CS6375: Machine Learning Gautam Kunapuli

Linear Regression

Example: Pattern Analysis in 17th Century Astronomy

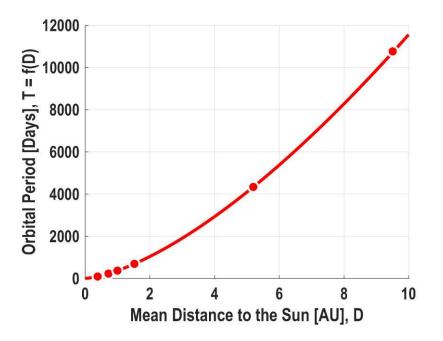
The German astronomer Johannes Kepler published his laws of planetary motion in 1609 & 1619, and discovered them by analyzing the astronomical observations of Tycho Brahe

Planet	Mean dist. to sun [AU], D	Orbital Period [days], T	D ³ /T ²
Mercury	0.389	87.77	7.64
Venus	0.724	224.70	7.52
Earth	1	365.25	7.50
Mars	1.524	686.95	7.50
Jupiter	5.2	4332.62	7.49
Saturn	9.510	10759.2	7.43

Kepler's 3rd Law: the square of the orbital period of a planet (T²) is proportional to the cube of the semimajor axis of its orbit (D³).

$$T = f(D) = cD^{\frac{3}{2}}$$

Example: Pattern Analysis in 17th Century Astronomy



Kepler's 3rd Law is an example of a **model** that relates data (D) to labels (T)

Kepler's 3rd Law: the square of the orbital period of a planet (T²) is proportional to the cube of the semimajor axis of its orbit (D³).

$$T = f(D) = cD^{\frac{3}{2}}$$

This is an example of a **supervised machine-learning** problem, where **labels** (T) are available for learning the **model**. This is, in fact, a (non-linear) **regression problem**.

Planet	Mean dist. to sun [AU], D	Orbital Period [days], T	D ³ /T ²
Mercury	0.389	87.77	7.64
Venus	0.724	224.70	7.52
Earth	1	365.25	7.50
Mars	1.524	686.95	7.50
Jupiter	5.2	4332.62	7.49
Saturn	9.510	10759.2	7.43
Uranus	19.191	?	~7.50
Neptune	30.069	?	~7.50

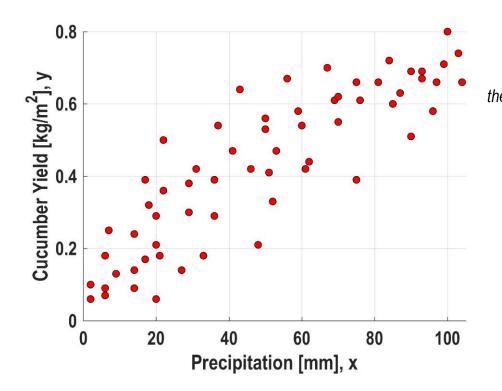
If we know the **model**, we can use it to **predict** the orbital periods of newly-discovered planets. This property of machine-learning models is called **generalization**.

Univariate Linear Regression

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Example: Develop a model to predict produce yield depending on the precipitation this year.

Here, the independent variable (training data) is precipitation (x_i) and the dependent variable (label) is yield (y_i) .



First, we select the **hypothesis class**, which is the set of allowable functions to model the relationship between data (x_i) and labels (y_i) :

y = f(x)

Our hypothesis class is the space of all **univariate linear functions**, $y = f(x) = w \cdot x + b$ the model is **univariate** because there is only one independent (training) variable, xthe model is **linear** because the highest allowed degree is x^1 . Higher-order models will be nonlinear, for example, the quadratic hypothesis class: $y = u \cdot x^2 + w \cdot x + b$

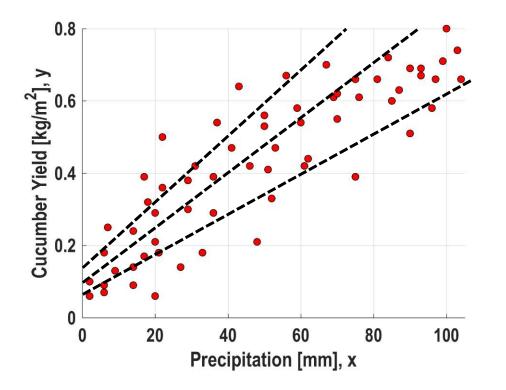
The goal is to learn the **parameters** *w* and *b* that **best fit** the training data.

Univariate Linear Regression

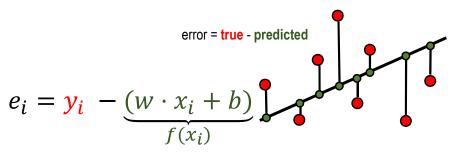
Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Example: Develop a model to predict produce yield depending on the precipitation this year.

Here, the independent variable (training data) is precipitation (x_i) and the dependent variable (label) is yield (y_i) .



There are infinitely many functions in the hypothesis class: $y = w \cdot x + b$ that can model the data. To identify the best, we must measure the **quality of fit**.



The quality of fit can be measured using a **loss function** that depends on the **error** between the **true** and **predicted** labels

In linear regression, we measure fit using the squared loss over the error, that is, we use a **squared loss function**, $\frac{1}{2}e_i^2$

$$L(f(x_{i}), y_{i}) = \frac{1}{2} (y_{i} - (w \cdot x_{i} + b))^{2}$$

Formulating and Solving Linear Regression

Problem Formulation: the **best model minimizes** the **average squared loss** across all the data; that is, find the **best parameters** *w* and *b* such that their predictions **minimize the average squared loss**.

Problem: Given *n* training examples (x_i, y_i) , i = 1, ..., n, find the best model (w, b) by solving

minimize
$$\frac{1}{n}\sum_{i=1}^{n}(y_i - (w \cdot x_i + b))^2$$

This is an **(unconstrained) optimization problem** in the variables (w, b). The **optimal solution** will be our model.

 Solution Approach 1: Take derivatives and solve analytically. This leads to a closed-form solution.

Note that closed-form solutions are **not always directly computable**.

Formulating and Solving Linear Regression

Problem Formulation: the **best model minimizes** the **average squared loss** across all the data; that is, find the **best parameters** *w* and *b* such that their predictions **minimize the average squared loss**.

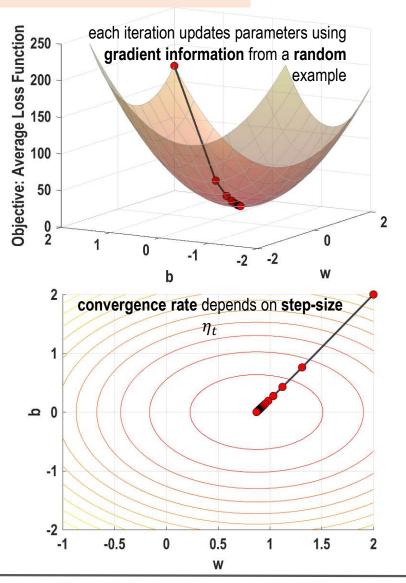
Problem: Given *n* training examples (x_i, y_i) , i = 1, ..., n, find the best model (w, b) by solving

minimize
$$\frac{1}{n}\sum_{i=1}^{n} (y_i - (w \cdot x_i + b))^2$$

This is an **(unconstrained) optimization problem** in the variables (w, b). The **optimal solution** will be our model.

 Solution Approach 2: Solve using optimization techniques, e.g., gradient descent.

Initalize: $w = w_0, b = b_0, t = 0$ Iterate until convergence Compute updates: $w_{t+1} = w_t - \eta_t \nabla_w L(f(x), y)$ $b_{t+1} = b_t - \eta_t \nabla_b L(f(x), y)$ Check for convergence Continue to next iteration: t = t + 1



Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Example: Develop a model to predict produce yield depending on multiple factors such as precipitation, average manure usage, temperature, plant spacing, and relative humidity.

Here, the independent variables (training data) are denoted x_i and the dependent variable (label) is yield (y_i) .

the model is multivariate because there are many independent (training) variables	Yield [kg/m²]	Humid. [%]	Spacing [m]	Temper at. [ºC]	Manure [kg/m²]	Precip. [mm]
the model is still linear because the highest	0.36	32.5	1.0	33.1	1.5	22
allowed degree is x^1 in each dimension of x	0.09	45.0	1.5	27.9	0.75	11
	0.67	78.0	1.0	28.5	0.85	94
the intercept can be absorbed into the	0.44	55.0	2.0	22.6	3.0	62
inner-product by augmenting the data $\hat{x} = [x, 1]$ and augmenting the weights $\hat{w} = [w, b]$ such that $\hat{w}^T \hat{x}$	0.72	68.5	1.0	35.4	4.25	84
$w^T x + b \cdot 1$	0.24	72.0	0.75	34.4	1.25	14
the goal is to predict the label, y_i , as a	0.33	37.5	0.5	19.3	2.75	104
function of the multiple factors	each row x_i^T corresponds to a multi-dimensional training					

example, represented as a **column vector**, x_i

linear functions, $y = f(x) = w^T x + b$

Our hypothesis class is the space of all multivariate

function of the multiple factors

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

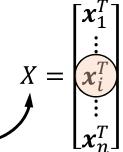
Example: Develop a model to predict produce yield depending on **multiple factors** such as precipitation, average manure usage, temperature, plant spacing, and relative humidity.

Here, the independent variables (training data) are denoted x_i and the dependent variable (label) is yield (y_i) .

Precip. [mm]	Manure [kg/m²]	Temp. [ºC]	Spacing [m]	Humid. [%]	Yield [kg/m²]
22	1.5	33.1	1.0	32.5	0.36
11	0.75	27.9	1.5	45.0	0.09
94	0.85	28.5	1.0	78.0	0.67
62	3.0	22.6	2.0	55.0	0.44
84	4.25	35.4	1.0	68.5	0.72
14	1.25	34.4	0.75	72.0	0.24
104	2.75	19.3	0.5	37.5	0.33

All the training examples are collected into a **matrix of training data** *X*, where each row is a training example

The loss function is still the squared loss, $\frac{1}{2}e_i^2$, though the error is measured in d-dimensional space via the innerproduct $w^T x_i$ error = true - predicted $e_i = \mathbf{y}_i - \mathbf{w}$ $L(f(x_i), y_i) = \frac{1}{2} (y_i - w^T x_i)^2$



Note the **transpose** to denote that multivariate training examples (which are column vectors) are transposed to rows in the data matrix

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Problem: Given *n* training examples (x_i, y_i) , i = 1, ..., n, find the best model *w* by solving

$$\underset{\boldsymbol{w}}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^{n} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$$

This expression can be written more compactly in vector notation minimize $\frac{1}{n}(\mathbf{y} - X\mathbf{w})^T(\mathbf{y} - X\mathbf{w})$

and fully **expanded** into: $\min_{\boldsymbol{w}} \lim_{\boldsymbol{w}} \frac{1}{n} (\boldsymbol{y}^T \boldsymbol{y} - 2\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w})$

Precip. [mm]	Manure [kg/m²]	Temp. [ºC]	Spacing [m]	Humid. [%]		Yield [kg/m ²		
22	1.5	33.1	1.0	32.5		0.36	Γ <i>У</i> 1]	
11	0.75	27.9	1.5	45.0		0.09		
94	0.85	28.5	1.0	78.0		0.67	$\mathbf{y} = \mathcal{Y}_i $	
62	3.0	22.6	2.0	55.0		0.44		
84	4.25	35.4	1.0	68.5		0.72	$\lfloor y_n \rfloor [\boldsymbol{x}_1^T]$	
14	1.25	34.4	0.75	72.0		0.24		
104	2.75	19.3	0.5	37.5		0.33	$X = \begin{pmatrix} x_i^T \end{pmatrix}$ Note the transpose to denote that	
	All the training examples are collected into a matrix of training x_n^T multivariate training examples (which are collected into a matrix of training x_n^T column vectors) are transposed to rows in the data X, where each row is a training example							

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Problem: Given *n* training examples (x_i, y_i) , i = 1, ..., n, find the best model *w* by solving

minimize $\frac{1}{n}(\mathbf{y}^T\mathbf{y} - 2\mathbf{y}^T X\mathbf{w} + \mathbf{w}^T X^T X\mathbf{w})$

The solution to this problem is the ordinary least squares estimator

 $w = (X^T X)^{-1} X^T y$ solution depends on the inverse of the covariance matrix $C = X^T X$, which can be ill-conditioned

unique closed-form solution, provided that number of data points (n) exceeds data dimension (d)

 $(X^T X)^{-1} X^T = X^+$ is called the **pseudo-inverse**

Ridge Regression

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Problem: Given *n* training examples (x_i, y_i) , i = 1, ..., n, find the most robust model *w* by solving (for $\lambda > 0$) minimize $\frac{1}{n} (y - Xw)^T (y - Xw) + \lambda w^T w$ $w^T w$ is a regularization term that is used to overcome illconditioning, $\lambda > 0$ is the regularization parameter, which

is tunable

The solution to this problem is the **regularized** least squares estimator

$$w = (X^T X + \lambda I_d)^{-1} X y$$

for $\lambda > 0$, inverse is can always be computed, algorithm more **robust**

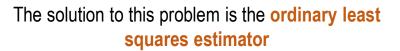
Exercise: Derive the regularized least squares estimator from the optimization formulation for Ridge Regression.

Ridge Regression and the Bias-Variance Tradeoff

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

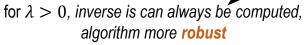
Problem: Given *n* training examples
$$(x_i, y_i)$$
, $i = 1, ..., n$, find the most robust model *w* by solving (for $\lambda > 0$)
minimize $\frac{1}{n} (y - Xw)^T (y - Xw) + \lambda w^T w$
 $w^T w$ is a regularization term that is used to overcome ill-
conditioning, $\lambda > 0$ is the regularization parameter, which

is **tunable**

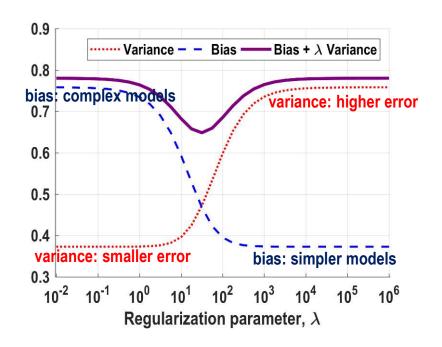


$$w = (X^T X + \lambda I_d)^{-1} X \mathbf{y}$$

Linear Regression



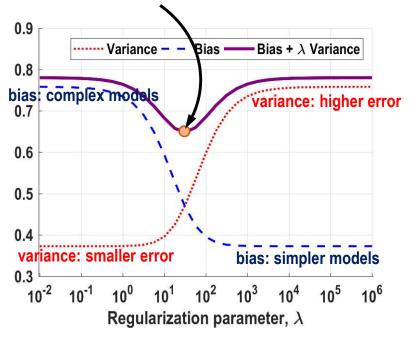
- $\lambda > 0$ can be **tuned** to train different models with different behaviors:
- λ controls the **amount of regularization**
- as λ ↓ 0, the model focuses on minimizing error (variance) and overfits the data
 - when the model is too complex and trivially fits the data (i.e., too many parameters)
 - \circ when the data is not enough to estimate the parameters
 - model captures the noise (or the chance)
- as λ ↑ ∞, the model focuses on shrinking the coefficients w (bias) and underfits the data



Bias-Variance Tradeoff

The best model is the one that generalizes well, that is, the best model trades-off effectively between bias and variance and can be expected to

- $\lambda > 0$ can be **tuned** to train different models with different behaviors:
- λ controls the **amount of regularization**
- as $\lambda \downarrow 0$, the model focuses on **minimizing error** (variance) and overfits the data
- as $\lambda \uparrow \infty$, the model focuses on shrinking the coefficients w (bias) and underfits the data



All machine-learning algorithms will exhibit this **bias-variance tradeoff**; selecting the **best model parameters** is an **important practical aspect** of machine-learning.

perform well on future data.