CS6375: Machine Learning Gautam Kunapuli

Decision Trees

Example: Restaurant Recommendation

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food $(y_i = 0)$ or not $(y_i = 1)$.

A data set is **linearly separable** if there exists a hyperplane that separates positive examples from negative examples.

- Relatively easy to learn (using standard techniques)
- Easy to visualize and interpret

Many **data sets in real world** are **<u>not linearly separable</u>**! Two options:

- Use **non-linear features**, and learn a linear classifier in the transformed non-linear feature space
- Use non-linear classifiers

Decision Trees can handle nonlinear separable data sets and are one of the **most popular classifiers**

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food $(y_i = 0)$ or not $(y_i = 1)$.

Decision Trees represent decision-making as a **checklist of questions**, and visualize it using a tree-structure

Decision Tree representation:

- Each non-leaf node tests an attribute/feature
- Each **branch corresponds to attribute**/feature value, a decision (to choose a path) as a result of the test
- Each leaf node assigns a classification

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food $(y_i = 0)$ or not $(y_i = 1)$.

- Decision trees divide the feature space into axisparallel rectangles
- Decision Trees can handle **arbitrarily non-linear representations**, given sufficient tree complexity
- Worst-case scenario: the decision tree has an exponential number of nodes! (why?)

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food (y = +1) or not (y = +1).

- Decision trees divide the feature space into axisparallel rectangles
- Decision Trees can handle **arbitrarily non-linear representations**, given sufficient tree complexity
- Worst-case scenario: the decision tree has an exponential number of nodes!
 - If the target function has n Boolean features, there are 2^n possible inputs
 - In the worst case, there is one leaf node for each input (for example: XOR)

Decision trees are <u>not</u> unique, and many decision trees can represent the same hypothesis!

Example: Develop a model to **recommend restaurants** to users depending on their past dining experiences.

Here, the features are **cost** (x_1) and the user's **spiciness rating** of the food at the restaurant (x_2) and the label is if they liked the food (y = +1) or not (y = +1).

When do you want Decision Trees? When instances are **describable by attribute-value pairs**:

- target function is discrete-valued
- disjunctive hypothesis may be required
- need for interpretable model

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

- Solution Approach 1 (Naïve solution): Create a decision tree with one path from root to leaf for each training example. Such a tree would just memorize the training data, and will not generalize well to new points.
- Solution Approach 2 (Exact solution): Find the smallest tree that minimizes the classification error. *Finding this solution is NP-Hard*!
- Solution Approach 3 (Heuristic solution): Top-down greedy search

```
Initialize: Choose the best feature f^* for the root of the tree

Function GrowTree(data, f^*)

<sup>1</sup>Separate data into subsets {S_1, S_2, ..., S_k}, where each

subset S_i contains examples that have the same value for f^*

<sup>2</sup> for S_i \in \{S_1, S_2, ..., S_k\}

Choose the best feature f_i^* for the next node

Recursively GrowTree(S_i, f_i^*) until all examples have the

same class label
```

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

- Solution Approach 1 (Naïve solution): Create a decision tree with one path from root to leaf for each training example. Such a tree would just memorize the training data, and will not generalize well to new points.
- Solution Approach 2 (Exact solution): Find the smallest tree that minimizes the classification error. *Finding this solution is NP-Hard!*

• Solution Approach 3 (Heuristic solution): Top-down greedy search

How do we decide when to stop?

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

J is splitting criterion measured for each split, in this case, the classification error

Training examples

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

same class label

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search
Initialize: Choose the best feature
$$f^*$$
 for the root of the tree
Function GrowTree(data, f^*)

¹Separate data into subsets { S_1 , S_2 ,..., S_k }, where each subset S_i contains examples that have the **same value for** f^*

² for $S_i \in \{S_1, S_2, ..., S_k\}$

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

The selected attribute is a **good split** if we are **more "certain**" about the classification after the split (compare with the perceptron)

• If each partition with respect to the chosen attribute has a **distinct class label**, we are **completely certain** about the classification

y = 0 y = 10.0 1.0

• If class labels are evenly divided between partitions, we are very uncertain about the classification y = 0 y = 1

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search
Initialize: Choose the best feature
$$f^*$$
 for the root of the tree
Function GrowTree(data, f^*)
¹Separate data into subsets { $S_1, S_2, ..., S_k$ }, where each subset

 S_i contains examples that have the same value for f^*

² for $S_i \in \{S_1, S_2, ..., S_k\}$

Choose the best feature f_i^* for the next node Recursively GrowTree(S_i , f_i^*) until all examples have the same class label

We need a better way to resolve the uncertainty!

How do we pick the next best feature to place in a decision tree?

- Random choice
- Largest number of values
- Fewest number of values
- Lowest classification error
- Information theoretic measure (Quinlan's approach)

The selected attribute is a **good split** if we are **more "certain"** about the classification after the split (compare with the perceptron)

• If each partition with respect to the chosen attribute has a **distinct class label**, we are **completely certain** about the classification

$$= 0 \quad y =$$
0.0 1.0

• If class labels are evenly divided between partitions, we are very uncertain about the classification y = 0 y = 1

Discrete Probability and Information Theory

A **discrete probability distribution** describes the probability of occurrence of each value of a discrete random variable.

The **surprise** or **self-information** of each event of *X* is defined to be

 $S(X = x) = -\log_2 \operatorname{Prob}(X = x)$

- An event with **probability 1 has zero surprise**; this is because when the content of a message is known beforehand with certainty, there is no actual information conveyed
- The smaller the probability of event, the larger the quantity of self-information associated with the message that the event occurred
- An event with probability 0 has infinite surprise
- The surprise is the **asymptotic number of bits of information** that need to be transmitted to a recipient who knows the probabilities of the results. This is also called the **description length** of X.

Random Variable : Number of heads when tossing a coin 3 times					
X	0	1	2	3	
Prob(X)	1/8	3/8	3/8	1/8	

3

2.079

1.415

0.980

0.426

 $-\log_2 P(X)$

 $-\log_{e} P(X)$

 $-\log_{10} P(X) 0.903$

1.415

0.980

0.426

3

2.079

0.903

If the logarithm is base 2, the unit of information is
bits, base e is nats and base 10 hartleys

Entropy

A standard way to measure **uncertainty of a random variable** is to use **entropy**

 $H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$

Note that the entropy is computed by summing over all the events/outcomes/ states of the random variable.
Entropy is maximized for uniform distributions, where the probability of all outcomes is equal (*is this what we want?*)
Entropy is minimized for distributions that place all their

probability on a single outcome (or is this what we want?)

The entropy of (binary) label distributions can be computed as: $H(y) = -P(y = 0)\log_2 P(y = 0) - P(y = 1)\log_2 P(y = 1)$

Uniform label distribution, where all outcomes

$$y = 0$$
 $y = 1$ have the same probability
 $x_1 = 0$ $x_1 = 1$ $P(y = 0)$ $P(y = 1)$
 $y = 0$ $y = 1$ $y = 0$ $y = 1$ $P(y = 0)$ $P(y = 1)$
 40 40 80 80
 $H(y) = -\frac{40}{80}\log_2\frac{40}{80} - \frac{40}{80}\log_2\frac{40}{80} = 1$

Label distribution that places all its probability y = 0 y = 1 on a single outcome **80 0** this will be a leaf node as there isn't anything left to split on $H(y) = -\frac{80}{80}\log_2\frac{80}{80} - \frac{0}{80}\log_2\frac{0}{80} = 0$ we use the convention that $0 \cdot \log_2 0 = 0$

Conditional Entropy and Mutual Information

Entropy can also be computed when **conditioned** on another variable:

$$H(Y|X) = -\sum_{x} P(X = x) \sum_{y} P(Y = y \mid X = x) \log_2 (Y = y \mid X = x)$$

This is called **conditional entropy** and is the amount of information needed to quantify the random variable *Y* given the random variable *X*. The **mutual information** or **information gain** between two random variables is I(X, Y) = H(Y) - H(Y|X)

This is the amount of information we learn about *Y* by **knowing the value of** *X* and vice-versa (it is symmetric).

 $H(y) = -\frac{29}{64}\log_2\frac{29}{64} - \frac{35}{64}\log_2\frac{35}{64} = 0.99$ entropy **before** knowing the value of x_1

 $H(y|x_1) = P(x_1 = 0)H(y|x_1 = 0) + P(x_1 = 1)H(y|x_1 = 1) = \frac{26}{64} \cdot (0.71) + \frac{38}{64} \cdot (0.74) = 0.73$ entropy after knowing the value of x_1

 $I(x_1, y) = H(y) - (y|x_1) = 0.99 - 0.73 = 0.26$ *information gained* by knowing the value of x_1 *larger information gain* corresponds to *less uncertainty* about y (labels) given x_1 (feature)

Decision Trees

Choosing the Best Feature

Step 1: Count the various combinations of features and labels

 $x_1 = 1$ (4)

Step 2: Convert to probabilities

 $x_1 = 0$ (4)

split on x_1

y = 0 y = 1 y = 0 y = 1

<i>x</i> ₁	<i>x</i> ₂	у
1	1	0 (+)
1	0	0 (+)
1	1	0 (+)
1	0	0 (+)
0	1	0 (+)
0	0	1 (-)
0	1	1 (-)
0	0	1 (-)

H(y)

split on x_i

Choosing the Best Feature

Step 3: Compute information gain for both splits and pick the variable with the biggest gain

 $I(x_1, y) > I(x_2, y) \Rightarrow$ pick feature x_1 next

The ID3 Algorithm

The ID3 (Iterative Dichotomizer) and its successor, C4.5 were developed by Ross Quinlan in the early to mid 1980s and are widely considered to be a landmark machine learning algorithms, and until at least 2008, were the #1 data mining tool.

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- If all *Examples* are positive, Return the single-node tree *Root*, with label = +
- If all *Examples* are negative, Return the single-node tree *Root*, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - $A \leftarrow$ the attribute from Attributes that best* classifies Examples
 - The decision attribute for $Root \leftarrow A$
 - For each possible value, v_i , of A,
 - Add a new tree branch below *Root*, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If $Examples_{v_i}$ is empty
 - Then below this new branch add a leaf node with label = most common value of *Target_attribute* in *Examples*
 - Else below this new branch add the subtree ID3(Examples_{vi}, Target_attribute, Attributes - {A}))

- End
- Return Root

Some Final Details

When do we terminate?

- If the current set is "**pure**" (i.e., has a single label in the output), stop
- If you **run out of attributes to recurse on**, even if the current data set isn't pure, stop and use a majority vote
- If a partition contains no data points, use the majority vote at its parent in the tree
- If a partition contains no data items, nothing to recurse on
- For fixed depth decision trees, the **final label is** determined by majority vote

How do we handle real-valued features?

- For continuous attributes, use threshold splits
- Split the tree into $x_k < t$ and $x_k \ge t$
- Can split on the same attribute multiple times on the same path down the tree

How do we select the splitting threshold?

- Sort the values of feature x_k
- Identify a finite number of feature transitions
- Calculate thresholds in between transitions
- How do we select which split to insert as a node?

Overfitting in Decision Trees

Hypothesis space is complete! Target function is surely in there; but ID3 search is incomplete No back tracking; Greedy thus local minima Statistics-based search choices; Robust to noisy data Inductive bias: heuristically prefers shorter trees, trees that place attributes with highest information gain closest to the root are preferred

Decision trees will always overfit!

- It is always possible to obtain zero training error on the input data with a deep enough tree (if there is no noise in the labels)
- Random noise in the training examples also leads to overfitting

Avoiding Overfitting in Decision Trees

Pre-pruning/early stopping before overfitting

- Typical stopping criterion
 - No error (if all instances belong to same class)
 - If all the attribute values are same
- More restrictive conditions
 - Stop growing when data split is not statistically significant (example using chi-square test)
 - Stop if the number of instances is small
 - Stop if expanding does **not significantly improve measures** (information gain)
- Hard to determine if we are actually overfitting

Post-pruning after allowing a tree to overfit

- Separate data into training and validation sets
- Evaluate impact on validation set when a node is "pruned"
- **Greedily remove** node that improves performance the most
- Produces smallest version of most accurate subtree
- Typically use minimum description length (MDL) for post-pruning
- Highly successful empirically

Some Post-pruning Methods

Reduced-Error Pruning

- Use a validation set (tuning) to identify errors at every node
- Prune node with highest reduction in error
- Repeat until error no longer reduces
- Con: requires a large amount of data to create a validation set

Pessimistic Pruning

- No validation set, use a training set
- Error estimate at every node is conservative based on training examples
- Con: Heuristic estimate, not statistically valid

Rule-post Pruning

- Convert tree to equivalent set of rules
- Prune each rule independently of others by removing pre-conditions that improve rule accuracy
- Sort final rules into desired sequence

Decision Trees

- **Decision Trees** popular and a very efficient hypothesis space
 - Variable size: Any Boolean function can be represented
 - Handles discrete and continuous features
 - Handles classification and regression
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Constructive heuristic search: built top-down by adding nodes
- Decision trees <u>will</u> overfit!
 - zero bias classifier (no mistakes) = large variance
 - must use tricks to find simpler trees
 - early stopping, pruning etc.