for any subsequent query motifM are com-
puted by estimating local edge distributions using S, without
explicitly searching through G. We now explain these cases.

(a) Unary/Loop (b) Binary/Edge

(c) Ternary/Hyperedge

Figure 4: Partial grounding in edges (Solid=ground).
Computation of local distributions: The local distribution
P (e) of an edge e with no dependencies in a motif M, is

computed based on grounding of the nodes connected by
the edge. For a unary relation or a directed loop such as in
Fig. 4(a), we have P (e) = #(Re)

#(Tx)
when fully lifted. Here,

Tx = TypeOf(x), the entity-class of node x, and

P (e | θx) =

{
1, if e ∈ G, whenθx = {Tx/x},
0, otherwise.

For the binary case, fully lifted and fully grounded scenarios
are computed similarly, with P (e) = #(Re)

#(Tx)·#(Ty)
, and

P (e | θxy) =

{
1, if e ∈ G, whenθxy = {Tx/x, Ty/y},
0, otherwise.

Partial groundings, as shown in Fig. 4(b) (bottom), are com-
puted via degree summaries:

P (e | θy) =
InG(y | e)
#(Tx) · 1

, whenθy = {Ty/y},

P (e | θx) =
OutG(y | e)
1 ·#(Ty)

, whenθx = {Tx/x}.

While the above distributions can be computed exactly, it
is not as straightforward for n-ary relations, which result in
hyperedges as shown in Fig. 4(c). The fully lifted and fully
grounded scenarios are similar to the above cases, but han-
dling partial grounding needs several assumptions:

1. Since, edge directions in an n-hyperedge are not always
intuitively clear and may be domain dependent, we follow
a partial ordering protocol described earlier.

2. Since for n > 2 there can be multiple combinations of
partial grounding (shown in Fig. 4(c)) and it is intractable
to summarize wrt. each, we assume independence among
distributions with respect to each grounded node.

When one or more source nodes are grounded θx,y =
{Tx/x, Ty/y} (bottom middle in Fig. 4(c))

P (e | θx,y) =

(
OutG(x | e)
1 · 1 ·#(Tz)

)
·
(

OutG(y | e)
1 · 1 ·#(Tz)

)
.

However, if the sink node is grounded θZ = {Z/z}, as
show bottom right in Figure 4(c): [P (e | θz) = InG(z |
e)/ (#(Tx) ·#(Ty) · 1)].

The conditional distribution of an edge preceded by other
incoming edges is accessed directly from the conditional de-
pendency matrix, ∆. Note that ∆ only captures pairwise de-
pendencies and computation of arbitrary dependencies can
happen under certain assumptions and properties.
[Independence among incoming edges on same source].
In the motif M, if multiple incoming edges R1, . . . , Rj are
incident on the source node v of the edge Rk, then the depen-
dency P (Rk | R1, . . . , Rj) factorizes into

∏j
i=1 P (Rk | Ri),

making the effect of all preceding edges independent of each
other. This assumption is justified, from a database perspec-
tive where relational joins using the join same attribute are
processed independently.
[Independence due to grounded node]. Two edges in a
PGSM sharing a common node are rendered independent of
each other when the shared node is already instantiated.

Algorithm 1 MACH: Motif-based Approximate Counting
via Hypergraphs

1: procedure MACH(Clause C, Hypergraph G, Substitution θ,
Summary statistics S)

2: M(VM, EM)← CONSTRUCTMOTIF(C | θ)
3: for v ∈ VM do . Count node groundings, nv

4: if v ∈ θ then . v is grounded in θ
5: nv ← 1
6: else . v is a variable in θ
7: nv ← #(TypeOf(v)) . All values of v
8: end if
9: end for

10: χ(M)←
∏

v∈VM
nv . Cartesian product

11: P (M)← APPROXJOINT(M,θ,G, S) . See Alg 2
12: return χ(M) · P (M) . As given by Eqn (1)
13: end procedure

[Independence among incoming on different source]. For
an n-ary hyperedge, where multiple incoming edges are in-
cident on different source nodes, we assume a similar factor-
ization though the independence property no longer holds,
since, constructing summaries for arbitrary dependencies is
intractable. While this is a strong assumption, in many prac-
tical domains, this leads to significant efficiency gains while
preserving performance (see experiments).

[Incoming edge to sink is not considered for conditional
dependency]. Figure 3 clearly shows, that rb being incom-
ing on the sink node v3 of ra P (ra | rb). However, rc
considers both ra and rb as incoming, resulting in P (rc |
ra, rb). Note that, the idea generalizes to any arity.

The Algorithm: Algorithm 1 presents MACH: Motif-
based Approximate Counting via Hypergraphs. As pre-
processing, grounded hypergraphs are constructed and sum-
marized (TYPESUM, DEGREESUM, DEPENDENCYSUM).
Subsequently, for every clause, a motif is constructed and
counted (using the detailed procedure APPROXJOINT pre-
sented in Algorithm 2).

Algorithm 2 outlines the computation of the joint distribu-
tion P (M) for a given PGSMM. The APPROXJOINT pro-
cedure accepts a motif M, the partial substitution θ of the
motif, the ground hypergraph of assertions/facts G and the
summaries S constructed in the pre-processing step as the
arguments and then iteratively analyzes each (hyper)edge in
M (∀e ∈ EM) [lines 3-38]. At any iteration with respect to a
given (hyper)edge e, containers Q and V store the nodes (of
e) which are lifted/query or instantiated/grounded, respec-
tively, based on θ [lines 4-5].

The 3 important cases – e (1) is fully grounded, (2) fully
lifted or (3) partially grounded, are handled explicitly in this
procedure. [CASE 1:] When e is fully grounded (i.e. con-
tainer Q is empty), probability of edge P (e) is set to 0/1
based on whether e|θ ∈ EG [lines 7-12]. [CASE 2:] When
e is fully lifted (i.e. container V is empty), P (e) is com-
puted as a ratio of summarized frequency of the relation type
Re and the Cartesian product of the query/lifted nodes in
Q, if e has no dependencies. The frequency estimates are
accessible from TYPESUM. In case there are dependencies
(incoming edges on nodes of Q) conditionals are accessed

Algorithm 2 Product of local distributions
1: procedure APPROXJOINT(Motif M, Substitution θ, Hyper-

graph G, Summary statistics S)
2: P (M)← 1.0 . Initialize joint distribution
3: for e ∈ EM do . For each edge in the motif
4: Q ← QUERYNODESOF(e | θ)
5: V ← GROUNDNODESOF(e | θ)
6: P (e)← 1 . Initialize edge probability
7: ifQ = ∅ then . e | θ is fully grounded
8: if e ∈ EG then
9: P (e)← 1 . e exists in bothM and G

10: else
11: P (e)← 0 . e does not exist in G
12: end if
13: else if V = ∅ then . e | θ is fully lifted
14: if EQ = IncomingEdgesM(v) = ∅ then

. v ∈ Q
15: P (e)← #(Re)/

∏
v∈Q nv . From S

16: else
17: P (e)←

∏
Q
∏

f∈EQ
P (Re | Rf) . From S

18: end if
19: else . e | θ is partially grounded
20: O, i← ORDER(V ∪ Q, θ)
21: for v ∈ V do . For each grounded node
22: if v ∈ O then . Source nodes, O
23: p← OutG(v)/

∏
v∈Q nv . From S

24: else . Sink node, i
25: p← InG(v)/

∏
v∈Q nv . From S

26: end if
27: P (e)← P (e) · p
28: end for
29: for q ∈ Q do . For each query node
30: Eq ← IncomingEdgesM(q)
31: if Eq 6= ∅and q ∈ O then

. Source nodes, O
32: p←

∏
f ∈Eq P (Re | Rf) . From S

33: end if
34: P (e)← P (e) · p
35: end for
36: end if
37: P (M)← P (M) · P (e)
38: end for
39: return P (M)
40: end procedure

from DEPENDENCYSUM ∀v ∈ Q and multiplied together2,∏
f∈EM\e P (Re | Rf), [lines 13-18]. Finally, CASE 3, e be-

ing partially grounded (Q 6= ∅& V 6= ∅), requires a more in-
volved analysis [lines 20-35]. Determining the partial-order
of the nodes of e is important when computing probability of
the partially-grounded (hyper)edge e. O and i maintains the
index over all source nodes and sink node respectively [line
20]. First we inspect all grounded nodes of e (i.e. V). Since
a grounded node nullifies any possible dependency, we need
not worry about conditionals. If a grounded node v ∈ V is a
source node v ∈ O, temporary distribution p w.r.t. v is given
by the ratio of the out-degree of v, OutG(v), to the Carte-
sian product of the type frequencies of all the lifted/query
nodes. In case of a sink node, v ∈ i, the ratio is with the

2Due to properties and assumptions on independence among
pairwise conditionals detailed earlier.

in-degree of the node, since the (hyper)edge e is assumed
to be partially directed from the source nodes to the sink
node. Note that v here is grounded, i.e. and actual entity is
in G and the degree estimates are accessible from S, specif-
ically DEGREESUM. P (e) is then updated with the product
of the temporary distribution of all v ∈ V [lines 21-28]. Fi-
nally, we inspect all lifted/query nodes of e (q ∈ Q). For
any query node q, iff it is a source node (refer to properties
& assumptions), the temporary distribution p is computed as
the product of the conditionals with respect to all incoming
edges on q (

∏
f ∈Eq P (Re | Rf), where f ∈ Eq is an incom-

ing edge on q and Rf is its relation type). Again, P (e) is
updated with the product of temporary distributions of all
q ∈ Q [lines 29-35]. P (M) is thus the product of all the
factors i.e. the edge distributions.
Theoretical properties: MACH is aimed at efficient and
performance-preserving count approximations of satisfied
groundings of logical clauses in Statistical Relational mod-
els. Efficiency is the key aspect of the approximation strat-
egy. Note, there are two distinct phases in our approach - (1)
Pre-processing phase including construction of the ground
hypergraph of assertions G and summary S, and (2) Com-
puting APPROXJOINT phase. While, pre-processing has an
asymptotic time complexity of O(n2. |R| + n), where n is
the number of assertions/facts given and |R| is the number
of distinct relation types in the domain, it is computed only
once for a data set and is thus inconsequential.

Complexity of APPROXJOINT, however, is crucial since
it is called arbitrary number of times during structure / pa-
rameter learning and inference. Assuming that the summary
statistics S can be accessed efficiently, if we denote the max-
imum length of a conjunctive clause/motif as k, maximum
arity of the clause/motif as A and maximum in-degree of a
node in the motif as d, then the asymptotic time complexity
of APPROXJOINT for any given motifM isO(k.A.d). Most
SRL systems work with reasonably small clause lengths for
tractability, making k a constant. Hence, the effective com-
plexity reduces to O(A.d). Cartesian product of the nodes
inM (

∏
v ∈VM nv) is a single operation requiring constant

time and is inconsequential.
Performance-preserving approximation requires that

there should be negligible change (deterioration) in the
predictive performance of an SRL model compared to its
original performance with exact counts. Our evaluation
results in the following section show how MACH adheres to
our claim. A PAC analysis for approximation error bounds
is an interesting future research direction.

Experimental Evaluation
We investigate the following questions: (Q1) Is MACH ef-
fective and efficient in full model learning with n-ary rela-
tions compared to a robust baseline? (Q2) Is modeling n-ary
relations faithfully crucial when learning relational model?
and (Q3) How does MACH compare (scaling vs. perfor-
mance) to a state-of-the-art database-centric MLN system?

System: We implemented MACH3 using Java-based Hy-
pergraphDB architecture (Iordanov et al. 2010), which fa-

3Code available @ https://github.com/mayukhdas/MACH

cilitates construction, operations and persistence of hyper-
graphs. All database operations related to MACH are done
via carefully designed Java methods using the APIs. MACH
is a pluggable independent module that can be seamlessly
integrated with any Java-based SRL system that uses counts.
Baselines: To evaluate the effectiveness and efficiency
of MACH on full structure and parameter learning of
MLNs, we compared against the following baselines:
(1) FACT (Das et al. 2016), which approximates counts
via message-passing on normal multi-graphs, integrated
with MLN-Boost and (2) basic MLN-Boost, the vanilla
implementation of boosted structure and parameter learner
for MLNs (Khot et al. 2011), the state-of-the-art in MLN
(full) model learning without count approximations. It is
reasonable to expect comparison against scalable learn-
ing of MLNs (Venugopal, Sarkhel, and Gogate 2015;
Sarkhel et al. 2016). However, they cannot handle partial
groundings without an exponential blow-up in model /
database size since they resort to creating new predicates
for every grounding in a clause.
Data Sets: We used three standard SRL data sets: UW-CSE,
Citeseer and WebKB, a biomedical data set Carcinogen-
esis (Srinivasan et al. 1997), and an NLP/Information-
Extraction(IE) data set NELL-Sports for evaluation.
UWCSE is a relation-extraction/link-prediction task over
an anonymized representation of staff, students and faculty
of 5 different computer science departments; the target is
to predict the AdvisedBy relation between faculty and
students. Citeseer is a citation data set for IE, where the
target is to predict which field a paper belongs to based on
the title. WebKB is a consolidated data set of links among
the departmental web pages of 4 universities, and the target
is to predict if a web page is a faculty page. Carcinogen-
esis is biomedical data set of the structures of chemical
compounds (drugs), and the task is to predict if they are
carcinogenic. NELL (Carlson et al. 2010) is a system that
extracts information from online text, and converts them
into a probabilistic knowledge base. NELL-Sports is NELL
data from the sports domain consisting of information about
players and teams. The task is to predict whether a team
plays a particular sport.
Measures: We computed AUC-ROC, AUC-PR, CLL, F1
and running times averaged over 5 random train/test splits.
(Q1: full model learning) Table 1 summarizes the perfor-
mance and efficiency results of MACH against the baselines
for structure and parameter learning of MLNs. It is clearly
evident that there is no real deterioration in predictive per-
formance due to count approximation in MACH (across all
data sets) compared to MLN-Boost. However, MACH sub-
stantially beats the baselines on efficiency (learning time),
especially on larger data sets such as Citeseer, where it is
about 4 times faster. Even on smaller data sets such as UW-
CSE and WebKB, the difference in learning times, though
not as large, is still sizable. This answers (Q1) affirmatively.
(Q2: n-ary relations) All data sets except WebKB and
NELL-Sports contain several ternary relations. On such data
sets we run FACT by decomposing n-ary relations into

(
n
2

)
binary relations with the order of the arguments aligned with
the order in the original relation. We decompose a relation

https://github.com/mayukhdas/MACH

Table 1: Results: Performance vs. Efficiency (running time for Learning and Inference in seconds). ** indicates n-ary predicates.
Performance Efficiency

Data Sets Methods AUC–ROC AUC–PR CLL F1 L-Time [s] I-Time [s]

UWCSE∗∗
MACH 0.981 0.337 -0.133 0.217 13.2 5.1
FACT 0.500 0.0068 -0.061 NaN 7.48 2.8

MLN-Boost 0.998 0.361 -0.134 0.227 27.5 9.4

Citeseer**
MACH 0.998 0.989 -0.173 0.973 10837 12.52
FACT 0.97 0.92 -0.256 0.934 11042 12.45

MLN-Boost 0.999 0.998 -0.059 0.977 42499 27.42

Carcinogenesis**
MACH 0.525 0.568 -0.811 0.328 108.48 1.8
FACT 0.500 0.550 -0.704 NaN 102.5 1.5

MLN-Boost 0.587 0.572 -0.902 0.489 153.84 2.37

WebKB
MACH 1.0 1.0 -0.049 1.0 5.8 0.757
FACT 1.0 1.0 -0.076 1.0 5.97 0.797

MLN-Boost 1.0 1.0 -0.075 1.0 8.13 0.896

NELL-Sports
MACH 0.78 0.65 -1.43 0.65 253.92 1.03
FACT 0.76 0.64 -1.38 0.65 238.07 2.01

MLN-Boost 0.78 0.66 -0.55 0.68 396.24 2.20

Table 2: Performance vs. Efficiency (running time for
Inference in seconds) compared against Tuffy.

Data Sets System AUC-ROC I-Time [s]

UW-CSE MACH 0.892 20.06
Tuffy 0.877 37.11

Carcinogenesis MACH 0.524 199.8
Tuffy 0.560 944.98

R(v1, . . . , vn), n > 2 as {Rij(vi, vj)}, (i < j), that is
i ∈ [1, n), j ∈ (i, n]. We modify the assertions based on the
new relations as well. Observe that, though the efficiency
gain is equivalent to (and at times better than) MACH, there
is a significant deterioration in performance, especially on
the relatively smaller data sets. In the case of a large data
set such as Citeseer, the performances are relatively similar
since the number of spurious assertions introduced by the
decomposition of n-ary relations are negligible compared to
the sheer size of the original data set. In contrast, this size
difference is not prevalent in smaller data sets, which results
in worse predictive performance compared to MLN-Boost
and MACH. Thus, it is critical that n-ary relations are repre-
sented faithfully, which answers (Q2) affirmatively.
(Q3: HypergraphDB versus DB) In order to evaluate
against a database-centric MLN system, we compared
MACH with Tuffy (Niu et al. 2011). While Tuffy is a ro-
bust MLN engine integrated with PostgreSQL RDBMS, an
unbiased comparison with our system is challenging. This
is because, although Tuffy has no restrictions on the type
(discriminative vs. generative) of MLNs (unlike MLN-Boost
which can only represent discriminative MLNs via Horn
clauses), it does not support structure learning (which MLN-
Boost can perform, simultaneously with parameter learn-
ing). In order to keep the comparison fair, we learn MLNs
via MLN-Boost, convert it into Tuffy format, and then com-
pare the inference performance and efficiency with MACH.
MACH was integrated with the inference engine of MLN-
Boost directly. Table 2 summarizes the results. Observe how
MACH shows significant gain in efficiency, while being at
par with Tuffy’s performance. Since Tuffy reports time in-

clusive of setup and post-processing, we did the same for
MACH. Note that inference time of MACH for UW-CSE
is 20.06 sec., which is almost twice as fast as Tuffy, in-
cludes the setup and hypergraph construction and summa-
rization time of 13.26 sec. On Carcinogenesis we observe
that MACH is approximately 5 times as fast (w/ 192.2 s.
setup time). The performances are almost equivalent, though
the inference algorithms are different. This allows us to an-
swer (Q3) affirmatively. Finally, note that Tuffy infers on all
possible instances of the target. For fair comparison we de-
activate sub-sampling of negative examples in MLN-Boost.

Conclusion
We present a method for approximating counts of logical
rules in SRL models via transforming both the clauses and
the full set of groundings into a hypergraph. We showed how
counting the number of subgraphs in these hypergraphs cor-
respond to counting the number of groundings in the SRL
model. We presented the use of summary statistics to ap-
proximate this count. There are several possible directions
to extend our work - first is more rigorous evalation on large
data sets across other models. Second is that is while in our
work we consider only conjunctions, extending the idea to
count over arbitrary clauses. Finally, combining our method
with methods such as FROG (Shavlik and Natarajan 2009)
that eliminates trivial groundings of clauses can potentially
allow our algorithm to be employed in real large data sets.

Acknowledgements
MD, GK & SN gratefully acknowledge the support of CwC
Program Contract W911NF-15-1-0461 with the US Defense
Advanced Research Projects Agency (DARPA) and the
Army Research Office (ARO). DSD acknowledges the Na-
tional Institute of Health (NIH) grant no. R01 GM097628.
Any opinions, findings and conclusion or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the view of the DARPA, ARO or the US
government. Parts of this work grew out of discussions of
KK within the DFG Research Training Group GRK 1994.

References
Berge, C., and Minieka, E. 1973. Graphs and hypergraphs.
North-Holland Publishing Company Amsterdam.
Bhaskara, A.; Charikar, M.; Chlamtac, E.; Feige, U.; and Vi-
jayaraghavan, A. 2010. Detecting high log-densities: An
O(N 1

4) approximation for densest K-subgraph. In SOTC.
Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hr-
uschka Jr, E.; and Mitchell, T. 2010. Toward an architecture
for never-ending language learning. In AAAI.
Corby, O.; Dieng, R.; and Hébert, C. 2000. A conceptual
graph model for W3C resource description framework. In
ICCS.
Das, M.; Wu, Y.; Khot, T.; Kersting, K.; and Natarajan, S.
2016. Scaling Lifted Probabilistic Inference and Learning
Via Graph Databases. In SDM.
Demeyer, S.; Michoel, T.; Fostier, J.; Audenaert, P.; Pick-
avet, M.; and Demeester, P. 2013. The index-based subgraph
matching algorithm (ISMA): Fast subgraph enumeration in
large networks using optimized search trees. PLOS One.
Domingos, P., and Lowd, D. 2009. Markov Logic: An Inter-
face Layer for AI. M & C.
Dudek, A.; Frieze, A.; Ruciski, A.; and ileikis, M. 2013.
Approximate counting of regular hypergraphs. Information
Processing Letters.
Dudek, A.; Karpinski, M.; Ruciński, A.; and Szymańska,
E. 2014. Approximate counting of matchings in (3,3)-
hypergraphs. In Algorithm Theory – SWAT 2014.
Feng, F.; He, X.; Liu, Y.; Nie, L.; and Chua, T.-S. 2018.
Learning on partial-order hypergraphs. In WWW.
Fürer, M., and Kasiviswanathan, S. P. 2014. Approximately
counting embeddings into random graphs. Combinatorics,
Probability and Computing.
Getoor, L., and Taskar, B. 2007. Introduction to Statistical
Relational Learning. MIT Press.
Iordanov, B.; Vandev, K.; Costa, C.; Marinov, M.; Saraiva de
Queiroz, M.; Holsman, I.; Picard, A.; and Bogdahn, I. 2010.
HyperGraphDB 1.3.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
Belief Propagation. In UAI.
Khot, T.; Natarajan, S.; Kersting, K.; and Shavlik, J. 2011.
Learning Markov logic networks via functional gradient
boosting. In ICDM.
Neumann, T., and Moerkotte, G. 2011. Characteristic sets:
Accurate cardinality estimation for rdf queries with multiple
joins. In ICDE.
Niu, F.; Ré, C.; Doan, A.; and Shavlik, J. W. 2011. Tuffy:
Scaling up Statistical Inference in Markov Logic Networks
using an RDBMS. PVLDB.
Poole, D. 2003. First-Order Probabilistic Inference. In IJ-
CAI.
Raedt, L. D.; Kersting, K.; Natarajan, S.; and Poole, D.
2016. Statistical relational artificial intelligence: Logic,
probability, and computation. Synthesis Lect. on AI & ML.

Ravkic, I.; Znidarsic, M.; Ramon, J.; and Davis, J. 2018.
Graph sampling with applications to estimating the number
of pattern embeddings and the parameters of a statistical re-
lational model. Data Min. Knowl. Discov. 32.
Sarkhel, S.; Venugopal, D.; Pham, T.; Singla, P.; and Gogate,
V. 2016. Scalable training of Markov logic networks using
approximate counting. In AAAI.
Schiefer, B.; Strain, L. G.; and Yan, W. P. 1998. Method for
estimating cardinalities for query processing in a relational
database management system. US Patent 5,761,653.
Seputis, E. A. 2000. Database system with methods for per-
forming cost-based estimates using spline histograms. US
Patent 6,012,054.
Shavlik, J., and Natarajan, S. 2009. Speeding up inference in
Markov logic networks by preprocessing to reduce the size
of the resulting grounded network. In IJCAI.
Slota, G. M., and Madduri, K. 2013. Fast approximate sub-
graph counting and enumeration. In Intl. Conf. on Parallel
Processing.
Srinivasan, A.; King, R. D.; Muggleton, S. H.; and Stern-
berg, M. 1997. Carcinogenesis predictions using ILP. In-
ductive Logic Programming.
Stocker, M.; Seaborne, A.; Bernstein, A.; Kiefer, C.; and
Reynolds, D. 2008. Sparql basic graph pattern optimiza-
tion using selectivity estimation. In WWW.
Vadhan, S. P. 2001. The complexity of counting in sparse,
regular, and planar graphs. SICOMP.
Valiant, L. G. 1979. The complexity of enumeration and
reliability problems. SICOMP.
Venugopal, D.; Sarkhel, S.; and Gogate, V. 2015. Just count
the satisfied groundings: Scalable local-search and sampling
based inference in MLNs. In AAAI.

	Introduction
	Background and Related Work
	Approximate Counting via Hypergraphs
	Conversion to Hypergraphs
	Approximate Counting via PGSMs
	Approximation of P

	Experimental Evaluation
	Conclusion

