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CS6375: Machine Learning Linear Regression

Example: Pattern Analysis in 17t Century Astronomy

Mean dist. to Orbital Period

3/T2
Planet ' sun [AUL, D [days], T oI
Mercury 0.389 87.77 7.64
Venus 0.724 224.70 7.52
, Earth 1 365.25 7.50
The German astronomer Mars 1524 686.95 7.50
Johannes Kepler published his laws of planetary :
motion in 1609 & 1619, and discovered them by Jupiter 5.2 4332.62 7.49
analyzing the astronomical observations of Tycho Saturn 9.510 10759 .2 7 43
Brahe

Kepler’s 3 Law: the square of the orbital period of a
planet (T?) is proportional to the cube of the semi-
major axis of its orbit (D°).

T = f(D) = cD2
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CS6375: Machine Learning Linear Regression

Example: Pattern Analysis in 17t Century Astronomy

12000
/ Mean dist. to Orbital Period
o ® 3IT2
S 10000 Planet ¢ in[AUL, D [days], T Sl
800 Mercury 0.389 87.77 7.64
S. o000 Venus 0.724 224.70 752
S 4000 . Earth 1 365.25 7.50
§ 2000 | / Mars 1,524 686.95 7.50
oLese®”. | | | | Jupiter 0.2 4332.62 7.49
0 2 4 6 8 10
Mean Distance to the Sun [AU], D Satum 9.510 10759.2 7.43
Uranus 19.191 ? ~7.50
Kepler's 3 Law is an example of a model
Neptune 30.069 ? ~7.50

that relates data (D) to labels (T)

Kepler’s 3 Law: the square of the orbital period of a
planet (T?) is proportional to the cube of the semi-

major axis of its orbit (D°).
If we know the model, we can use it to predict the orbital

T=fD)=c D% periods of newly-discovered planets. This property of
. , , _ machine-learning models is called generalization.
This is an example of a supervised machine-learning
problem, where labels (T) are available for learning the
model. This is, in fact, a (non-linear) regression
problem.
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CS6375: Machine Learning Linear Regression

Univariate Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Example: Develop a model to predict produce yield depending First, we select the hypothesis class, which is the set of
on the precipitation this year. allowable functions to model the relationship between
data (x;) and labels (y;):
Here, the independent variable (training data) is precipitation y = f(x)

(x;) and the dependent variable (label) is yield (y;).

Our hypothesis class is the space of all univariate linear

0.8 ° .
" functions, y = f(x) = w-x+b
®
A o ° e o °3 o. °
<" 0.6 ° ® o 0 the model is univariate because there is only one
%’ i o °. ® " independent (training) variable, x
=, o ° .
S . * . & e the model is linear because the highest allowed degree is x.
;—_’ 0.4 ® o " o Higher-order models will be nonlinear, for example, the quadratic
= pe ° hypothesis class:
e . .° * . y=u-x*+w-x+b
8 0 2 L ] ® .. [ ®
T ® o
o i
@® . .
o8 o The goal is to learn the parameters w and b that best fit
0 | ' | | | the training data.
0 20 40 60 80 100

Precipitation [mm], x
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CS6375: Machine Learning

Linear Regression

Univariate Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits

current data and predicts future data

Example: Develop a model to predict produce yield depending  There are infinitely many functions in the hypothesis class: y =

on the precipitation this year.

Here, the independent variable (training data) is precipitation
(x;) and the dependent variable (label) is yield (y;).
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w - x + b that can model the data. To identify the best, we must

measure the quality of fit.

error = true - predicted

ei = Vi —£WXL+b2 @
f(x)

The quality of fit can be measured using a loss function
that depends on the error between the true and predicted
labels

In linear regression, we measure fit using the squared loss over
. . 1
the error, that is, we use a squared loss function, 5 ei2

L@, y) =5 (v — w-x; + b))’
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CS6375: Machine Learning Linear Regression

Formulating and Solving Linear Regression

Problem Formulation: the best model minimizes the average squared loss across all the
data; that is, find the best parameters w and b such that their predictions minimize the
average squared loss.

Problem: Given n training examples (x;, y;), i = 1, ..., n, find the
best model (w, b) by solving

.. . 1an 2
minimize ~ " (yi = w-x;+ b))

This is an (unconstrained) optimization problem in the variables
(w, b). The optimal solution will be our model.

» Solution Approach 1: Take derivatives and solve analytically.
This leads to a closed-form solution.

Note that closed-form solutions are not always
directly computable.
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CS6375: Machine Learning Linear Regression

Formulating and Solving Linear Regression

Problem Formulation: the best model minimizes the average squared loss across all the
data; that is, find the best parameters w and b such that their predictions minimize the
average squared loss.

each iteration updates parameters using
\, gradient iformation from a random
200 \ ' example

N
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Problem: Given n training examples (x;, y;), i = 1, ..., n, find the
best model (w, b) by solving

S
2
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minimize - l=1(yl w-x; + b)) g
3 50
. . NP , , E. 0 - — 2
This is an (unconstrained) optimization problem in the variables S 2 4 T
(w, b). The optimal solution will be our model. 0 1 2 -2 .
b
«  Solution Approach 2: Solve using optimization techniques, convergence fate-depenids oM step-size_
e.g., gradient descent. 1 IR Wy,
Initalize: W = Wqy,b = by, t =0 // A \\\ N
Iterate until convergence eoll ([ | ( \
Compute updates: VAR \ |
Wep1 = W — Mt VWL(f (X) , y) NN . f\.\\\\\\\\“\ ‘-‘\____’-/’_//./// S
bei1 = be — e VpL(f (%), ¥) A7 B i Y o g M
Check for convergence St 1
Continue to next iteration.: t = t + 1 2 el
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CS6375: Machine Learning Linear Regression

Multivariate Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Example: Develop a model to predict produce yield depending on
multiple factors such as precipitation, average manure usage,
temperature, plant spacing, and relative humidity.

Here, the independent variables (training data) are denoted x; and the
dependent variable (label) is yield (y;).

Our hypothesis class is the space of all multivariate
linear functions, y = f(x) = wix + b

the model is multivariate because there are many)
independent (training) variables

22 1.5 33.1 1.0 32.5 0.36 | the model is still linear because the highest

11 0.75 27.9 1.5 45.0 0.09 allowed degree is x1 in each dimension of x

94 0.85 28.5 1.0 78.0 0.67

62 3.0 22.6 2.0 55.0 0.44 the intercept can be absorbed into the

inner-product by augmenting the data X = [x, 1] and by
8 4.25 354 10 685 0.72 ‘ augmenting the weights w = [w, b] such that wTx =
14\ 125 34.4 0.75 72.0 0.24 wix +b-1
104 2.75 19.3 0.5 37.5 0.33
~ the goal is to predict the label, y;, as a

each row x! corresponds to a multi-dimensional training
example, represented as a column vector, x;

u D THE UNIVERSITY OF TEXAS AT DALLAS 8
Erik Jonsson School of Engineering and Computer Science

function of the multiple factors




CS6375: Machine Learning Linear Regression

Multivariate Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Example: Develop a model to predict produce yield dependingon  The Joss function is still the squared loss, = e?, though the
multiple factors such as precipitation, average manure usage, z

; ) - error is measured in d-dimensional space via the inner-
temperature, plant spacing, and relative humidity.

product wT x;
Here, the independent variables (training data) are denoted x; and the error = true - predicted
dependent variable (label) is yield (y;).
o
@
— T
22 1.5 33.1 1.0 32.5 0.36 "
| — T 2
11 0.75 27.9 1.5 45.0 0.09 L(f(x),y;) = E (yi —w'x;)
94 0.85 28.5 1.0 78.0 0.67
62 3.0 22.6 2.0 55.0 0.44
84 4.25 35.4 1.0 68.5 0.72 X!
14 1.25 34.4 0.75 72.0 0.24 :
: o x=[)
e — i i 05 e \ 0.33 o N L/ Note the transpose to denote that
\ multivariate training examples (which are
All the training examples are collected into a matrix of training T column vectors) are transposed to rows in the
data X, where each row is a training example X1 data matrix
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Multivariate Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Problem: Given n training examples (x;, v;), i = 1, ..., n, find the This expression can be written more compactly in vector
best model w by solving notation

o1 T
minimize % L —whx))? minimize ;(y —Xw)T(y — Xw)
w

and fully expanded into:

minimize - (yT'y — 2y"Xw + wiXTXw)
w

22 1.5 33.1 1.0 32.5 0.36 V11

11 0.75 27.9 1.5 45.0 0.09

94 0.85 28.5 1.0 78.0 0.67 y =|Vi

62 3.0 226 2.0 55.0 0.44 j :

84 4.25 35.4 1.0 68.5 0.72 Vnd TxI]

14 1.25 34.4 0.75 72.0 0.24 :

: | X = [x7)
104 2.75 19.3 0.5 37.5 0.33 _ \l/ Note the transpose to denote that
multivariate training examples (which are

All the training examples are collected into a matrix of training T column vectors) are transposed to rows in the
data X, where each row is a training example X1 data matrix
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Multivariate Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Problem: Given n training examples (x;,y;),i = 1, ..., n, find the The solution to this problem is the ordinary least
best model w by solving squares estimator
. e . 1 T T TvT — XTX —1xT
minimize —(y'y — 2y’ Xw + w' X" Xw) w = ( )
w n

solution depends on the inverse of the covariance
matrix C = XT X, which can be ill-conditioned

unique closed-form solution, provided that number of data
points (n) exceeds data dimension (d)

(XTX)~1XT = X™is called the pseudo-inverse
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CS6375: Machine Learning Linear Regression

Ridge Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Problem: Given n training examples (x;,y;), i = 1, ..., n, find the The solution to this problem is the regularized
most robust model w by solving (for 1 > 0) least squares estimator
e 1
minimize — (y —Xw)T(y —Xw) + iw'w w=XTX+ A, Xy
w

wlw is a regularization term that is used to overcome ill-
conditioning, A > 0 is the regularization parameter, which
is tunable

for A > 0, inverse is can always be computed,
algorithm more robust

Exercise: Derive the regularized least squares estimator from the optimization formulation for Ridge Regression.
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Ridge Regression and the Bias-Variance Tradeoff

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Problem: Given n training examples (x;,y;),i = 1, ..., n, find the
most robust model w by solving (for 4 > 0)

C e 1
minimize — (y —Xw)T(y —Xw) + iw'w
w
wlw is a regularization term that is used to overcome ill-

e s th larizati hich for A > 0, inverse is can always be computed,
conditioning, A > 0 is t iesrtc:gi]lgglr;zatlon parameter, whic algorithm more robust

The solution to this problem is the ordinary least
squares estimator

w=(XTX+ ;) Xy

0.9
A > 0 can be tuned to train different models with different behaviors:
» A controls the amount of regularization [_"8 E
«as A | 0, the model focuses on minimizing error (variance) and b('f}s ,
overfits the data
o when the model is too complex and trivially fits the data (i.e., | »
too many parameters) 05, i
o when the data is not enough to estimate the parameters A
o model captures the noise (or the chance) | T —— S AT Ty m—
« as 1 1 =, the model focuses on shrinking the coefficients w (bias) N g"anceﬂsma"er error  bias: simpler models
and underfits the data

102 10" 10° 10" 10® 10® 10* 10° 10°
Regularization parameter, A
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Bias-Variance Tradeoff

Linear Regression

The best model is the one that generalizes well, that is, the best model
trades-off effectively between bias and variance and can be expected to
perform well on future data.

0.9 \

A > 0 can be tuned to train different models with different behaviors:

o 0.8
* A controls the amount of regularization _
- . . . bias
«as A | 0, the model focuses on minimizing error (variance) and 0.7
overfits the data
»as A1 1 «, the model focuses on shrinking the coefficients w (bias) 0&( a
and underfits the data 05 Vi
j 5
c..:\
L S e S A
variance: smaller error bias: simpler models
0.3 ' L —

102 10" 10° 10" 10> 10® 10* 10° 10°
Regularization parameter, A

All machine-learning algorithms will exhibit this bias-variance tradeoff; selecting the
best model parameters is an important practical aspect of machine-learning.
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