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Abstract. We propose a novel approach for incorporating prior
knowledge into the online binary support vector classifica-
tion problem. An existing advice-taking approach, when prior
knowledge is in the form of polyhedral knowledge sets in input
space of data, is via knowledge-based support vector machines (KB-
SVMs). We adopt the formalism of passive-aggressive algo-
rithms to derive an online version of KBSVMs when the advice
is fixed for every learning round. The goal is to successively
update the decision function taking into account prior knowl-
edge in the form of soft polyhedral advice so as to make increas-
ingly accurate predictions on subsequent rounds. The advice
helps speed up and bias learning so that better generalization
can be obtained with less data.

Adding Knowledge to SVMs

Polyhedral knowledge sets in the input space of data, can be
added to SVMs via knowledge-based support vector machines
(KBSVMs) [FMS03]. The knowledge sets typically char-
acterize an area of input space as belonging to one of the
two classes and the advice is labeled: z = ±1.

Knowledge is specified using Dx ≤ d ⇒ z(w′
x − γ) ≥ 1.

This means every point x ∈ Dx ≤ d lies above w
′
x−γ = 1

(if labeled z = 1) or below w
′
x−γ = −1 (if labeled z = −1).
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Using theorems of the alternative, the logical implication can
be reformulated as constraints, where prior knowledge is
characterized by the knowledge variables, u:

D′
u + z w = 0, −d′u − z γ ≥ 1, u ≥ 0.

Soft advice can be allowed by relaxing the constraints:

D′
u + z w + η = 0, −d′u − z γ + ζ ≥ 1, u ≥ 0.

Online Knowledge-Based SVMs

There are m labeled knowledge sets (Di, d
i, zi)

m
i=1, and at

round t, the algorithm receives labeled data, (xt, yt). We use
the passive-aggressive approach [CDK+06], in which updates
are only computed if the loss of the data point (xt, yt) with
respect to the current hypothesis w

t is non-zero.

At round t, given w
t and u

i,t, the updates, (wt+1,ui,t+1), can be
computed as the optimal solution to

arg min
w,ui,ξ,ηi,ζi
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This formulation, unlike most passive-aggressive ap-
proaches, has no closed form solution.

Learning with Fixed Advice

If advice does not change during learning (ui is fixed), we
have the reduced problem of updating w

t+1 using w
t if we

minimize
w,ξ,ηi
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D′
iu

i + ziw + ηi = 0, i = 1, . . . ,m. (advice)

The objective minimizes a proximal term (requiring that w
t+1

be close to w
t), the squared-loss with respect to data (ξ2), and

squared-loss with respect to advice (‖ηi‖2). Denoting the mul-
tipliers for data and advice constraints α and βi, we have

the closed-form update: w
t+1 = w

t + αytx
t +

m
∑

i=1

ziβ
i.

Let r
i = −ziD

′
iu

i, which represents information about each
advice set as a point in the hypothesis space. The cen-
troid of these points, the average advice, is r

t = 1
m

∑m
i=1 r

i.
Eliminating βi, the update can be expressed as a convex
combination of estimates according to the data and advice,

w
t+1 = ν(wt + αtytx

t) + (1 − ν)rt, ν = 1/(1 + mµ)

where ν ∈ [0, 1] controls the learning rate according to the
advice. If ν = 1, the update is same as derived in [CDK+06].

Learning Algorithm
Data: At each round t, a new labeled data point (xt, yt),

Labeled advice sets Dix ≤ d
i =⇒ ziw

′
x ≥ 1, i = 1, . . . ,m,

Aggressiveness parameters λ, µ > 0 and ν = 1/(1 + mµ)

Input: u
i,1 learned from advice only by sampling, w1 = 0

foreach (xt, yt) do1

predict label ŷt = sign(wt′
x

t)2

receive correct label yt3

suffer loss ℓt = max
(

1 − ν ytw
t′
x

t − (1 − ν) ytr
t′
x

t, 0
)

4

update hypothesis using w
t and r

t
5

αt = ℓt/(1
λ + ν‖xt‖2

2),

w
t+1 = ν (wt + αt ytx

t ) + (1 − ν) rt

Here, ℓt is the hinge loss applied to a convex combination of
distance of x

t from the current hypothesis and distance from
the advice-estimate of the hypothesis.

Numerical Results

Training was performed on 20 randomized runs of the syn-
thetic data set in the figure to the left, with λ = 10−3 and dif-
ferent values of µ. The results below show the average test
error on a hold-out set.
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mu = 0 (no advice)
mu = 0.0001
mu = 0.001
mu = 0.01
mu = 0.1

For small µ, the results are identical to µ = 0 (no advice), with
slow convergence. For large µ, there is an initial rapid con-
vergence, but to a less optimal hypothesis that is dominated
by advice rather than data. An optimal choice of µ ( = 10−3)
balances both these objectives.
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