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CS6375: Machine Learning

Example: Handwritten Digit Recognition
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The United States Postal Service Zip Code 60 Bl S il I IS I T4 MmIaE
Database contains 16 x 16 pixel images of scanned 32 64 96 128 160 192 224 256
handwritten digits. Typical human error rate is Pixels
around 2.5%.

We can reshape each 16 x 16 image matrix into a
256 x 1 image vector; each row is a digit, represented
by its 256 (= 16 x 16) pixels.

Machine Learning Task: Identify digits from data automatically; that
is classify each image as a digit. This is an instance of a
classification task. As there are 10 digits, this is an example of a
multi-class classification problem.
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Example: Handwritten Digit Recognition

Alternately, we can extract two informative features from each
image: intensity and symmetry. Data set is 2-dimensional.

" Consider the simpler problem of learning a classifier to separate
the 1s from the 5s. This simpler problem is also linearly
separable.
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Machine Learning Task: Classify images as 1 or 3. This is an i ,
instance of a binary classification task. o
-8 . . .
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Perceptron

Linear Classification

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Example: Develop a model to classify between 1s and 5s.

Here, the independent variables (training data) are average
intensity and symmetry of the digit images (x;) and the
dependent variable (label) is 1 or 5 (y;).

o Digit1 (y = +1)
Digit 5 (y = -1)

0 0.1 0.2 0.3 0.4 0.5 0.6
Average Intensity

Our hypothesis class is the space of all linear functions,
y=f(x)=wlx+b

in this 1vsb5 digit classification task, the training examples
are two-dimensional (intensity, symmetry), that is x € R?

In n dimensions, a hyperplane is a solution to the
equation, w'x + b = 0O withw € R* and b € R.
Hyperplanes divide R™ into two distinct sets of points
(called open half-spaces)

wix+b>0
he
normal o't
hyperplan91 ____ﬂi)ﬁi_b_:_(.).-—
wix+b<0

For a classification problem, the labels are not continuous, but
nominal. Here, denote the labels for
Digit 1 as y = +1 and the labels for Digit 5 as y = -1.
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Linear Classification

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;, y;), i = 1, ..., 7, In linear regression, we measure fit using the sq;lared_ loss over
where y; = {+1,—1}, find the best model (w, b) the error, that is, we use a squared loss function,

LUF@),y) = (v — W x; + b))

Is this still a good loss function?

— Count the number of misclassifications:
+ Digit1(y=+1)

Digit 5 (y = -1) L(f(x;),y;) = % ly; — sign(w - x; + b)|

Loss function is not differentiable, difficult to optimize

Penalize each misclassification by the size of the violation,
using the modified hinge loss

L(f(x;),y;) = max{0,—y; - (w-x; + b)}

Only misclassified points will have a loss > 0. m B

| | | | | | Correctly classified points will always have
0 01 02 03 04 05 06 [0ss=0 Why?
Average Intensity
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Linear Classification

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;,v;),i = 1, ..., n,
where y; = {+1, —1}, find the best model (w, b) by solving

minimize > max{0,—y; - Wlx; + b)}

)

This is an (unconstrained) optimization problem in the variables
(w, b). The optimal solution will be our model.

Solution Approach: Solve using optimization techniques, e.g.,
gradient descent. However, the loss function is convex, but not
differentiable everywhere!
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Linear Classification

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;,y;),i =1, ..., n, Piecewise continuous functions such as max (0, x) and | x| are not
where y; = {+1, —1}, find the best model (w, b) by solving differentiable everywhere (in this case, at x = 0).
minimize Y-, max{0,—y; - (Wl'x; + b)}

w,b A , N A
, \\ ,/
/, \\ /,
/, S /’
/, \\\ /,

U4 \ U4

This is an (unconstrained) optimization problem in the variables ,/ \\ /'
(w, b). The optimal solution will be our model. B —— - * >
x ifx>0 x ifx>0
Solution Approach: Solve using optimization techniques, e.g., max(0,x) =40 ifx=0 x| ={ 0 ifx=0
gradient descent. However, the loss function is convex, but not 0 ifx<O —x ifx<0

differentiable everywhere!
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Linear Classification

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;,y;),i = 1,...,n, Piecewise continuous functions such as max (0, x) and | x| are not
where y; = {+1,—1}, find the best model (w, b) by solving differentiable everywhere. We compute the sub-gradient instead.

minimize Y-, max{0,—y; - (Wl'x; + b)}

w,b A \ A
// \\ /,
U \ V4
U4 \ V4
/, \\ /,
/s N s
7 \ 7 .
This is an (unconstrained) optimization problem in the variables /,:c_’«:’,'_- _ \\ "
(w, b). The optimal solution will be our model. "_','_:—;,' = %’
" (x ifx>0 1 x ifx>0
Solution Approach: Solve using optimization techniques, e.g., max(0,x) =<0 ifx = x| =45 0 ifx=
gradient descent. However, the loss function is convex, but not 0 ifx<O —x ifx<0
differentiable everywhere!
9 1 ifx >0 0 1 ifx>0
amaX(O,x) =4[0,1] ifx=0 a—|x| =4[-1,1] ifx=0
0 ifx<o ¢ -1 ifx<0

For a convex function f(x), a sub-gradient at a point x,
is any tangent line or plane through the point x, that
underestimates (supports) the function everywhere.
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Perceptron

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;,v;),i = 1, ..., n,
where y; = {+1, —1}, find the best model (w, b) by solving

minimize > max{0,—y; - Wlx; + b)}

Solution Approach 1: Solve using optimization techniques, e.g., sub-
gradient descent (compare with gradient descent used for regression)

Initalize: w = wg,b = by,t = 0 L(f (xp), ) = Z Vi X;
Iterate until convergence i:—yif(x;)>0
Compute updates:
Werr = We — e By L(f (), y) VpL(f (x;),y;) = z —y;
bty = by — 1 VpL(f (%), y)

Check for convergence i=yif (x)>0

Continue to next iteration; t =t + 1

gradient only depends on the misclassified examples
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Perceptron

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;,v;),i = 1, ..., n,

where y; = {+1,—1}, find the best model (w, b) by solving approximate the gradent by sampling a few

examples uniformly at random and averaging; in the
miningize 271'1:1 max {0’ —y; - (WT x; + b)} extreme case, select only a single example

stochastic gradient descent converges under mild
assumptions on the step size (it should decrease

Solution Approach 2: To make training more practical, stochastic sub-
gradient descent is used instead of sub-gradient descent

Initalize: w = wy,b = by

fori=1,..,n
Select a random training example, (x;, y;)
Compute updates if (x;, y;) misclassified

Wivr = w; —1; B, L(f (%), yi)

bit1 = b; —n; Vy L(f (x;), yi) VwL(f (x:),y:) = —yix;
Else

Wil = Wy VuL(f (x:), i) = =i

biy+1 = b;
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Perceptron

Problem Setup: Given data (x;) and classification labels (y;), find the best model that
separates/classifies current data and predicts future data

Problem: Given n training examples (x;,v;),i = 1, ..., n,
where y; = {+1, —1}, find the best model (w, b) by solving
Drawbacks:

Minize ey max {0, —y; - (W'x; + b))} « No convergence guarantees if the
observations are not linearly separable
« Can overfit: there can be a number of
perfect classifiers, but the perceptron

Solution Approach 2: To make training more practical, stochastic sub- a|gorithm doesn’t have any mechanism
gradient descent is used instead of sub-gradient descent for choosing between them

Initalize: w = wy,b = by
fori=1,..,n
Select a random training example, (x;, y;)
Compute updates if (x;, y;) misclassified
Wiy = w; —1; B L(F (x), y3)

bit1 = b; —n; Vy L(f (x;), yi) VwL(f (x:),y:) = —yix;
Else

Wisl = W, VpL(f (x:),y:) = —y;

biy+1 = b;
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Limitations of Linear Hypotheses

Regression: Non-linear regression functions Classification: Linearly inseparable classes
10, 3 .. 3 .am weys o .  Transforming the dataintoa
plats 3t ™ | TS § G higher-dimensional
1.!;:..' i s * J . space makes the problem
o | e linear in that space at
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s 2 4 0 1 2z s 2 4 o0 1 2 3 transformations is not easy.

Explicitly transform the data x — (x, x?)
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