Decision Trees
Example: Restaurant Recommendation

Example: Develop a model to recommend restaurants to users depending on their past dining experiences.

Here, the features are cost \(x_1 \) and the user’s spiciness rating of the food at the restaurant \(x_2 \) and the label is if they liked the food \(y_i = \circ \) or not \(y_i = \square \).

A data set is linearly separable if there exists a hyperplane that separates positive examples from negative examples.
- Relatively easy to learn (using standard techniques)
- Easy to visualize and interpret

Many data sets in real world are not linearly separable!
Two options:
- Use non-linear features, and learn a linear classifier in the transformed non-linear feature space
- Use non-linear classifiers

Decision Trees can handle nonlinear separable data sets and are one of the most popular classifiers.
Decision Trees: Introduction

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food ($y_i = \bullet$) or not ($y_i = \blacksquare$).

Decision Trees represent decision-making as a **checklist of questions**, and visualize it using a tree-structure.

Decision Tree representation:
- Each **non-leaf node tests an attribute/feature**
- Each **branch corresponds to attribute/feature value**, a decision (to choose a path) as a result of the test
- Each **leaf node assigns a classification**
Decision Trees: Introduction

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user’s **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food ($y_i = \text{true}$ or not ($y_i = \text{false}$).

- Decision trees divide the feature space into **axis-parallel rectangles**
- Decision Trees can handle **arbitrarily non-linear representations**, given sufficient tree complexity
- Worst-case scenario: the decision tree has an **exponential number of nodes!** (why?)
Decision Trees: Introduction

Example: Develop a model to recommend restaurants to users depending on their past dining experiences.

Here, the features are cost \(x_1 \) and the user’s spiciness rating of the food at the restaurant \(x_2 \) and the label is if they liked the food \(y = +1 \) or not \(y = +1 \).

- Decision trees divide the feature space into axis-parallel rectangles
- Decision Trees can handle arbitrarily non-linear representations, given sufficient tree complexity
- Worst-case scenario: the decision tree has an exponential number of nodes!
 - If the target function has \(n \) Boolean features, there are \(2^n \) possible inputs
 - In the worst case, there is one leaf node for each input (for example: XOR)

Decision trees are not unique, and many decision trees can represent the same hypothesis!
Decision Trees: Introduction

Example: Develop a model to recommend restaurants to users depending on their past dining experiences.

Here, the features are cost \(x_1 \) and the user’s spiciness rating of the food at the restaurant \(x_2 \) and the label is if they liked the food \(y = +1 \) or not \(y = +1 \).

When do you want Decision Trees?
When instances are describable by attribute-value pairs:
• target function is discrete-valued
• disjunctive hypothesis may be required
• need for interpretable model

Examples:
• Equipment or medical diagnosis
• Credit risk analysis
• Modeling calendar scheduling preferences
Learning Decision Trees

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

- **Solution Approach 1 (Naïve solution):** Create a decision tree with one path from root to leaf for each training example. *Such a tree would just memorize the training data, and will not generalize well to new points.*

- **Solution Approach 2 (Exact solution):** Find the smallest tree that minimizes the classification error. *Finding this solution is NP-Hard!*

- **Solution Approach 3 (Heuristic solution):** Top-down greedy search

Initialize: Choose the best feature f^* for the root of the tree

Function GrowTree(data, f^*)

1. Separate data into subsets $\{S_1, S_2, \ldots, S_K\}$, where each subset S_i contains examples that have the same value for f^*
2. for $S_i \in \{S_1, S_2, \ldots, S_K\}$
 - Choose the best feature f_i^* for the next node
 - **Recursively** GrowTree(S_i, f_i^*) until all examples have the same class label
Learning Decision Trees

Problem Formulation: Find a decision tree \(h \) that achieves minimum misclassification errors on the training data

- **Solution Approach 1 (Naïve solution):** Create a decision tree with one path from root to leaf for each training example. *Such a tree would just memorize the training data, and will not generalize well to new points.*

- **Solution Approach 2 (Exact solution):** Find the smallest tree that minimizes the classification error. *Finding this solution is \(NP-Hard \)!*

- **Solution Approach 3 (Heuristic solution):** Top-down greedy search

Problem Formulation:

Initialize: Choose the best feature \(f^* \) for the root of the tree

Function \(\text{GrowTree(data, } f^* \) \)

1. Separate data into subsets \(\{S_1, S_2, \ldots, S_k\} \), where each subset \(S_i \) contains examples that have the same value for \(f^* \)
2. for \(S_i \in \{S_1, S_2, \ldots, S_k\} \)

 - Choose the best feature \(f_i^* \) for the next node
 - Recursively \(\text{GrowTree}(S_i, f_i^*) \) until all examples have the same class label

How do we pick the best feature?

How do we decide when to stop?
Learning Decision Trees

Problem Formulation: Find a decision tree \(h \) that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search

Initialize: Choose the best feature \(f^* \) for the root of the tree

Function GrowTree(data, \(f^* \))

1. Separate data into subsets \(\{S_1, S_2, \ldots, S_k\} \), where each subset \(S_i \) contains examples that have the same value for \(f^* \)
2. for \(S_i \in \{S_1, S_2, \ldots, S_k\} \)

Choose the best feature \(f_i^* \) for the next node

Recursively GrowTree\((S_i, f_i^*) \) until all examples have the same class label

How do we pick the next best feature to place in a decision tree?
- Random choice
- Largest number of values
- Fewest number of values
- **Lowest classification error**
- Information theoretic measure (Quinlan’s approach)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>split on (x_1)</th>
<th>(y)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\(x_1 = 0 \)

\(x_1 = 1 \)

\(J = 2 \)

<table>
<thead>
<tr>
<th>split on (x_2)</th>
<th>(y)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\(x_2 = 0 \)

\(x_2 = 1 \)

\(J = 4 \)

<table>
<thead>
<tr>
<th>split on (x_3)</th>
<th>(y)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\(x_3 = 0 \)

\(x_3 = 1 \)

\(J = 4 \)

\(J \) is splitting criterion measured for each split, in this case, the classification error
Learning Decision Trees

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search

- **Initialize:** Choose the best feature f^* for the root of the tree
- **Function** `GrowTree(data, f^*)
 1. Separate data into subsets $\{S_1, S_2, \ldots, S_k\}$, where each subset S_i contains examples that have the same value for f^*
 2. Choose the best feature f_i^* for the next node
- **Recursively** `GrowTree(S_i, f_i^*)` until all examples have the same class label

How do we pick the next best feature to place in a decision tree?
- Random choice
- Largest number of values
- Fewest number of values
- **Lowest classification error**
- Information theoretic measure (Quinlan’s approach)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Training examples**

```
\begin{tabular}{|c|c|c|c|}
\hline
$x_1$ & $x_2$ & $x_3$ & $y$ \\
\hline
0     & 0     & 0     & 1   \\
0     & 0     & 1     & 0   \\
0     & 1     & 0     & 1   \\
0     & 1     & 1     & 1   \\
1     & 0     & 0     & 0   \\
1     & 1     & 1     & 1   \\
1     & 1     & 0     & 0   \\
1     & 1     & 1     & 0   \\
\hline
\end{tabular}
```

- **Split on x_1**
 - $x_1 = 0$
 - $x_1 = 1$
 - $J = 2$

```
\begin{tabular}{|c|c|c|c|}
\hline
$\text{Counts}$ & $y = 0$ & $y = 1$ \\
\hline
1 & 3 & 1 \\
\hline
\end{tabular}
```

- **Split on x_2**
 - $x_2 = 0$
 - $x_2 = 1$
 - $J = 4$

```
\begin{tabular}{|c|c|c|c|}
\hline
$\text{Counts}$ & $y = 0$ & $y = 1$ \\
\hline
2 & 2 & 2 \\
\hline
\end{tabular}
```

- **Split on x_3**
 - $x_3 = 0$
 - $x_3 = 1$
 - $J = 4$

```
\begin{tabular}{|c|c|c|c|}
\hline
$\text{Counts}$ & $y = 0$ & $y = 1$ \\
\hline
2 & 2 & 2 \\
\hline
\end{tabular}
```

- **Can think of counts as probability distributions over the labels**

```
\begin{tabular}{|c|c|}
\hline
$\text{Counts}$ & $y$ \\
\hline
1/4 & 3/4 \\
2/4 & 2/4 \\
\hline
\end{tabular}
```
Learning Decision Trees

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search

Initialize: Choose the best feature f^* for the root of the tree

Function $\text{GrowTree}(\text{data}, f^*)$

1. Separate data into subsets $\{S_1, S_2, \ldots, S_k\}$, where each subset S_i contains examples that have the same value for f^*
2. for $S_i \in \{S_1, S_2, \ldots, S_k\}$

Choose the best feature f_i^* for the next node

Recursively $\text{GrowTree}(S_i, f_i^*)$ until all examples have the same class label

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan’s approach)

The selected attribute is a good split if we are more “certain” about the classification after the split (compare with the perceptron)

- If each partition with respect to the chosen attribute has a distinct class label, we are completely certain about the classification

- If class labels are evenly divided between partitions, we are very uncertain about the classification

Can think of counts as probability distributions over the labels

$J = 2$

$J = 4$
Learning Decision Trees

Problem Formulation: Find a decision tree \(h \) that achieves minimum misclassification errors on the training data.

Solution Approach 3 (Heuristic solution): Top-down greedy search

Initialize: Choose the best feature \(f^* \) for the root of the tree.

Function GrowTree(data, \(f^* \))

1. Separate data into subsets \(\{S_1, S_2, \ldots, S_k\} \), where each subset \(S_i \) contains examples that have the ***same value for*** \(f^* \).

2. Choose **the best feature** \(f_i^* \) for the next node.

Recursively GrowTree(\(S_i, f_i^* \)) until all examples have the ***same class label***.

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan’s approach)

The selected attribute is a **good split** if we are more “certain” about the classification after the split (compare with the perceptron).

- If each partition with respect to the chosen attribute has a **distinct class label**, we are completely certain about the classification.

<table>
<thead>
<tr>
<th>(y = 0)</th>
<th>(y = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_2 = 0)</td>
<td>2/4</td>
</tr>
<tr>
<td>(x_2 = 1)</td>
<td>2/4</td>
</tr>
</tbody>
</table>

- If class labels are evenly divided between partitions, we are very uncertain about the classification.

<table>
<thead>
<tr>
<th>(y = 0)</th>
<th>(y = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0)</td>
<td>1.0</td>
</tr>
<tr>
<td>(0.5)</td>
<td>0.5</td>
</tr>
</tbody>
</table>
A **discrete probability distribution** describes the probability of occurrence of each value of a discrete random variable.

The **surprise** or **self-information** of each event of X is defined to be

$$S(X = x) = -\log_2 \text{Prob}(X = x)$$

- An event with **probability 1** has zero **surprise**; *this is because when the content of a message is known beforehand with certainty, there is no actual information conveyed*
- The **smaller the probability** of event, the **larger the quantity of self-information** associated with the message that the event occurred
- An event with **probability 0** has infinite **surprise**
- The surprise is the **asymptotic number of bits of information** that need to be transmitted to a recipient who knows the probabilities of the results. This is also called the **description length** of X.

Random Variable: Number of heads when tossing a coin 3 times

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob(X)</td>
<td>1/8</td>
<td>3/8</td>
<td>3/8</td>
<td>1/8</td>
</tr>
<tr>
<td>$-\log_2 P(X)$</td>
<td>3</td>
<td>1.415</td>
<td>1.415</td>
<td>3</td>
</tr>
<tr>
<td>$-\log_e P(X)$</td>
<td>2.079</td>
<td>0.980</td>
<td>0.980</td>
<td>2.079</td>
</tr>
<tr>
<td>$-\log_{10} P(X)$</td>
<td>0.903</td>
<td>0.426</td>
<td>0.426</td>
<td>0.903</td>
</tr>
</tbody>
</table>

If the logarithm is base 2, the unit of information is bits, base e is nats and base 10 hartleys
Entropy

A standard way to measure uncertainty of a random variable is to use **entropy**

\[H(Y) = - \sum_{y} P(Y = y) \log_2 P(Y = y) \]

- Note that the entropy is computed by summing over all the events/outcomes/ states of the random variable.
- Entropy is **maximized for uniform distributions**, where the probability of all outcomes is equal (is this what we want?)
- Entropy is **minimized for distributions that place all their probability on a single outcome** (or is this what we want?)

The entropy of (binary) label distributions can be computed as:

\[H(y) = -P(y = 0)\log_2 P(y = 0) - P(y = 1)\log_2 P(y = 1) \]
Conditional Entropy and Mutual Information

Entropy can also be computed when conditioned on another variable:

\[H(Y|X) = - \sum_x P(X = x) \sum_y P(Y = y | X = x) \log_2 (Y = y | X = x) \]

This is called **conditional entropy** and is the amount of information needed to quantify the random variable \(Y \) given the random variable \(X \). The **mutual information** or **information gain** between two random variables is

\[I(X, Y) = H(Y) - H(Y|X) \]

This is the amount of information we learn about \(Y \) by knowing the value of \(X \) and vice-versa (it is symmetric).

\[H(y) = - \frac{29}{64} \log_2 \frac{29}{64} - \frac{35}{64} \log_2 \frac{35}{64} = 0.99 \text{ entropy before knowing the value of } x_1 \]

\[H(y|x_1 = 0) = - \frac{21}{26} \log_2 \frac{21}{26} - \frac{5}{26} \log_2 \frac{5}{26} = 0.71 \text{ entropy for the left branch} \]

\[H(y|x_1 = 1) = - \frac{8}{38} \log_2 \frac{8}{38} - \frac{30}{38} \log_2 \frac{30}{38} = 0.74 \text{ entropy for the right branch} \]

\[I(x_1, y) = H(y) - (y|x_1) = 0.99 - 0.73 = 0.26 \text{ information gained by knowing the value of } x_1 \]

larger information gain corresponds to less uncertainty about \(y \) (labels) given \(x_1 \) (feature)
Choosing the Best Feature

Step 1: Count the various combinations of features and labels

<table>
<thead>
<tr>
<th>Feature</th>
<th>Count</th>
<th>Label 0</th>
<th>Label 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1 = 0</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>x_1 = 1</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Step 2: Convert to probabilities

<table>
<thead>
<tr>
<th>Feature</th>
<th>Probability</th>
<th>Label 0</th>
<th>Label 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1 = 0</td>
<td>5/8</td>
<td>3/8</td>
<td>1/4</td>
</tr>
<tr>
<td>x_1 = 1</td>
<td>4/8</td>
<td>4/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Probability</th>
<th>Label 0</th>
<th>Label 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2 = 0</td>
<td>5/8</td>
<td>3/8</td>
<td>2/4</td>
</tr>
<tr>
<td>x_2 = 1</td>
<td>4/8</td>
<td>4/4</td>
<td>3/4</td>
</tr>
</tbody>
</table>
Choosing the Best Feature

Step 3: Compute information gain for both splits and pick the variable with the biggest gain

\[
H(y) = -\frac{5}{8} \log \frac{5}{8} - \frac{3}{8} \log \frac{3}{8}
\]

Where are all the entropies?

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0 (+)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 (+)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 (+)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 (+)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0 (+)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 (-)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1 (-)</td>
</tr>
</tbody>
</table>

\[
I(x_1, y) = H(y) - H(y | x_1)
\]

\[
I(x_2, y) = H(y) - H(y | x_2)
\]

\[
I(x_1, y) > I(x_2, y) \Rightarrow \text{pick feature } x_1 \text{ next}
\]
The ID3 Algorithm

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - A ← the attribute from Attributes that best* classifies Examples
 - The decision attribute for Root ← A
 - For each possible value, v_i, of A,
 - Add a new tree branch below Root, corresponding to the test A = v_i
 - Let Examples_{v_i} be the subset of Examples that have value v_i for A
 - If Examples_{v_i} is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree
 ID3(Examples_{v_i}, Target_attribute, Attributes − {A})
 - End
- Return Root

Best means that if Examples_{v_i} is not empty and Examples_{v_j} is empty for v_j ≠ v_i, then choose A = v_j; otherwise choose A = v_i.
Some Final Details

When do we terminate?
• If the current set is “pure” (i.e., has a single label in the output), stop
• If you **run out of attributes to recurse on**, even if the current data set isn’t pure, stop and use a majority vote
• If a partition contains no data points, use the majority vote at its parent in the tree
• If a partition contains no data items, nothing to recurse on
• For fixed depth decision trees, the **final label is determined by majority vote**

How do we handle real-valued features?
• For continuous attributes, use threshold splits
• Split the tree into \(x_k < t \) and \(x_k \geq t \)
• Can split on the same attribute multiple times on the same path down the tree

How do we select the splitting threshold?
• Sort the values of feature \(x_k \)
• Identify a finite number of feature transitions
• Calculate thresholds in between transitions
• How do we select which split to insert as a node?
Overfitting in Decision Trees

Hypothesis space is complete! \textit{Target function is surely in there; but ID3 search is incomplete}

No back tracking; \textit{Greedy thus local minima}

Statistics-based search choices; \textit{Robust to noisy data}

Inductive bias: heuristically \textit{prefers} shorter trees, trees that place attributes with highest information gain closest to the root are preferred

Decision trees will always overfit!
- It is always possible to obtain zero training error on the input data with a deep enough tree (if there is no noise in the labels)
- Random noise in the training examples also leads to overfitting
Avoiding Overfitting in Decision Trees

Pre-pruning/early stopping before overfitting
- Typical stopping criterion
 - No error (if all instances belong to same class)
 - If all the attribute values are same
- More restrictive conditions
 - Stop growing when data split is not statistically significant (example using chi-square test)
 - Stop if the number of instances is small
 - Stop if expanding does not significantly improve measures (information gain)
- Hard to determine if we are actually overfitting

Post-pruning after allowing a tree to overfit
- Separate data into training and validation sets
- Evaluate impact on validation set when a node is “pruned”
- Greedily remove node that improves performance the most
- Produces smallest version of most accurate subtree
- Typically use minimum description length (MDL) for post-pruning
- Highly successful empirically
Some Post-pruning Methods

Reduced-Error Pruning
- Use a validation set *(tuning)* to identify errors at every node
- Prune node with highest reduction in error
- Repeat until error no longer reduces
- **Con**: requires a large amount of data to create a validation set

Pessimistic Pruning
- No validation set, use a training set
- Error estimate at every node is conservative based on training examples
- **Con**: Heuristic estimate, not statistically valid

Rule-post Pruning
- Convert tree to equivalent set of rules
- Prune each rule independently of others by removing pre-conditions that improve rule accuracy
- Sort final rules into desired sequence

IF (Outlook = Sunny AND Humidity = High) THEN PlayTennis= No
IF (Outlook = Sunny AND Humidity = Normal) THEN PlayTennis= Yes
IF (Outlook = Overcast) THEN PlayTennis= Yes
IF (Outlook = Rain AND Wind = Strong) THEN PlayTennis= No
IF (Outlook = Rain AND Wind = Weak) THEN PlayTennis= Yes
Decision Trees

- **Decision Trees** – popular and a very efficient hypothesis space
 - Variable size: Any Boolean function can be represented
 - Handles discrete and continuous features
 - Handles classification and regression
 - Easy to implement
 - Easy to use
 - Computationally cheap

- Constructive **heuristic** search: built top-down by adding nodes

- **Decision trees will overfit!**
 - zero bias classifier (no mistakes) = large variance
 - must use tricks to find simpler trees
 - early stopping, pruning etc.