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Example: Pattern Analysis in 17th Century Astronomy

Planet
Mean dist. to 
sun [AU], D

Orbital Period 
[days], T

D3/T2 

Mercury 0.389 87.77 7.64

Venus 0.724 224.70 7.52

Earth 1 365.25 7.50

Mars 1.524 686.95 7.50

Jupiter 5.2 4332.62 7.49

Saturn 9.510 10759.2 7.43

The German astronomer
Johannes Kepler published his laws of planetary 
motion in 1609 & 1619, and discovered them by 

analyzing the astronomical observations of Tycho
Brahe

Kepler’s 3rd Law: the square of the orbital period of a 
planet (T2) is proportional to the cube of the semi-

major axis of its orbit (D3).
ଷ
ଶ
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Example: Pattern Analysis in 17th Century Astronomy

Planet
Mean dist. to 
sun [AU], D

Orbital Period 
[days], T

D3/T2 

Mercury 0.389 87.77 7.64

Venus 0.724 224.70 7.52

Earth 1 365.25 7.50

Mars 1.524 686.95 7.50

Jupiter 5.2 4332.62 7.49

Saturn 9.510 10759.2 7.43

Uranus 19.191 ? ~7.50

Neptune 30.069 ? ~7.50

If we know the model, we can use it to predict the orbital 
periods of newly-discovered planets. This property of 
machine-learning models is called generalization.

This is an example of a supervised machine-learning
problem, where labels (T) are available for learning the 

model. This is, in fact, a (non-linear) regression 
problem.

Kepler’s 3rd Law is an example of a model
that relates data (D) to labels (T)

Kepler’s 3rd Law: the square of the orbital period of a 
planet (T2) is proportional to the cube of the semi-

major axis of its orbit (D3).
ଷ
ଶ
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Univariate Linear Regression
Problem Setup: Given data (𝑥௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending 
on the precipitation this year. 

Here, the independent variable (training data) is precipitation 
(𝑥௜) and the dependent variable (label) is yield (𝑦௜).

First, we select the hypothesis class, which is the set of 
allowable functions to model the relationship between 

data (𝑥௜) and labels (𝑦௜):
𝑦 = 𝑓(𝑥)

The goal is to learn the parameters 𝑤 and 𝑏 that best fit
the training data.

Our hypothesis class is the space of all univariate linear 
functions, 𝑦 = 𝑓 𝑥 =  𝑤 ⋅ 𝑥 + 𝑏

the model is univariate because there is only one 
independent (training) variable, 𝑥

the model is linear because the highest allowed degree is 𝑥ଵ. 
Higher-order models will be nonlinear, for example, the quadratic

hypothesis class: 
𝑦 = 𝑢 ⋅ 𝑥ଶ + 𝑤 ⋅ 𝑥 + 𝑏
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Univariate Linear Regression
Problem Setup: Given data (𝑥௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending 
on the precipitation this year. 

Here, the independent variable (training data) is precipitation 
(𝑥௜) and the dependent variable (label) is yield (𝑦௜).

There are infinitely many functions in the hypothesis class: 𝑦 =
𝑤 ⋅ 𝑥 + 𝑏 that can model the data. To identify the best, we must 

measure the quality of fit. 

௜ ௜ ௜

௙(௫೔)

error = true - predicted

The quality of fit can be measured using a loss function
that depends on the error between the true and predicted

labels

௜ ௜
ଵ

ଶ ௜ ௜
ଶ

In linear regression, we measure fit using the squared loss over 

the error, that is, we use a squared loss function, 
ଵ

ଶ
𝑒௜

ଶ
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Formulating and Solving Linear Regression

௪,௕

ଵ

௡ ௜ ௜
ଶ௡

௜ୀଵ

Problem: Given 𝑛 training examples (𝑥௜, 𝑦௜), 𝑖 = 1, … , 𝑛, find the 
best model 𝑤, 𝑏 by solving

This is an (unconstrained) optimization problem in the variables 
𝑤, 𝑏 . The optimal solution will be our model.

• Solution Approach 1: Take derivatives and solve analytically. 
This leads to a closed-form solution. 

Note that closed-form solutions are not always
directly computable.

Problem Formulation: the best model minimizes the average squared loss across all the 
data; that is, find the best parameters 𝑤 and 𝑏 such that their predictions minimize the 

average squared loss. 
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Formulating and Solving Linear Regression

௪,௕

ଵ

௡ ௜ ௜
ଶ௡

௜ୀଵ

Problem: Given 𝑛 training examples (𝑥௜, 𝑦௜), 𝑖 = 1, … , 𝑛, find the 
best model 𝑤, 𝑏 by solving

This is an (unconstrained) optimization problem in the variables 
𝑤, 𝑏 . The optimal solution will be our model.

• Solution Approach 2: Solve using optimization techniques, 
e.g., gradient descent.

Problem Formulation: the best model minimizes the average squared loss across all the 
data; that is, find the best parameters 𝑤 and 𝑏 such that their predictions minimize the 

average squared loss. 

Initalize: 𝑤 = 𝑤଴,𝑏 = 𝑏଴,𝑡 = 0
Iterate until convergence

Compute updates:
𝑤௧ାଵ = 𝑤௧ − 𝜂௧ 𝛻௪𝐿 𝑓 𝑥 , 𝑦
𝑏௧ାଵ = 𝑏௧ − 𝜂௧ 𝛻௕𝐿(𝑓 𝑥 , 𝑦)

Check for convergence
Continue to next iteration: 𝑡 = 𝑡 + 1

convergence rate depends on step-size
𝜂௧

each iteration updates parameters using 
gradient information from a random

example
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Multivariate Linear Regression
Problem Setup: Given data (𝒙௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending on 
multiple factors such as precipitation, average manure usage, 

temperature, plant spacing, and relative humidity. 

Here, the independent variables (training data) are denoted 𝒙௜ and the 
dependent variable (label) is yield (𝑦௜).

Precip.
[mm]

Manure  
[kg/m2]

Temper
at. 

[oC]

Spacing 
[m]

Humid.
[%]

Yield
[kg/m2]

22 1.5 33.1 1.0 32.5 0.36

11 0.75 27.9 1.5 45.0 0.09

94 0.85 28.5 1.0 78.0 0.67

62 3.0 22.6 2.0 55.0 0.44

84 4.25 35.4 1.0 68.5 0.72

14 1.25 34.4 0.75 72.0 0.24

104 2.75 19.3 0.5 37.5 0.33

each row  𝒙௜
் corresponds to a multi-dimensional training 

example, represented as a column vector, 𝒙௜

the goal is to predict the label, 𝑦௜ , as a 
function of the multiple factors

Our hypothesis class is the space of all multivariate
linear functions, 𝑦 = 𝑓 𝒙 = 𝒘்𝒙 + 𝑏

the model is multivariate because there are many 
independent (training) variables

the model is still linear because the highest 
allowed degree is 𝑥ଵ in each dimension of 𝒙

the intercept can be absorbed into the 
inner-product by augmenting the data 𝒙ෝ = [𝒙, 1] and by 
augmenting the weights 𝒘ෝ = [𝒘, 𝑏] such that 𝒘ෝ 𝑻𝒙ෝ =

𝒘𝑻𝒙 + 𝑏 ⋅ 1
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Multivariate Linear Regression
Problem Setup: Given data (𝒙௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Example: Develop a model to predict produce yield depending on 
multiple factors such as precipitation, average manure usage, 

temperature, plant spacing, and relative humidity. 

Here, the independent variables (training data) are denoted 𝒙௜ and the 
dependent variable (label) is yield (𝑦௜).

Precip.
[mm]

Manure  
[kg/m2]

Temp. 
[oC]

Spacing 
[m]

Humid.
[%]

Yield
[kg/m2]

22 1.5 33.1 1.0 32.5 0.36

11 0.75 27.9 1.5 45.0 0.09

94 0.85 28.5 1.0 78.0 0.67

62 3.0 22.6 2.0 55.0 0.44

84 4.25 35.4 1.0 68.5 0.72

14 1.25 34.4 0.75 72.0 0.24

104 2.75 19.3 0.5 37.5 0.33

All the training examples are collected into a matrix of training 
data X, where each row is a training example 

௜ ௜
்

௜

error = true - predicted

௜ ௜
ଵ

ଶ ௜
்

௜
ଶ

The loss function is still the squared loss, 
ଵ

ଶ
𝑒௜

ଶ, though the 

error is measured in d-dimensional space via the inner-
product 𝒘்𝒙௜

ଵ
்

௜
்

௡
்

Note the transpose to denote that 
multivariate training examples (which are 

column vectors) are transposed to rows in the 
data matrix 
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Multivariate Linear Regression
Problem Setup: Given data (𝒙௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

All the training examples are collected into a matrix of training 
data X, where each row is a training example 

ଵ
்

௜
்

௡
்

Note the transpose to denote that 
multivariate training examples (which are 

column vectors) are transposed to rows in the 
data matrix 

𝒘

ଵ

௡ ௜
்

௜
ଶ௡

௜ୀଵ

Problem: Given 𝑛 training examples (𝒙௜, 𝑦௜), 𝑖 = 1, … , 𝑛, find the 
best model 𝒘 by solving

𝒘

ଵ

௡
்

This expression can be written more compactly in vector 
notation

ଵ

௜

௡

𝒘

் ் ் ்

and fully expanded into:



11

CS6375: Machine Learning Linear Regression

Multivariate Linear Regression
Problem Setup: Given data (𝒙௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Problem: Given 𝑛 training examples (𝒙௜, 𝑦௜), 𝑖 = 1, … , 𝑛, find the 
best model 𝒘 by solving

𝒘

் ் ் ்

The solution to this problem is the ordinary least 
squares estimator

் ିଵ ்

solution depends on the inverse of the  covariance 
matrix 𝐶 = 𝑋்𝑋, which can be ill-conditioned

unique closed-form solution, provided that number of data 
points (𝑛) exceeds data dimension (𝑑)

் ିଵ ் ାis called the pseudo-inverse
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Ridge Regression
Problem Setup: Given data (𝒙௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Problem: Given 𝑛 training examples (𝒙௜, 𝑦௜), 𝑖 = 1, … , 𝑛, find the 
most robust model 𝒘 by solving (for 𝜆 > 0)

𝒘

ଵ

௡
் ்

The solution to this problem is the regularized 
least squares estimator

்
ௗ

ିଵ

for 𝜆 > 0, inverse is can always be computed, 
algorithm more robust

𝒘்𝒘 is a regularization term that is used to overcome ill-
conditioning, 𝜆 > 0 is the regularization parameter, which 

is tunable

Exercise: Derive the regularized least squares estimator from the optimization formulation for Ridge Regression.
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Ridge Regression and the Bias-Variance Tradeoff
Problem Setup: Given data (𝒙௜) and real-valued labels (𝑦௜), find the best model that fits 

current data and predicts future data

Problem: Given 𝑛 training examples (𝒙௜, 𝑦௜), 𝑖 = 1, … , 𝑛, find the 
most robust model 𝒘 by solving (for 𝜆 > 0)

𝒘

ଵ

௡
் ்

The solution to this problem is the ordinary least 
squares estimator

்
ௗ

ିଵ

for 𝜆 > 0, inverse is can always be computed, 
algorithm more robust

𝒘்𝒘 is a regularization term that is used to overcome ill-
conditioning, 𝜆 > 0 is the regularization parameter, which 

is tunable

bias: simpler models

variance: higher errorbias: complex models

variance: smaller error

𝜆 > 0 can be tuned to train different models with different behaviors:
• 𝜆 controls the amount of regularization
• as 𝜆 ↓ 0, the model focuses on minimizing error (variance) and 

overfits the data
o when the model is too complex and trivially fits the data (i.e., 

too many parameters)
o when the data is not enough to estimate the parameters
o model captures the noise (or the chance)

• as 𝜆 ↑ ∞, the model focuses on shrinking the coefficients 𝒘 (bias)
and underfits the data
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Bias-Variance Tradeoff
The best model is the one that generalizes well, that is, the best model 

trades-off effectively between bias and variance and can be expected to 
perform well on future data.

bias: simpler models

variance: higher errorbias: complex models

variance: smaller error

𝜆 > 0 can be tuned to train different models with different behaviors:
• 𝜆 controls the amount of regularization
• as 𝜆 ↓ 0, the model focuses on minimizing error (variance) and 

overfits the data
• as 𝜆 ↑ ∞, the model focuses on shrinking the coefficients 𝒘 (bias)

and underfits the data

All machine-learning algorithms will exhibit this bias-variance tradeoff; selecting the 
best model parameters is an important practical aspect of machine-learning.


