
CS6375: Machine Learning
Gautam Kunapuli

Decision Trees

2

CS6375: Machine Learning Decision Trees

Example: Restaurant Recommendation

2

4

6

8

10

10 20 30 40 50
ଵ

ଶ

Cost per person, $

Sp
ic

in
es

s
R

at
in

g
of

 F
oo

d

Example: Develop a model to recommend restaurants to
users depending on their past dining experiences.

Here, the features are cost (𝑥ଵ) and the user’s spiciness
rating of the food at the restaurant (𝑥ଶ) and the label is if they

liked the food () or not ().

A data set is linearly separable if there exists a hyperplane
that separates positive examples from negative examples.
• Relatively easy to learn (using standard techniques)
• Easy to visualize and interpret

Many data sets in real world are not linearly separable!
Two options:
• Use non-linear features, and learn a linear classifier in

the transformed non-linear feature space
• Use non-linear classifiers

Decision Trees can handle nonlinear separable data sets
and are one of the most popular classifiers

3

CS6375: Machine Learning Decision Trees

Decision Trees: Introduction
Example: Develop a model to recommend restaurants to

users depending on their past dining experiences.

Here, the features are cost (𝑥ଵ) and the user’s spiciness
rating of the food at the restaurant (𝑥ଶ) and the label is if they

liked the food () or not ().

Decision Trees represent decision-making as a checklist
of questions, and visualize it using a tree-structure

Decision Tree representation:
• Each non-leaf node tests an attribute/feature
• Each branch corresponds to attribute/feature value,

a decision (to choose a path) as a result of the test
• Each leaf node assigns a classification

2

4

6

8

10

10 20 30 40 50
ଵ

ଶ

Cost per person, $

Sp
ic

in
es

s
R

at
in

g
of

 F
oo

d

true

spice > 5

cost < $35 cost < $20

spice > 8

true

true
true

false

false

false
false

spice > 2.5
true false

CS6375: Machine Learning Decision Trees

Decision Trees: Introduction
Example: Develop a model to recommend restaurants to

users depending on their past dining experiences.

Here, the features are cost (𝑥ଵ) and the user’s spiciness
rating of the food at the restaurant (𝑥ଶ) and the label is if they

liked the food () or not ().

• Decision trees divide the feature space into axis-
parallel rectangles

• Decision Trees can handle arbitrarily non-linear
representations, given sufficient tree complexity

• Worst-case scenario: the decision tree has an
exponential number of nodes! (why?)

2

4

6

8

10

10 20 30 40 50
ଵ

ଶ

Cost per person, $

Sp
ic

in
es

s
R

at
in

g
of

 F
oo

d

true

spice > 5

cost < $35 cost < $20

spice > 8

true

true
true

false

false

false
false

spice > 2.5
true false

𝑦 = +1

𝑦 = +1

𝑦 = +1
𝑦 = −1

𝑦 = −1

𝑦 = −1

5

CS6375: Machine Learning Decision Trees

Decision Trees: Introduction
Example: Develop a model to recommend restaurants to

users depending on their past dining experiences.

Here, the features are cost (𝑥ଵ) and the user’s spiciness
rating of the food at the restaurant (𝑥ଶ) and the label is if they

liked the food (𝑦 = +1) or not (𝑦 = +1).

• Decision trees divide the feature space into axis-
parallel rectangles

• Decision Trees can handle arbitrarily non-linear
representations, given sufficient tree complexity

• Worst-case scenario: the decision tree has an
exponential number of nodes!
o If the target function has Boolean features,

there are ௡ possible inputs
o In the worst case, there is one leaf node for

each input (for example: XOR)

2

4

6

8

10

10 20 30 40 50
ଵ

ଶ

Cost per person, $

Sp
ic

in
es

s
R

at
in

g
of

 F
oo

d

true

𝑥ଶ > 5

𝑥ଵ < 35 𝑥ଵ < 20

𝑥ଶ > 8

true

true
true

false

false

falsefalse

𝑥ଶ > 2.5

true false

Decision trees are not unique, and many decision trees
can represent the same hypothesis!

𝑦 = +1

𝑦 = +1

𝑦 = +1
𝑦 = −1

𝑦 = −1

𝑦 = −1

6

CS6375: Machine Learning Decision Trees

Decision Trees: Introduction

2

4

6

8

10

10 20 30 40 50
ଵ

ଶ

Cost per person, $

Sp
ic

in
es

s
R

at
in

g
of

 F
oo

d

true

𝑥ଶ > 5

𝑥ଵ < 35 𝑥ଵ < 20

𝑥ଶ > 8

true

true
true

false

false

falsefalse

𝑥ଶ > 2.5

true false

When do you want Decision Trees?
When instances are describable by attribute-value pairs:
• target function is discrete-valued
• disjunctive hypothesis may be required
• need for interpretable model

Examples:
• Equipment or medical diagnosis
• Credit risk analysis
• Modeling calendar scheduling preferences

Example: Develop a model to recommend restaurants to
users depending on their past dining experiences.

Here, the features are cost (𝑥ଵ) and the user’s spiciness
rating of the food at the restaurant (𝑥ଶ) and the label is if they

liked the food (𝑦 = +1) or not (𝑦 = +1).

7

CS6375: Machine Learning

Learning Decision Trees

• Solution Approach 1 (Naïve solution): Create a decision tree with
one path from root to leaf for each training example. Such a tree
would just memorize the training data, and will not generalize well
to new points.

• Solution Approach 2 (Exact solution): Find the smallest tree that
minimizes the classification error. Finding this solution is NP-Hard!

• Solution Approach 3 (Heuristic solution): Top-down greedy search

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors
on the training data

Initialize: Choose the best feature 𝑓∗ for the root of the tree
Function GrowTree(data, 𝑓∗)

1Separate data into subsets {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}, where each
subset 𝑆௜ contains examples that have the same value for 𝑓∗

2 for 𝑆௜ ∈ {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}
Choose the best feature 𝑓௜

∗ for the next node
Recursively GrowTree(𝑆௜, 𝑓௜

∗) until all examples have the
same class label

Decision Trees

8

CS6375: Machine Learning

Learning Decision Trees

• Solution Approach 1 (Naïve solution): Create a decision tree with
one path from root to leaf for each training example. Such a tree
would just memorize the training data, and will not generalize well
to new points.

• Solution Approach 2 (Exact solution): Find the smallest tree that
minimizes the classification error. Finding this solution is NP-Hard!

• Solution Approach 3 (Heuristic solution): Top-down greedy search

Problem Formulation: Find a decision tree h that achieves minimum misclassification errors
on the training data

Initialize: Choose the best feature 𝑓∗ for the root of the tree
Function GrowTree(data, 𝑓∗)

1Separate data into subsets {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}, where each
subset 𝑆௜ contains examples that have the same value for 𝑓∗

2 for 𝑆௜ ∈ {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}
Choose the best feature 𝑓௜

∗ for the next node
Recursively GrowTree(𝑆௜, 𝑓௜

∗) until all examples have
the same class label

How do we pick the best feature?

How do we decide when to stop?

Decision Trees

9

CS6375: Machine Learning

Learning Decision Trees
Problem Formulation: Find a decision tree h that achieves minimum misclassification errors

on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search
Initialize: Choose the best feature 𝑓∗ for the root of the tree
Function GrowTree(data, 𝑓∗)

1Separate data into subsets {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}, where each subset
𝑆௜ contains examples that have the same value for 𝑓∗

2 for 𝑆௜ ∈ {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}
Choose the best feature 𝑓௜

∗ for the next node
Recursively GrowTree(𝑆௜, 𝑓௜

∗) until all examples have the
same class label

How do we pick the next best feature to place in a
decision tree?
• Random choice
• Largest number of values
• Fewest number of values
• Lowest classification error
• Information theoretic measure (Quinlan’s approach)

Decision Trees

𝑥ଵ = 1
4 4

1 3 3 1

split on ଵ

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 2

𝑦 = 0 𝑦 = 1

𝑥ଶ = 1
4 4

2 2 2 2

𝑥ଶ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 4

split on ଶ
𝑦 = 0 𝑦 = 1

𝑥ଷ = 1
4 4

2 2 2 2

𝑥ଷ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 4

split on ଷ
𝑦 = 0 𝑦 = 1

J is splitting criterion measured for each split,
in this case, the classification error

10

CS6375: Machine Learning

Learning Decision Trees
Problem Formulation: Find a decision tree h that achieves minimum misclassification errors

on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search
Initialize: Choose the best feature 𝑓∗ for the root of the tree
Function GrowTree(data, 𝑓∗)

1Separate data into subsets {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}, where each subset
𝑆௜ contains examples that have the same value for 𝑓∗

2 for 𝑆௜ ∈ {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}
Choose the best feature 𝑓௜

∗ for the next node
Recursively GrowTree(𝑆௜, 𝑓௜

∗) until all examples have the
same class label

J = 2 J = 4 J = 4
Can think of counts as probability

distributions over the labels

1/4 3/4
𝑦 = 0 𝑦 = 1

2/4 2/4
𝑦 = 0 𝑦 = 1

How do we pick the next best feature to place in a
decision tree?
• Random choice
• Largest number of values
• Fewest number of values
• Lowest classification error
• Information theoretic measure (Quinlan’s approach)

Decision Trees

𝑥ଵ = 1
4 4

1 3 3 1

split on ଵ

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 2

𝑦 = 0 𝑦 = 1

𝑥ଶ = 1
4 4

2 2 2 2

𝑥ଶ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 4

split on ଶ
𝑦 = 0 𝑦 = 1

𝑥ଷ = 1
4 4

2 2 2 2

𝑥ଷ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 4

split on ଷ
𝑦 = 0 𝑦 = 1

11

CS6375: Machine Learning

Learning Decision Trees
Problem Formulation: Find a decision tree h that achieves minimum misclassification errors

on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search
Initialize: Choose the best feature 𝑓∗ for the root of the tree
Function GrowTree(data, 𝑓∗)

1Separate data into subsets {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}, where each subset
𝑆௜ contains examples that have the same value for 𝑓∗

2 for 𝑆௜ ∈ {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}
Choose the best feature 𝑓௜

∗ for the next node
Recursively GrowTree(𝑆௜, 𝑓௜

∗) until all examples have the
same class label

How do we pick the next best feature to place in a
decision tree?
• Random choice
• Largest number of values
• Fewest number of values
• Lowest classification error
• Information theoretic measure (Quinlan’s approach)

Can think of counts as probability
distributions over the labels

1/4 3/4
𝑦 = 0 𝑦 = 1

2/4 2/4
𝑦 = 0 𝑦 = 1

The selected attribute is a good split if we are
more “certain” about the classification after the
split (compare with the perceptron)

• If each partition with respect to the chosen
attribute has a distinct class label, we are
completely certain about the classification

• If class labels are evenly divided between
partitions, we are very uncertain about the
classification

0.0 1.0
𝑦 = 0 𝑦 = 1

0.5 0.5
𝑦 = 0 𝑦 = 1

Decision Trees

𝑥ଵ = 1
4 4

1 3 3 1

split on ଵ

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 2

𝑦 = 0 𝑦 = 1

𝑥ଶ = 1
4 4

2 2 2 2

𝑥ଶ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 4

split on ଶ
𝑦 = 0 𝑦 = 1

12

CS6375: Machine Learning

Learning Decision Trees
Problem Formulation: Find a decision tree h that achieves minimum misclassification errors

on the training data

Solution Approach 3 (Heuristic solution): Top-down greedy search
Initialize: Choose the best feature 𝑓∗ for the root of the tree
Function GrowTree(data, 𝑓∗)

1Separate data into subsets {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}, where each subset
𝑆௜ contains examples that have the same value for 𝑓∗

2 for 𝑆௜ ∈ {𝑆ଵ, 𝑆ଶ,…, 𝑆௞}
Choose the best feature 𝑓௜

∗ for the next node
Recursively GrowTree(𝑆௜, 𝑓௜

∗) until all examples have the
same class label

How do we pick the next best feature to place in a
decision tree?
• Random choice
• Largest number of values
• Fewest number of values
• Lowest classification error
• Information theoretic measure (Quinlan’s approach)

2/4 2/4
𝑦 = 0 𝑦 = 1

The selected attribute is a good split if we are
more “certain” about the classification after the
split (compare with the perceptron)

• If each partition with respect to the chosen
attribute has a distinct class label, we are
completely certain about the classification

• If class labels are evenly divided between
partitions, we are very uncertain about the
classification

0.0 1.0
𝑦 = 0 𝑦 = 1

0.5 0.5
𝑦 = 0 𝑦 = 1

We need a better way to
resolve the uncertainty!

Decision Trees

𝑥ଶ = 1
4 4

2 2 2 2

𝑥ଶ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

J = 4

split on ଶ
𝑦 = 0 𝑦 = 1

13

CS6375: Machine Learning

Discrete Probability and Information Theory
A discrete probability distribution describes the probability

of occurrence of each value of a discrete random variable.

X 0 1 2 3

Prob(X) 1/8 3/8 3/8 1/8
−logଶ P 𝑋 3 1.415 1.415 3

−logୣ P 𝑋 2.079 0.980 0.980 2.079

−logଵ଴ P 𝑋 0.903 0.426 0.426 0.903

Random Variable: Number of heads when
tossing a coin 3 times

The surprise or self-information of each event of is defined to be
ଶ

• An event with probability 1 has zero surprise; this is because
when the content of a message is known beforehand with certainty,
there is no actual information conveyed

• The smaller the probability of event, the larger the quantity of
self-information associated with the message that the event
occurred

• An event with probability 0 has infinite surprise

• The surprise is the asymptotic number of bits of information
that need to be transmitted to a recipient who knows the
probabilities of the results. This is also called the description
length of X.

If the logarithm is base 2, the unit of information is
bits, base e is nats and base 10 hartleys

Decision Trees

14

CS6375: Machine Learning

Entropy
A standard way to measure uncertainty of a random variable is to
use entropy

𝟐

௬

• Note that the entropy is computed by summing over all the
events/outcomes/ states of the random variable.
• Entropy is maximized for uniform distributions, where the
probability of all outcomes is equal (is this what we want?)
• Entropy is minimized for distributions that place all their
probability on a single outcome (or is this what we want?)

The entropy of (binary) label distributions can be computed as:
ଶ ଶ

Decision Trees

𝑥ଵ = 1
40 40

7 13 33 27

Uniform label distribution, where all outcomes
have the same probability

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑦 = 0 𝑦 = 1

𝐻 𝑦 = −
40

80
logଶ

40

80
−

40

80
logଶ

40

80
= 1

40

80

40

80

𝑃(𝑦 = 0) 𝑃(𝑦 = 1)

𝑥ଵ = 1
20 60

16 10 4 50

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑦 = 0 𝑦 = 1

𝐻 𝑦 = −
20

80
logଶ

20

80
−

60

80
logଶ

60

80
= 0.81

20

80

60

80

𝑃(𝑦 = 0) 𝑃(𝑦 = 1)

Label distribution in between the two extreme
cases above and below

we use the convention that 0 ⋅ logଶ 0 = 0

80 0

Label distribution that places all its probability
on a single outcome𝑦 = 0 𝑦 = 1

𝐻 𝑦 = −
80

80
logଶ

80

80
−

0

80
logଶ

0

80
= 0

80

80

0

80

𝑃(𝑦 = 0) 𝑃(𝑦 = 1)
this will be a leaf node as there

isn’t anything left to split on

15

CS6375: Machine Learning

Conditional Entropy and Mutual Information
Entropy can also be computed when conditioned on another variable:

௬

ଶ

𝒙

This is called conditional entropy and is the amount of information needed to quantify the random variable
given the random variable . The mutual information or information gain between two random variables is

This is the amount of information we learn about by knowing the value of and vice-versa (it is symmetric).

Decision Trees

𝑥ଵ = 1
29 35

21 5 8 30

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑦 = 0 𝑦 = 1

𝐻 𝑦|𝑥ଵ = 1 = −
8

38
logଶ

8

38
−

30

38
logଶ

30

38
= 𝟎. 𝟕𝟒

8

38

30

38

entropy for the right branch

3826𝑥ଵ = 1
29 35

21 5 8 30

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑦 = 0 𝑦 = 1

𝐻 𝑦|𝑥ଵ = 0 = −
21

26
logଶ

21

26
−

5

26
logଶ

5

26
= 0.71

7

20

13

20

entropy for the left branch

3826

𝐻 𝑦|𝑥ଵ = 𝑃 𝑥ଵ = 0 𝐻 𝑦|𝑥ଵ = 0 + 𝑃 𝑥ଵ = 1 𝐻 𝑦|𝑥ଵ = 1 =
26

64
⋅ (0.71) +

38

64
⋅ (0.74) = 𝟎. 𝟕𝟑

𝐻 𝑦 = −
29

64
logଶ

29

64
−

35

64
logଶ

35

64
= 𝟎. 𝟗𝟗 entropy before knowing the value of 𝑥ଵ

entropy after knowing the value of 𝑥ଵ

𝐼 𝑥ଵ, 𝑦 = 𝐻 𝑦 − 𝑦|𝑥ଵ = 0.99 − 0.73 = 𝟎. 𝟐𝟔
information gained by knowing the value of 𝑥ଵ

larger information gain corresponds to less uncertainty about 𝑦 (labels) given 𝑥ଵ (feature)

16

CS6375: Machine Learning

Choosing the Best Feature
Decision Trees

ଵ ଶ

1 1 0 (+)

1 0 0 (+)

1 1 0 (+)

1 0 0 (+)

0 1 0 (+)

0 0 1 (-)

0 1 1 (-)

0 0 1 (-)

𝑥ଵ = 1 (4)
5 3

1 3 4 0

split on ଵ

𝑥ଵ = 0 (4)

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑥ଶ = 1 (4)
5 3

2 2 3 1

split on ଶ

𝑥ଶ = 0 (4)

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

Step 1: Count the various combinations of features and labels

𝑥ଵ = 1 (4/8)
5/8 3/8

1/4 3/4 4/4 0/4

split on ଵ

𝑥ଵ = 0 (4/8)

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑥ଶ = 1 (4/8)
5/8 3/8

2/4 2/4 3/4 1/4

split on ଶ

𝑥ଶ = 0 (4/8)

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

Step 2: Convert to probabilities

𝑥ଵ = 1
29 35

21 5 8 30

split on ௜

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑃 𝑦 = 1

𝑃 𝑥௜ = 0 𝑃 𝑥௜ = 1

𝑃 𝑦 = 0

Where are all the probabilities?

3826

17

CS6375: Machine Learning

Choosing the Best Feature
Decision Trees

Step 3: Compute information gain for both splits and pick the variable with the biggest gain

𝑥ଵ = 1 (4/8)
5/8 3/8

1/4 3/4 4/4 0/4

split on ଵ

𝑥ଵ = 0 (4/8)

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝑥ଶ = 1 (4/8)
5/8 3/8

2/4 2/4 3/4 1/4

split on ଶ

𝑥ଶ = 0 (4/8)

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1

𝐻 𝑦 = −
5

8
log

5

8
−

3

8
log

3

8

𝐻 𝑦 | 𝑥ଵ = −
4

8
𝐻 𝑦|𝑥ଵ = 0 −

4

8
𝐻 𝑦|𝑥ଵ = 1

𝐻 𝑦 | 𝑥ଶ = −
4

8
𝐻 𝑦|𝑥ଶ = 0 −

4

8
𝐻 𝑦|𝑥ଶ = 1

𝐼 𝑥ଵ, 𝑦 = 𝐻 𝑦 − 𝐻 𝑦 𝑥ଵ)
𝐼 𝑥ଶ, 𝑦 = 𝐻 𝑦 − 𝐻 𝑦 𝑥ଶ)

𝐼 𝑥ଵ, 𝑦 > 𝐼 𝑥ଶ, 𝑦 ⇒ pick feature 𝑥ଵ next

𝑥ଵ = 1
29 35

21 5 8 30

split on ௜

𝑥ଵ = 0

𝑦 = 0 𝑦 = 1 𝑦 = 0 𝑦 = 1
𝐻 𝑦 | 𝑥௜ = 0

𝐻 𝑦

Where are all the entropies?

𝐻 𝑦 | 𝑥௜ = 1

𝐻 𝑦 | 𝑥௜

𝑃 𝑥௜ = 0 𝑃 𝑥௜ = 1
3826

ଵ ଶ

1 1 0 (+)

1 0 0 (+)

1 1 0 (+)

1 0 0 (+)

0 1 0 (+)

0 0 1 (-)

0 1 1 (-)

0 0 1 (-)

18

CS6375: Machine Learning

The ID3 Algorithm
Decision Trees

The ID3 (Iterative Dichotomizer) and its successor, C4.5 were developed by Ross Quinlan
in the early to mid 1980s and are widely considered to be a landmark machine learning

algorithms, and until at least 2008, were the #1 data mining tool.

19

CS6375: Machine Learning

Some Final Details
Decision Trees

When do we terminate?
• If the current set is “pure” (i.e., has a single label
in the output), stop
• If you run out of attributes to recurse on, even if
the current data set isn’t pure, stop and use a
majority vote
• If a partition contains no data points, use the
majority vote at its parent in the tree
• If a partition contains no data items, nothing to
recurse on
• For fixed depth decision trees, the final label is
determined by majority vote

How do we handle real-valued features?
• For continuous attributes, use threshold splits
• Split the tree into ௞ and ௞

• Can split on the same attribute multiple times on
the same path down the tree

How do we select the splitting threshold?
•Sort the values of feature ௞

• Identify a finite number of feature transitions
•Calculate thresholds in between transitions
•How do we select which split to insert as a node?

௞40 48
58

60

65

75 85

88

90

𝑡ଵ = 53 𝑡ଶ = 80

20

CS6375: Machine Learning

Overfitting in Decision Trees
Decision Trees

Hypothesis space is complete! Target function is surely in there; but ID3 search is incomplete
No back tracking; Greedy thus local minima
Statistics-based search choices; Robust to noisy data
Inductive bias: heuristically prefers shorter trees, trees that place attributes with highest
information gain closest to the root are preferred

Decision trees will always overfit!
• It is always possible to obtain zero training error on the input data with a deep enough tree (if

there is no noise in the labels)
• Random noise in the training examples also leads to overfitting

21

CS6375: Machine Learning Decision Trees

Avoiding Overfitting in Decision Trees
Post-pruning after allowing a tree to overfit
• Separate data into training and validation sets
• Evaluate impact on validation set when a node is

“pruned”
• Greedily remove node that improves performance

the most
• Produces smallest version of most accurate subtree
• Typically use minimum description length (MDL) for

post-pruning
• Highly successful empirically

Pre-pruning/early stopping before overfitting
• Typical stopping criterion

• No error (if all instances belong to same class)
• If all the attribute values are same

• More restrictive conditions
• Stop growing when data split is not statistically

significant (example using chi-square test)
• Stop if the number of instances is small
• Stop if expanding does not significantly improve

measures (information gain)
• Hard to determine if we are actually overfitting

leaf node added due to noise in the training set
most-likely to be pruned;
pruning this node reduces accuracy on training set,
increases accuracy on validation set

22

CS6375: Machine Learning Decision Trees

Some Post-pruning Methods
Reduced-Error Pruning

• Use a validation set (tuning) to identify errors at every node
• Prune node with highest reduction in error
• Repeat until error no longer reduces
• Con: requires a large amount of data to create a validation set

Pessimistic Pruning
• No validation set, use a training set
• Error estimate at every node is conservative based on training examples
• Con: Heuristic estimate, not statistically valid

Rule-post Pruning
• Convert tree to equivalent set of rules
• Prune each rule independently of others by removing pre-conditions that

improve rule accuracy
• Sort final rules into desired sequence

IF (Outlook = Sunny AND Humidity = High) THEN PlayTennis= No
IF (Outlook = Sunny AND Humidity = Normal) THEN PlayTennis= Yes
IF (Outlook = Overcast) THEN PlayTennis= Yes
IF (Outlook = Rain AND Wind = Strong) THEN PlayTennis= No
IF (Outlook = Rain AND Wind = Weak) THEN PlayTennis= Yes

• Decision Trees – popular and a very efficient hypothesis space
• Variable size: Any Boolean function can be represented
• Handles discrete and continuous features
• Handles classification and regression
• Easy to implement
• Easy to use
• Computationally cheap

• Constructive heuristic search: built top-down by adding nodes

• Decision trees will overfit!
• zero bias classifier (no mistakes) = large variance
• must use tricks to find simpler trees

• early stopping, pruning etc.

23

CS6375: Machine Learning Decision Trees

Decision Trees

