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Example: Pattern Analysis in 17th Century Astronomy

Planet
Mean dist. to 
sun [AU], D

Orbital Period 
[days], T

D3/T2 

Mercury 0.389 87.77 7.64

Venus 0.724 224.70 7.52

Earth 1 365.25 7.50

Mars 1.524 686.95 7.50

Jupiter 5.2 4332.62 7.49

Saturn 9.510 10759.2 7.43

The German astronomer
Johannes Kepler published his laws of planetary 
motion in 1609 & 1619, and discovered them by 

analyzing the astronomical observations of Tycho
Brahe

Kepler’s 3rd Law: the square of the orbital period of a 
planet (T2) is proportional to the cube of the semi-

major axis of its orbit (D3).
ଷ
ଶ
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Example: Pattern Analysis in 17th Century Astronomy

Planet
Mean dist. to 
sun [AU], D

Orbital Period 
[days], T

D3/T2 

Mercury 0.389 87.77 7.64

Venus 0.724 224.70 7.52

Earth 1 365.25 7.50

Mars 1.524 686.95 7.50

Jupiter 5.2 4332.62 7.49

Saturn 9.510 10759.2 7.43

Uranus 19.191 ? ~7.50

Neptune 30.069 ? ~7.50

If we know the model, we can use it to predict the orbital 
periods of newly-discovered planets. This property of 
machine-learning models is called generalization.

This is an example of a supervised machine-learning
problem, where labels (T) are available for learning the 

model. This is, in fact, a (non-linear) regression 
problem.

Kepler’s 3rd Law is an example of a model
that relates data (D) to labels (T)

Kepler’s 3rd Law: the square of the orbital period of a 
planet (T2) is proportional to the cube of the semi-

major axis of its orbit (D3).
ଷ
ଶ
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Univariate Linear Regression
Problem Setup: Given data (𝑥) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending 
on the precipitation this year. 

Here, the independent variable (training data) is precipitation 
(𝑥) and the dependent variable (label) is yield (𝑦).

First, we select the hypothesis class, which is the set of 
allowable functions to model the relationship between 

data (𝑥) and labels (𝑦):
𝑦 = 𝑓(𝑥)

The goal is to learn the parameters 𝑤 and 𝑏 that best fit
the training data.

Our hypothesis class is the space of all univariate linear 
functions, 𝑦 = 𝑓 𝑥 =  𝑤 ⋅ 𝑥 + 𝑏

the model is univariate because there is only one 
independent (training) variable, 𝑥

the model is linear because the highest allowed degree is 𝑥ଵ. 
Higher-order models will be nonlinear, for example, the quadratic

hypothesis class: 
𝑦 = 𝑢 ⋅ 𝑥ଶ + 𝑤 ⋅ 𝑥 + 𝑏
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Univariate Linear Regression
Problem Setup: Given data (𝑥) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending 
on the precipitation this year. 

Here, the independent variable (training data) is precipitation 
(𝑥) and the dependent variable (label) is yield (𝑦).

There are infinitely many functions in the hypothesis class: 𝑦 =
𝑤 ⋅ 𝑥 + 𝑏 that can model the data. To identify the best, we must 

measure the quality of fit. 

  

(௫)

error = true - predicted

The quality of fit can be measured using a loss function
that depends on the error between the true and predicted

labels

 
ଵ

ଶ  
ଶ

In linear regression, we measure fit using the squared loss over 

the error, that is, we use a squared loss function, 
ଵ

ଶ
𝑒

ଶ
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Formulating and Solving Linear Regression

௪,

ଵ

  
ଶ

ୀଵ

Problem: Given 𝑛 training examples (𝑥, 𝑦), 𝑖 = 1, … , 𝑛, find the 
best model 𝑤, 𝑏 by solving

This is an (unconstrained) optimization problem in the variables 
𝑤, 𝑏 . The optimal solution will be our model.

• Solution Approach 1: Take derivatives and solve analytically. 
This leads to a closed-form solution. 

Note that closed-form solutions are not always
directly computable.

Problem Formulation: the best model minimizes the average squared loss across all the 
data; that is, find the best parameters 𝑤 and 𝑏 such that their predictions minimize the 

average squared loss. 
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Formulating and Solving Linear Regression

௪,

ଵ

  
ଶ

ୀଵ

Problem: Given 𝑛 training examples (𝑥, 𝑦), 𝑖 = 1, … , 𝑛, find the 
best model 𝑤, 𝑏 by solving

This is an (unconstrained) optimization problem in the variables 
𝑤, 𝑏 . The optimal solution will be our model.

• Solution Approach 2: Solve using optimization techniques, 
e.g., gradient descent.

Problem Formulation: the best model minimizes the average squared loss across all the 
data; that is, find the best parameters 𝑤 and 𝑏 such that their predictions minimize the 

average squared loss. 

Initalize: 𝑤 = 𝑤,𝑏 = 𝑏,𝑡 = 0
Iterate until convergence

Compute updates:
𝑤௧ାଵ = 𝑤௧ − 𝜂௧ 𝛻௪𝐿 𝑓 𝑥 , 𝑦
𝑏௧ାଵ = 𝑏௧ − 𝜂௧ 𝛻𝐿(𝑓 𝑥 , 𝑦)

Check for convergence
Continue to next iteration: 𝑡 = 𝑡 + 1

convergence rate depends on step-size
𝜂௧

each iteration updates parameters using 
gradient information from a random

example
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Multivariate Linear Regression
Problem Setup: Given data (𝒙) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending on 
multiple factors such as precipitation, average manure usage, 

temperature, plant spacing, and relative humidity. 

Here, the independent variables (training data) are denoted 𝒙 and the 
dependent variable (label) is yield (𝑦).

Precip.
[mm]

Manure  
[kg/m2]

Temper
at. 

[oC]

Spacing 
[m]

Humid.
[%]

Yield
[kg/m2]

22 1.5 33.1 1.0 32.5 0.36

11 0.75 27.9 1.5 45.0 0.09

94 0.85 28.5 1.0 78.0 0.67

62 3.0 22.6 2.0 55.0 0.44

84 4.25 35.4 1.0 68.5 0.72

14 1.25 34.4 0.75 72.0 0.24

104 2.75 19.3 0.5 37.5 0.33

each row  𝒙
் corresponds to a multi-dimensional training 

example, represented as a column vector, 𝒙

the goal is to predict the label, 𝑦 , as a 
function of the multiple factors

Our hypothesis class is the space of all multivariate
linear functions, 𝑦 = 𝑓 𝒙 = 𝒘்𝒙 + 𝑏

the model is multivariate because there are many 
independent (training) variables

the model is still linear because the highest 
allowed degree is 𝑥ଵ in each dimension of 𝒙

the intercept can be absorbed into the 
inner-product by augmenting the data 𝒙ෝ = [𝒙, 1] and by 
augmenting the weights 𝒘ෝ = [𝒘, 𝑏] such that 𝒘ෝ 𝑻𝒙ෝ =

𝒘𝑻𝒙 + 𝑏 ⋅ 1
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Multivariate Linear Regression
Problem Setup: Given data (𝒙) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending on 
multiple factors such as precipitation, average manure usage, 

temperature, plant spacing, and relative humidity. 

Here, the independent variables (training data) are denoted 𝒙 and the 
dependent variable (label) is yield (𝑦).

Precip.
[mm]

Manure  
[kg/m2]

Temp. 
[oC]

Spacing 
[m]

Humid.
[%]

Yield
[kg/m2]

22 1.5 33.1 1.0 32.5 0.36

11 0.75 27.9 1.5 45.0 0.09

94 0.85 28.5 1.0 78.0 0.67

62 3.0 22.6 2.0 55.0 0.44

84 4.25 35.4 1.0 68.5 0.72

14 1.25 34.4 0.75 72.0 0.24

104 2.75 19.3 0.5 37.5 0.33

All the training examples are collected into a matrix of training 
data X, where each row is a training example 

 
்



error = true - predicted

 
ଵ

ଶ 
்


ଶ

The loss function is still the squared loss, 
ଵ

ଶ
𝑒

ଶ, though the 

error is measured in d-dimensional space via the inner-
product 𝒘்𝒙

ଵ
்


்


்

Note the transpose to denote that 
multivariate training examples (which are 

column vectors) are transposed to rows in the 
data matrix 
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94 0.85 28.5 1.0 78.0 0.67
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Multivariate Linear Regression
Problem Setup: Given data (𝒙) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

All the training examples are collected into a matrix of training 
data X, where each row is a training example 

ଵ
்


்


்

Note the transpose to denote that 
multivariate training examples (which are 

column vectors) are transposed to rows in the 
data matrix 

𝒘

ଵ

 
்


ଶ

ୀଵ

Problem: Given 𝑛 training examples (𝒙, 𝑦), 𝑖 = 1, … , 𝑛, find the 
best model 𝒘 by solving

𝒘

ଵ


்

This expression can be written more compactly in vector 
notation

ଵ





𝒘

் ் ் ்

and fully expanded into:
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Multivariate Linear Regression
Problem Setup: Given data (𝒙) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Problem: Given 𝑛 training examples (𝒙, 𝑦), 𝑖 = 1, … , 𝑛, find the 
best model 𝒘 by solving

𝒘

் ் ் ்

The solution to this problem is the ordinary least 
squares estimator

் ିଵ ்

solution depends on the inverse of the  covariance 
matrix 𝐶 = 𝑋்𝑋, which can be ill-conditioned

unique closed-form solution, provided that number of data 
points (𝑛) exceeds data dimension (𝑑)

் ିଵ ் ାis called the pseudo-inverse
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Ridge Regression
Problem Setup: Given data (𝒙) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Problem: Given 𝑛 training examples (𝒙, 𝑦), 𝑖 = 1, … , 𝑛, find the 
most robust model 𝒘 by solving (for 𝜆 > 0)

𝒘

ଵ


் ்

The solution to this problem is the regularized 
least squares estimator

்
ௗ

ିଵ

for 𝜆 > 0, inverse is can always be computed, 
algorithm more robust

𝒘்𝒘 is a regularization term that is used to overcome ill-
conditioning, 𝜆 > 0 is the regularization parameter, which 

is tunable

Exercise: Derive the regularized least squares estimator from the optimization formulation for Ridge Regression.
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Ridge Regression and the Bias-Variance Tradeoff
Problem Setup: Given data (𝒙) and real-valued labels (𝑦), find the best model that fits 

current data and predicts future data

Problem: Given 𝑛 training examples (𝒙, 𝑦), 𝑖 = 1, … , 𝑛, find the 
most robust model 𝒘 by solving (for 𝜆 > 0)

𝒘

ଵ


் ்

The solution to this problem is the ordinary least 
squares estimator

்
ௗ

ିଵ

for 𝜆 > 0, inverse is can always be computed, 
algorithm more robust

𝒘்𝒘 is a regularization term that is used to overcome ill-
conditioning, 𝜆 > 0 is the regularization parameter, which 

is tunable

bias: simpler models

variance: higher errorbias: complex models

variance: smaller error

𝜆 > 0 can be tuned to train different models with different behaviors:
• 𝜆 controls the amount of regularization
• as 𝜆 ↓ 0, the model focuses on minimizing error (variance) and 

overfits the data
o when the model is too complex and trivially fits the data (i.e., 

too many parameters)
o when the data is not enough to estimate the parameters
o model captures the noise (or the chance)

• as 𝜆 ↑ ∞, the model focuses on shrinking the coefficients 𝒘 (bias)
and underfits the data
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Bias-Variance Tradeoff
The best model is the one that generalizes well, that is, the best model 

trades-off effectively between bias and variance and can be expected to 
perform well on future data.

bias: simpler models

variance: higher errorbias: complex models

variance: smaller error

𝜆 > 0 can be tuned to train different models with different behaviors:
• 𝜆 controls the amount of regularization
• as 𝜆 ↓ 0, the model focuses on minimizing error (variance) and 

overfits the data
• as 𝜆 ↑ ∞, the model focuses on shrinking the coefficients 𝒘 (bias)

and underfits the data

All machine-learning algorithms will exhibit this bias-variance tradeoff; selecting the 
best model parameters is an important practical aspect of machine-learning.


