
Learning from Human Teachers:  
Issues and Challenges for ILP in Bootstrap Learning 

Sriraam Natarajan1, Gautam Kunapuli1, Richard Maclin2, David Page1,  

Ciaran O'Reilly3, Trevor Walker1 and Jude Shavlik1 
1
University of Wisconsin-Madison 

Department of Biostatistics 

{natarasr, kunapg, page, walker, 
shavlik}@biostat.wisc.edu 

2
SRI International 

Artificial Intelligence Center 

ciaran.oreilly@sri.com 

3
University of Minnesota, Duluth 

Department of Computer Science 

rmaclin@d.umn.edu 
 

ABSTRACT 

Bootstrap Learning (BL) is a new machine learning paradigm that 

seeks to build an electronic student that can learn using natural 

instruction provided by a human teacher and by bootstrapping on 

previously learned concepts.  In our setting, the teacher provides 

(very few) examples and some advice about the task at hand using 

a natural instruction interface.  To address this task, we use our 

Inductive Logic Programming system called WILL to translate the 

natural instruction into first-order logic.  We present approaches 

to the various challenges BL raises, namely automatic translation 

of domain knowledge and instruction into an ILP problem and the 

automation of ILP runs across different tasks and domains, which 

we address using a multi-layered approach.  We demonstrate that 

our system is able to learn effectively in over fifty different 

lessons across three different domains without any human-

performed parameter tuning between tasks. 

Categories and Subject Descriptors 

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – 

logic programming. 

General Terms 

Algorithms, Design, Reliability, Experimentation, Human Factors. 

Keywords 

inductive logic programming, bootstrap learning, learning with 

advice, human teachers, automating setup problem 

1. INTRODUCTION 
One of the long cherished goals of Artificial Intelligence (AI) is to 

design agents that learn by interacting with humans, performing 

actions, receiving guidance and/or feedback from the human and 

improving its performance[3]. Traditional supervised learning 

approaches treat learning as a problem where some problem-

dependent criteria (such as learning error, possibly combined with 

other means to control the inductive bias) is optimized given 

labeled examples.  

Bootstrap Learning (BL) is a new learning paradigm proposed by 

Oblinger [5] which views learning as knowledge acquisition. The 

electronic student assumes all relevant knowledge is possessed by 

the teacher who teaches through human-like natural instruction 

methods including providing domain descriptions, pedagogical 

examples, telling of instructions, demonstration and feedback. In 

addition to teacher instruction, the student learns concepts that 

build upon one another through a “ladder” of lessons; lower rungs 

of the lesson ladder teach simpler concepts which are learned first 

and bootstrap (i.e., are used to learn more complex concepts).  

The electronic student, called MABLE, the Modular Architecture 

for Bootstrap Learning Experiments [9] addresses the 

aforementioned limitations of the classical learning paradigm. 

First, MABLE consists of several different learning algorithms, 

which it is able to employ depending on the concept being taught 

and hence can learn a diverse range of tasks across different 

domains. Second, by virtue of the abstracted natural instruction 

and its ability to bootstrap complex behaviors, MABLE can be 

taught by non-programmers and non-experts. Thus, while 

traditional learning specializes by domain, BL specializes by the 

various natural instruction methods. 

In this paper, we focus on one particular modality of teacher 

input: instruction by example, including teacher hints about 

specific examples. We use a logic-based approach that creates 

learned models expressed in first-order logic, which is called 

Inductive Logic Programming (ILP) [4]. ILP is especially well-

suited for the “learning from examples” component in MABLE for 

two reasons.  First, it can use a rich knowledge base that may have 

been provided to the learner initially or may have been 

learned/augmented during earlier lessons. Second, the declarative 

representation of both examples and learned rules makes it easier 

for the teacher and student to communicate about what has been 

learned so far; for example, a teacher can identify and correct 

student mistakes from earlier lessons.  Similarly, the use of logic 

allows for sharing lessons of learned knowledge between modules 

that learn from different kinds of instruction. 

This paper makes four key contributions:  First, we present an ILP 

based system that learns from a human teacher in the presence of 

a very small number of examples.  Second, we present the first of 

its kind methodology to automatically setup ILP runs that do not 

require intervention by an ILP expert (or any human for that 

matter).  Third, is our algorithm that converts human advice and 

feedback into sentences written in first-order logic that are then 

used to guide the ILP search.  The final and a very important 

contribution is the evaluation of the system in 5 different domains 

with teaching lessons for over 50 different concepts and where the 

 

Cite as: Learning from Human Teachers: Issues and Challenges in 

Bootstrap Learning, Sriraam Natarajan, Gautam Kunapuli, David Page, 

Trevor Walker, Ciaran O'Reilly and Jude Shavlik, Proc. of 9th Int. Conf. 

on Autonomous Agents and Multiagent Systems (AAMAS 2010), van der 

Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, 

Toronto, Canada, pp. XXX-XXX. Copyright © 2010, International 

Foundation for Autonomous Agents and Multiagent Systems 

(www.ifaamas.org). All rights reserved. 

 

1 1300 University Avenue, Medical Sciences Center, Madison WI 53705 
2 333 Ravenswood Avenue, Menlo Park CA 94025 
3 320 Heller Hall, 1114 Kirby Drive, Duluth MN 55812 



correct concepts are learned without any modification of our 

algorithm between the lessons. Our computerized student is 

scored based on several test examples for each lesson and our 

student achieves a near-perfect grade when given advice prepared 

by a third party (who is not from our institution). 

2. BL Challenges 
We first introduce the learning framework and then outline the 

challenges of ILP and BL. 

2.1 Learning Framework 
The learning framework consists of the teacher, the environment, 

and the student interacting with each other. Given a domain 

within which learning takes place, the concepts to be learned are 

organized as lessons within a curriculum created by a separate 

group of researchers from outside our institution and not under 

our control. A lesson may be taught by more than one so-called 

natural instruction method. A lesson that teaches more complex 

concepts is broken down into two or more simpler lessons which 

are learned first and the more complex lesson is bootstrapped 

from the simpler ones. The structure of the curriculum is 

analogous to a "lesson" ladder with lower rungs representing 

simpler concepts and the complexity of the lessons increasing as 

we climb higher.  

The teacher interacts with the student during teaching lessons 

using utterance messages and with the simulator using imperative 

messages which are actions that change the world state.  The 

teacher can test during testing sessions with imperative messages 

requiring MABLE to answer questions and the teacher then 

evaluates the student's responses by providing a grade. 

2.2 Inductive Logic Programming 
ILP combines principles of two of the most important fields of AI: 

machine learning and knowledge representation. An ILP system 

learns a logic program given background knowledge as a set of 

first-order logic formulae and a set of examples expressed as facts 

represented in logic. In first-order logic, terms represent objects in 

the world and comprise constants (e.g., Mary), variables (x), and 

functions (fatherOf(John)). Predicates are functions with 

boolean return value. Literals are truth-valued and represent 

properties of objects and relations among objects, e.g. 

married(John, Mary).  Literals can be combined into compound 

sentences using connectives such as AND, OR and NOT. It is 

common [10] to convert sets of sentences into a canonical form, 

producing sets of clauses. We are developing a Java-based ILP 

system called WILL. 

 Now, consider the ILP search space presented in Figure 1, where 

logical variables are left out for simplicity and the possible 

features are denoted by a letter in A through Z.  Let us assume that 

the true target concept is a conjunction of the predicates A,Z,R and 
W.  ILP's search space without relevance is presented within the 

dashed box. Normally, ILP adds literals one after another, seeking 

the a short rule that covers all (or most of the) positive examples 

and none (or few) of the negatives.  If there are n predicates then 

this can lead to a search of O(n!) combinations to discover the 

target concept.  As can be seen by the portion of the search space 

that is outside the box, if a human teacher tells the ILP system that 

predicates A, Z, and R  are relevant to the concept being learned, 

the amount of search that is needed can be greatly reduced.  Such 

reduction can  enable an ILP system to learn from a rather small 

number of examples. In the example, the teacher's hint specifies 3 

out of 4 predicates that should appear in the target concept and 

hence an ILP learner needs to search over a smaller set of 

hypotheses to discover the correct concept. 

Of course if the teacher is malicious or incompetent, then teacher-

provided hints will increase the number of hypotheses that need to 

be considered since they increase the branching factor of the space 

being searched, but in this work we assume the human teacher has 

useful things to say, even if a bit imperfectly (teacher errors of 

omission are less harmful to WILL than errors of commission, as 

Figure 1 illustrates). The major BL challenge for ILP is that it has 

to be used, not only for different lessons within the same domain, 

but also across different domains; this necessitates the automation 

of the ILP setup problem without the intervention of an ILP 

expert. 

Another important aspect requiring automated ILP runs is that the 

parameter settings cannot change between different runs.  We 

cannot expect any human guidance regarding settings and need to 

find good default values that work broadly.  Actually, our 

algorithms themselves try out a few parameter settings and use 

cross validation to choose good settings.  However, given the 

large number of parameters in typical ILP systems (maximum rule 

length, modes, minimal acceptable accuracy of learned clauses, 

etc.), our algorithms cannot exhaustively try all combinations and 

hence must choose an appropriate set of candidate parameters that 

will work across dozens of learning tasks.  

The goal of our ILP based agent is to translate the teacher's 

instructions into first-order logic.  The instructions can be labels 

on example, as well as advice and/or feedback about these 

examples.  We have created an interpreter that converts the advice 

to first-order logic by combining and generalizing the advice from 

individual examples and uses a cost-based search through the 

possible set of hypothesis to learn the target concept.  BL also 

provides the opportunity for the student to refine its concept if it 

had learned an incorrect one.  This setting is called learning by 

feedback, where the teacher provides explicit feedback such as 

providing the correct answer, pointing to important features or 

previously learned concept that the student should consider, etc. 

Our interpreter also interprets such feedback provided by the 

teacher and refines its  learned concept. 

2.3 BL Domains & Challenges 
The domains of the BL project are Unmanned Aerial Vehicle 

(UAV) control, Automated Task Force (ATF), International 

Space Station (ISS).   
Figure 1. Sample search space to illustrate the usefulness of 

relevant statements to ILP. 



UAV Domain Description: This domain involves operating a 

UAV and its camera to execute a reconnaissance mission.  Tasks 

include determining if the UAV has enough fuel to accomplish a 

mission, achieving appropriate latitude, altitude,  learning if there 

is a single (or multiple) stopped (or moving) truck(s) in a scenario, 

whether an object (say truck, building or intersection) is near 

another object of intersect.  The idea is that the UAV is flying 

around and has to automatically identify scenarios that are 

potentially interesting from the defense perspective.  

Figure 2 presents the lesson hierarchy for the domain. Each lesson 

is presented as an oval in the figure. An arrow between lessons 

indicate the bootstrapping relationship between them. For 

example, an arrow between Near and TruckIsAtIntersection 

indicates that the latter lesson requires the concept learned by 

former. 

 

 

 

 

 

 

 

 

 

 

Figure 2. UAV lesson Hierarchy: A relationship A→B 

between lessons A and B indicates that B uses A in its concept. 

UAV Challenges:  The learner has to deal with complex 

structures such as position, which consists of attributes such as 

latitude, longitude, altitude, etc.  Encoding these spatial attributes 

as part of one position literal would enable WILL to learn a 

smaller clause, but would increase the branching factor during 

search due to the additional arguments introduced by such a large-

arity predicate.  Representing these spatial attributes as separate 

predicates would decrease the branching factor at the expense of 

the target concept being a longer clause.  In addition, the tasks 

involve learning the concept of "near" that can exist between any 

two objects of interest.  In a later lesson, this concept might be 

used, for instance, to determine if a truck is at an intersection in 

which case the objects must be specialized to be of the types truck 

and intersection.  It is a challenge for ILP systems to 

automatically generalize and specialize at different levels of the 

type hierarchy.  Finally, this domain requires extensive 

"bootstrapping" as can be seen from Figure 2, which presents a 

heirarchy organizing the UAV lessons, and requires the object 

hierarchies to be able to generalize across different lessons. 

ATF Domain Description: The goal of the ATF domain is to 

teach the student how to command a company of armored 

platoons to move from one battlefield location to another in 

accordance with military doctrine.  The lessons are organized 

based on the complexity of tasks.  At the lowest level are the tasks 

concerning individual vehicles and segments of vehicles.  At a 

higher level are the tasks concerning platoons (sets of segments) 

while at the top-most level are the tasks of a company which is a 

set of platoons.  

ATF Challenges: ATF poses at least two key challenges for 

application of ILP to BL.  First, is the presence of a large number 

of numeric features. For example, there are distances and angles 

between vehicles, segments, platoons, and companies.  For each 

of these objects, there are numeric attributes such as direction, 

location (in three dimensions), speed, etc.  All these numeric 

features require ILP to select good thresholds or intervals, which 

can lead to a large number of features. The second important 

challenge is the deep nesting of the object structure. Each 

company has a list of platoons each of which has a list of 

segments that contain a list of vehicles. This deep nesting requires 

ILP to construct the predicates and features at the appropriate 

level of the object hierarchy. While this might not appear as a 

major issue with individual runs, it should be noted that the same 

settings have to be used across all the lessons for all the domains.   

ISS Domain Description: The ISS curriculum places the student 

in a role of a flight controller who must detect and diagnose 

problems within the thermal control system of the International 

Space Station.  The lessons include teaching the student what 

constitutes an emergency/alert, and how to post observation 

reports concerning actionable alerts.  Examples of these include 

learning the conditions for alerting abnormal  observations, 

warning, emergency and caution 

ISS Challenges: This domain poses several issues that are not 

prominent in the other ones. The key challenge is that the number 

of features in the domain is very large. The fact-base of the 

domain consists of all the small parts, measurements, reports of 

the ISS and hence is significantly larger than the other domains 

(100's of features for a single example). A direct consequence is 

that the amount of time taken to construct the predicates is far 

greater than the other domains.  This is an important issue due to 

the fact the learning strategies (in our case, learning by examples) 

have a fixed learning time. Within this time limit, the student has 

to interpret the teacher's statements, convert to its internal 

representation (in our case, first-order logic statements), learn and 

get evaluated on the test-example.  Unlike the domains, this is not 

inherently relational.  There are specific valves and meters that 

should be considered while learning the target concept. ILP, 

which is a powerful tool for learning first-order logic models that 

allow for generalization needs to consider objects at the grounded 

level in this domain. 

3. SOLVING BL PROBLEMS  
We now present the two main steps of our approach, namely, 

interpreting relevance and adopting a multi-layered strategy for 

automating ILP runs. 

3.1 Interpreting Relevance 
One of the key challenges in BL is learning from a very small 

number of examples. A human teacher will not spare the time and 

effort to specify thousands of examples that any common machine 

learning algorithm requires to learn a reasonable target concept. 

Instead, the human teacher provides some information (that we 

call relevance statements or advice) about the target concept that 

the student uses to accelerate its learning. For instance, when 

teaching the concept of a full fuel tank, the teacher might gesture 

to the fuel capacity of the tank and the current fuel level of the 

tank.  The student might then infer the relationship between the 

two attributes. The main advantage of such a specification of 

relevant attributes is that it drastically reduces the search space 

(i.e., the search through the list of possible features in the target 

concept). Note that many possible features, such as color, length, 

weight, tire pressure, etc. could spuriously discriminate between 

positive and negative examples if the total number of examples is 

ComputeScenarioInterestingnes

s 

StoppedTrucksAreInteresting MovingTrucksAreInteresting 

RecognizeSingleStoppedTruck 

Scenario 

RecognizeSingleMovingTruck

Scenario 

ReadyToFly TruckIsAtIntersection 

FullFuelTank Near 
AssessGoal 



very small (which is the case in the BL lessons, see Section 5). 

Thus, relevance statements become very critical in discovering the 

correct target concept. 

We next outline our algorithm for interpreting the relevance 

statements provided by the teacher. We first illustrate the process 

of interpretation with an example before presenting the algorithm 

formally. Consider the lesson, RecognizeSingleStoppedTruckScenario 

in the UAV domain. The goal in this lesson is to identify if there 

is one and only one stopped truck in the scenario . We now 

present the teacher utterances followed by our interpretation of the 

statements. 

  RelevantRelationship(arg1=SameAs(arg1 = 1, 

     arg2 = GetLength(arg1 = Of(arg1 =actors) 

       arg2 = Scenario(actors = [Truck( name =             

 Truck19, latitude = -10,longitude = 

 10,moveStatus = Stopped)])))) 

Advice is provided using Relevant statements in BL. In the above 

statement, the teacher states that the length (size) of the actor list 

of the current scenario, should be 1.  After the above relevance 

statement the teacher proceeds to give further instructions, here 

talking about a different example: 

 Gesture(atObject = Truck(name= Truck17, latitude                

=-10,longitude = 10, moveStatus = Stopped)) 

RelevantRelationship(arg1= InstanceOf (arg1 = 

 this, arg2 = Truck)) 

In the above statements, the teacher first gestures at (points to) an 

object (Truck17 in this case) and explains that it being an instance 

of a truck is relevant to the target concept. The teacher further 

utters the following: 

RelevantRelationship(arg1 =SameAs(arg1 = Of(arg1 = 

    moveStatus, arg2 = Indexical(name = 

this))arg2 = Stopped)) 

The above statement specifies that the moveStatus of the truck 

being "Stopped" is relevant to the target concept.  The term 

Indexical is used to access the object that is being gestured at most 

recently by the teacher.  Hence Indexical(name = this) here refers 

to the truck that has been gestured to earlier.  Hence the teacher 

utters that the actors list of the scenario must be of size 1, that the 

object in that list must be of the type truck and that its move status 

must be equal to stopped.  We will now proceed to explain how 

WILL interprets these statements and constructs background 

knowledge and partial answers correspondingly. 

First, WILL identifies the interesting and relevant features from 

the above statements. WILL first creates the following interesting 

predicates:  

  isaInterestingComposite(Truck19) 

  isaInterestingComposite(Truck17) 

  isaInterestingNumber(1) 

  isaInterestingComposite(Scenario1) 

  isaInterestingSymbol(Stopped) 

A key challenge when dealing with teacher-instruction about 

specific examples is "what should be generalized (i.e., to a logical 

variable) and what should remain constant?"   The above facts 

provide WILL with some candidate constants that should be 

considered; WILL initially uses variables for all the arguments in 

the rules it is learning, but it also considers replacing variables 

with constants. WILL next creates the following relevant 

statements: 

  relevant: Vehicle_moveStatus 

  relevant: Scenario 

  relevant: Scenario_actors 

  relevant: Truck 

  relevant: sameAs 

The features (attributes, objects, and relations) that are mentioned 

in the relevant statements are considered as relevant for the target 

concept.  Consequentially, these features get lower scores when 

searching through the space of ILP rules and computing the cost 

of candidate rules.  WILL then proceeds to construct rules 

corresponding to the relevance statements it receives. In the 

following rules, assume S is of type scenario, L is of type list, T is 

of type truck, and I is an integer.  Following Prolog notation, 

commas denote logical AND.  One rule WILL creates from 

teacher-provided instruction is 

  pred3(S) IF 

     Scenario_actors(S,L),length(L,I),sameAs(I,1). 

The above rule is constructed from the first relevant statement (of 

a positive example) that specifies that the length of the actors list 

in a scenario must be of size 1. A rule will now be constructed for 

the gesture that points at Truck19 in the list. 

  pred5(T,S) IF Scenario_actors(S,L),member(T,L) 

Similarly, rules will be created for the other relevant statements 

corresponding to the instance of and the move status of the truck.  

  pred7(T,S) IF Truck(T, S) 

The above rules uses the previous rule in asserting that the object 

that is a member of the list is of the type truck. Finally, the last 

relevance statement is interpreted as: 

  pred9(T,S) IF moveStatus(T,S),sameAs(S,stopped) 

Once these rules are created for a particular example, WILL 

creates the combinations by combining the pieces of advice using 

the logical connective AND. 

  relevantFromPosEx1(S) IF 

    pred3(S),pred5(T,S),pred7(T,S), pred9(T,S) 

WILL then proceeds to construct similar statements for the second 

example.  Once all the individual examples are processed and the 

rules are created for each of the examples, WILL then proceeds to 

construct combinations of the rules in order to generalize across 

all the examples. The simplest combination is the combination of 

all rules from all positive examples and all the rules from all 

negative examples.  

  posCombo(S) IF relevantFromPosEx1(S), 

relevantFromPosEx2(S), ...,relevantFromPosExN(S) 

Similarly the negCombo is constructed by taking the negation of 

the negative relevantANDs.  

  negCombo(S) IF ~relevantFromNegEx1(S),..., 

 ~relevantFromNegExN(S) 

We denote the negation of a concept by ~.  Hence, by now our 

rules generalize positive and negative examples separately.  Then 

WILL constructs the cross product across the different 

combinations and adds them to the background. 

  allCombo(S) IF  posCombo(S),negCombo(S)  

All the predicates (relevantFrom's, posCombo, negCombo, 

allCombo, etc) are added to the background during search. and are 

marked as being relevant to the target concept. We also combine 

the advice about examples using the logical connective OR.  We 

use both AND and OR to combine because a human teacher might 

be teaching the computer learning a new conjunctive concept with 

each example illustrating only one piece of the concept, or the 

teacher might be teaching a concept with several alternatives, with 



each alternative illustrated via a different example. We refer to 

such rules as comboRules. 

The algorithm for interpreting relevance is presented in Table 1. 

(Our ILP system can handle tasks that involve multiple categories 

by repeatedly treating them as "1 versus the others" classification 

problems.)  WILL interprets the advice and creates relevant 

features corresponding to the objects and features mentioned in 

the relevant statements, as illustrated above. 

The net result is that our algorithm has hypothesized a relatively 

small number of individual and 'compound' general rules that can 

be evaluated using the (small number of) labeled examples 

provided by its human teacher.  Should these prove insufficient, 

WILL can combine and extend (by using the 'primitive' features in 

the domain at hand) by further searching of the hypothesis space. 

Table 1. Algorithm For Interpreting Relevance. 

• For each category (e.g. TRUE and FALSE) 

• For each example 

• For each relevant statement about that example 

• Construct relevant features 

• Construct relevant rules for the particular example 

• Combine the rules from individual examples to form 

"combo" rules about the current category. 

• Combine the rules from different examples  to form "mega" 

rules about the concept as a whole. 

3.2 Multi-Layered Strategy  
One of the key issues with several machine learning methods 

is the periodic intervention by the domain expert to select 

features, tune parameters and set up runs. This is particularly true 

of ILP where researchers face the problem of designing new 

predicates, guiding ILP’s search, setting additional parameters, 

etc.  BL brings a major challenge for ILP in this area, because 

WILL must automatically set up training without the intervention 

of an ILP expert.  This is needed because human teachers cannot 

be expected to understand the algorithmic details of a learning 

approach; rather they communicate with the student in and as 

natural and human-like dialog as is feasible [8]. This necessitates 

the guiding of search automatically in a domain independent 

manner. Automatic parameter selection methods such as the one 

proposed in [1] are not useful in our system due to the fact that we 

do not have access to a large number of examples. Instead we 

resort to a multi-layered strategy that tries several approaches to 

learn the target concept. 

Table 2 presents the algorithm of multi-layered strategy called 

Onion. The innermost layer implements the basic strategy: 

invoking WILL after automated mode construction, using only the 

relevant combinations of features (as told by the teacher). This 

means that WILL initially explores a very restricted hypothesis 

space.  If no theory is learned or if the learned theory has a poor 

score (based on heuristics), then the hypothesis space is expanded, 

say by considering features mentioned by the teacher.  Continuing 

this way, our multi-layered approach successively expands the 

space of hypotheses until an acceptable theory is found.  At each 

level, the algorithm considers different clause length and different 

values of coverage (#pos examples covered - #neg examples 

covered). Whenever a theory that fits the specified criteria is 

found, the algorithm returns the theory. 

As a final note, while the teacher and the learner follow a 

fixed protocol while communicating via Interlingua, interpreting 

relevance amounts to more than simply implementing a rule-based 

parsing system. This is because of the ambiguity that is prevalent 

in every teacher relevance statement, in particular as to how 

general the advice. It is this ambiguity, of whether the teacher 

advice is about specific examples or applies to all examples 

generally, that necessitates a relevance interpreter as in Table 1. 

Table 2 Multi-layered Strategy. 

Procedure: Onion (facts, background, examples) returns theory 

// n positive examples and m negative examples 

While (time remaining) 

1. Include only combo-rules that are generated by WILL for 

the search. Call WILLSEARCH. If perfect theory found, 

return 

2. Expand search space to include all relevant features. Call 

WILLSEARCH. If perfect theory found, return 

3. Expand search space to include all features. Call 

WILLSEARCH. If perfect theory found, return 

4. Flip the example labels and call Onion with new 

examples 

End-while 

If no theory learned, return the largest combo-rule 

Procedure: WILLSEARCH returns theory 

• For rule length 2 to maxRuleLength 

• For coverage = n to n/2 

• Search for the acceptable theory. If found, return it 

 

3.3 A Layered Approach for ILP  
Having outlined the relevance interpreter and Onion, we now 

present the complete learning strategy in Table 3. We first parse 

all the Interlingua messages and create examples both positive 

and negative. In the case of multi-class problems, we pose the 

problem as one vs. others. Then the ground facts and background 

knowledge are constructed. The relevance interpreter then creates 

the comboRules. Finally, Onion is called with the background 

rules and facts to learn the target concept. Once the target concept 

is learned, the teacher evaluates the target on a few test examples. 

If the theory is unacceptable, the teacher provides more examples 

and/or relevant statements as a feedback, thus aiding WILL to 

learn a better concept. 

Table 3. Learning Strategy. 

Procedure: Strategy(IL Messages) returns theory 

1. Construct  examples(pos and neg),  facts (ground truth) & 

background 

2. Parse relevant statements, construct comboRules and add to 

background 

3. Call Onion(facts, background, examples) 

4. If acceptable theory is found, return theory 

    Else call for the feedback lesson to obtain more examples 

   and/or relevant statements. Go to Step 1. 

4. ADDITIONAL ISSUES 
Generation of Negative Examples.  In general, ILP requires 

a large number of examples to learn a concept.  While this is a 

challenge in all of machine learning, the need to learn complex 



relational concepts in first-order logic makes it even more so in 

ILP.  In some domains, it is natural for a teacher to say that a 

particular world state contains a single positive example; for 

example, it is natural for a teacher to point to a set of three blocks 

and state that they form a stack.  It is a reasonable assumption that 

various combinations of the rest of the blocks in that scene do not 

form a stack and hence, WILL assumes these are (putative) 

negative examples. We have found that for most of the lessons 

provided in BL there is such a need for automatically constructing 

negatives because instruction contains mainly positive examples.  

Another way to express negative examples is to say some 

world state does not contain any instances of the concept being 

taught: "the current configuration of blocks contains no stacks". 

Assume the teacher indicates isaStack takes three arguments, 

each of which is of type block.  If WILL is presented with a 

world containing N blocks where there are no stacks, it can create 

N3 negative examples. In general, negative examples are 

generated by instantiating the arguments of predicates whose 

types we may have been told, in all possible ways using typed 

constants encountered in world states; examples known to be 

positive are filtered out.  Depending on the task, the student may 

have either teacher-provided negatives or induced negatives. As 

we do not want to treat these identically, WILL allows costs to be 

assigned to examples ensuring that the cost of covering a putative 

negative can be less than covering a teacher-provided one. 

Learning the Negation of a Concept.  Human teachers typically 

gauge the difficulty of concepts being taught by human 

comprehensibility, in terms of which, accurate, short, conjunctive 

rules are preferred. When learning concepts such as 

outOfBounds in a soccer field, the target concept might have a 

large set of disjunctions (since it can be out of bounds on any of 

four sides).  It is easier to learn if the ball is in bounds and then 

negate the learned concept. Our learning bias here is that our 

benevolent teacher is teaching a concept that is simple to state, but 

we are not sure if the concept or its negation is simple to state, so 

we always consider both. For a small number of examples, it is 

usually hard to learn a disjunctive rule, especially if the examples 

are not the best ones, but rather only 'reasonable' in that they were 

near the boundaries, but not exactly next to them.   

5. CONCLUSION 
As mentioned earlier, our implemented system perfectly learned 

(100% accuracy) 56 lessons from a combination of training 

examples and teacher-provided hints.  Running our ILP system 

without these hints - i.e., only using the training examples, for 

which there was an average of 7.6 labeled examples per concept 

taught - produced an average accuracy on held-aside examples of 

63.9% (there was a 50-50 mixture of positive and negative 

examples, so 50% is the default accuracy of random guessing). 

We have shown how the naturally provided human advice can be 

absorbed by ILP approach in order to learn a large number of 

concepts across a handful of domains. None of the advice, nor the 

lessons solved were created by us.  Instead our task was to make 

effective use of the provided advice to learn the intended concepts 

while given only a small number of labeled examples.  

The ILP approach allows learning to be applied to much richer 

types of data than the vast majority of machine-learning methods, 

due to its use of first-order logic as a representation for both data 

and hypotheses. However, ILP requires substantial experience to 

properly set up the 'hypothesis space' it searches. The natural 

teacher-learner interaction in our BL  project is being interpreted 

by WILL as guidance for defining ILP hypothesis spaces, as well 

as biasing the search in such spaces toward the most promising 

areas.  Finally, it should be noted that while these teacher 

instructions significantly influence the ILP algorithm in terms of 

which hypotheses it considers, the algorithm is still able to make 

additions to the teacher's instructions; decide which teacher 

instructions should be kept and which should be discarded; and 

choose how to integrate instructions about individual examples 

into a general concept.  In other words, the human teacher is 

advising, rather than commanding, the student who  still has the 

capability to make decisions on its own. 

Human advice taking has long been explored in AI in the context 

of reinforcement learning [2], where the knowledge provided by 

the human is converted into a set of rules and knowledge-based 

neural networks are used to represent the utility function of the 

RL agent. Advice has also been incorporated in ILP systems [7] to 

learn constant free horn clauses. The key difference in our system 

is the presence of a very small number of examples.  

Currently, we are focusing on our layered approach, to more 

robustly automate ILP in these different tasks.  Also, we are 

currently looking at more richly exploiting teacher-provided 

feedback beyond statements about which features and objects are 

relevant. One possible future direction is to explore the possibility 

of refining the learned theories using teacher feedback in the lines 

of theory refinement for ILP [6]. Refining teacher's advice is 

important as it provides room for teacher mistakes. 

6. ACKNOWLEDGMENTS 
The authors gratefully acknowledge support of the Defense 

Advanced Research Projects Agency under DARPA grant 

FA8650-06-C-7606. Views and conclusions contained in this 

document are those of the authors and do not necessarily represent 

the official opinion or policies, either expressed or implied of the 

US government or of DARPA. 

7. REFERENCES 
 [1] Kohavi, R. and John, G. Automatic parameter selection by 

       minimizing estimated error. In ICML, 1995. 

[2] Maclin, R. and Shavlik, J. W. Creating advice-taking  

      reinforcement learners. Mach. Learn., 22, 1996. 

[3] McCarthy, J. The advice taker, a program with common sense.  

      In Symp. on the Mechanization of Thought Processes, 1958. 

[4] Muggleton S. and De Raedt, L. Inductive logic programming:  

      Theory and methods. Journal of Logic Programming,   

      19/20:629–679, 1994. 

[5] Oblinger, D. Bootstrap learning - external materials. 

      http:// www.sainc.com/bl-extmat, 2006. 

[6] Ourston, D. and Mooney, R. Theory refinement combining  

      analytical and empirical methods. Artificial Intelligence, 

      66:273–309, 1994. 

[7] Pazzani, M. and Kibler D. The utility of knowledge in  

      inductive learning. Mach. Learn.  9:57–94, 1992. 

[8] Quinlan, J. R. Induction of decision trees. Mach. Learn., 

      1(1):81–106, 1986. 

[9] Shen, J., Mailler, R., Bryce, D.  and O’Reilly, C. MABLE: a  

     framework for learning from natural instruction. In AAMAS,  

     2009. 

[10] Russell, S. and Norvig, P. Artificial Intelligence: A Modern 

       Approach (Second Edition). Prentice Hall, 2003.  


