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Example: Text Categorization
Example: Develop a model to classify news stories into 

various categories based on their content. 

corpus of documents

sports

politics

document 1

document n

13 0 4 0 1 0 7 0 8 6
category

0 22 0 8 7 15 0 3 0 7
2 6 0 1 19 11 2 0 2 0

5 3 4 0 1 2 12 2 8 1

document 2

document 3

sports

politics

politics

sports

Use the bag-of-words representation for this data set
• text across all documents in the corpus is represented as a 

bag (multiset) of its words
• captures the multiplicity/frequency of words and terms
• does not capture semantics, sentiment, grammar, or even 

word order
• vector space model, where each document is simply 

represented as a vector of word statistics such as counts
• more advanced statistics such as term-frequency/inverse

document frequency (tf-idf) can be used
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Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 such that 
𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example

SVM for Linearly Separable Data

The data set is linearly separable, that is separable 
by a linear classifier (hyperplane). There exist many 
different classifiers! Which one is the best?
• Prefer hyperplanes that achieve maximum 

separation between the two data sets
• the separation between the two data sets 

achieved by a classifier is called the margin of 
the classifier

• Bias: select a classifier with the largest margin

𝒘ଵ

𝒘ଶ

𝒘ଷ

Linearly separability is a simplifying assumption we make in
order to derive a maximum-margin model; it assumes that 
there is no noise in the data set, and hence, the resulting 

model does not require a loss function.
This is not a realistic assumption for real-world data sets.
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Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 with the largest 
margin such that 

𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example

Maximizing the Margin of a Classifier

distance of a point 𝒙 to the 
hyperplane 𝒘்𝒙 + 𝛼 = 0 is

𝒘்𝒙 + 𝛼

𝒘

distance of a point 𝒙 to the 
hyperplane 𝒘்𝒙 + 𝛽 = 0 is

𝒘்𝒙 + 𝛽

𝒘

Let the margin be defined by two (parallel) 
hyperplanes ் and ் .

The margin ( ) of the classifier is the distance
between the two hyperplanes that form the 
boundaries of the separation

Without loss of generality, we can set 
and (why?) and the margin is
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Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 with the largest 
margin such that 

𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example

Maximizing the Margin of a Classifier

distance of a point 𝒙 to the 
hyperplane 𝒘்𝒙 + 𝛼 = 0 is

𝒘்𝒙 + 𝛼

𝒘

distance of a point 𝒙 to the 
hyperplane 𝒘்𝒙 + 𝛽 = 0 is

𝒘்𝒙 + 𝛽

𝒘

Problem Formulation
Given a linearly-separable data set ௜ ௜ ௜ୀଵ

௡ , 
learn a linear classifier ் such that
• all the training examples with ௜ lie above

the margin, that is ்

• all the training examples with ௜ lie below
the margin ்

• the margin is maximized

Note that

≡ 𝐦𝐢𝐧
𝒘

𝒘

2

≡ 𝐦𝐢𝐧
𝒘

𝒘 𝟐

2

≡ 𝐦𝐢𝐧
𝒘

𝒘்𝒘

2

𝐦𝐚𝐱
𝒘

2

𝒘
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Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 with the largest 
margin such that 

𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example

Hard-Margin Support Vector Machine

Constrained optimization problem

This model is called the hard-margin SVM as it is rigid and 
does not allow flexibility for misclassifications by the 
model; only feasible when data set is linearly separable.

௜
்

௜

𝒘,௕

்

• Convex, quadratic minimization problem called 
the primal problem. Guaranteed to have a global 
minimum

• The problem is no longer unconstrained; need 
additional optimization tools to ensure feasibility 
of solutions (that solutions satisfy the 
constraints)

• Further properties of the formulation can be 
studied by deriving the Lagrangian and the dual 
problem
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Hard-Margin SVM: Primal Problem
Primal problem for hard-margin SVM

௜
்

௜

𝒘,௕

்

for each constraint, which corresponds to each training example ( ), we 
introduce new variables called dual variables or Lagrange multipliers, ௜

(the Lagrange multipliers will give us a mechanism to ensure feasibility, that is, ensure that the 
optimal solutions (𝒘 and 𝑏) indeed achieve linear separation of the two classes)

்
௜ ௜

்
௜

௡

௜ୀଵ

Lagrangian function for hard-margin SVM

the Lagrangian function is a function of the primal variables ( and ) and the dual 
variables ( ௜ ); (the Lagrangian function converts a constrained optimization problem into an 

unconstrained optimization problem)

If we can find a minimization of the Lagrangian function with 
௜ ௜

்
௜

௡
௜ୀଵ the resulting solution 
will also be the solution to our original constrained problem.

for each training example ( ), 
the following must hold for the optimal solution:

௜
்

௜ (primal feasibility)
௜ (dual feasibility)

௜ ௜
்

௜ (complementarity)
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Hard-Margin SVM: First-Order Conditions

Differentiate the Lagrangian with respect to the primal variables ( and ) 

the classifier is a linear combination of training 
examples ( )

These are the first-order optimality conditions. We 
can now eliminate the primal variables by substituting 

the optimality conditions into the Lagrangian.
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Hard-Margin SVM: Dual Problem

the dual problem depends only on the dual 
variables ( ௜) and the inner products 
( ௜

்
௝) between each pair of training 

examples

Why bother with the dual?
• both primal and dual problems are convex (quadratic) optimization 
problems. No duality gap (that is, the primal solution and dual solution 
will be exactly the same)
• dual has fewer constraints. Easier to solve
• dual solution is sparse. Easier to represent
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Hard-Margin SVM: Support Vectors
Recall that for each training example ( ), the 
following must hold for the final classifier (optimal solution)

௜
்

௜ (primal feasibility)
௜ (dual feasibility)

௜ ௜
்

௜ (complementarity)

Case 3: ௜ and ௜
்

௜

(degenerate case; not shown in figure)

Case 1a: ௜ and ௜
்

௜

(training example is not on the margin)

Case 2: ௜ and ௜
்

௜

(training example is on the margin)

Case 1b: ௜ and ௜
்

௜

(training example is not on the margin)
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Hard-Margin SVM: Support Vectors

The first order condition that showed that the classifier was a 
linear combination of the training data:

The optimal classifier is a sparse linear combination of 
the training examples, that is, the classifier depends 
only on the support vectors. This means that if we 

removed all other training examples except the support 
vectors, the solution would remain unchanged.

the training examples with ௜ (non-zero) are 
called the support vectors because they support 
the classifier. All other training examples have 

௜ , and this makes the solution sparse.

Recall that for each training example ( ), 
the following must hold

௜
்

௜ (primal feasibility)
௜ (dual feasibility)

௜ ௜
்

௜ (complementarity)

Only a small number of training examples will have ௜

and a large number of training examples will have ௜ .
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Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 with the largest 
margin such that 

𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example
and misclassifications are minimized.

Soft-Margin SVM: Loss Function
So far, assumed that the data is linearly separable, 
which is not valid in real-world applications.

𝟏

𝟐

𝟑

𝟒

correctly classified points 
must not be penalized

misclassified points inside the 
margin, or on the wrong side of the 
margin must be penalized

correctly classified points 
must not be penalized

௜ ௜ ௜ ௜
்

௜

Penalize each misclassification by the size of 
the violation, using the hinge loss (contrast with 
the loss function of the Perceptron)

௜
௜

்
௜

௜
்

௜ ௜
்

௜

Measure the misclassification error for each training example
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Soft-Margin SVM: Formulation

Optimization problem

𝒘,௕

்
௜

்
௜

௡

௜ୀଵ

Maximize the margin (contrast with the 
regularization function of Ridge Regression)

𝟏

𝟐

𝟑

𝟒
misclassified points inside the 
margin, or on the wrong side of the 
margin must be penalized

Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 with the largest 
margin such that 

𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example
and misclassifications are minimized.

Regularization parameter (𝐶 > 0), 
sometimes also denoted 𝜆, trades-off between 

margin maximization and loss minimization

௜ ௜ ௜ ௜
்

௜

Penalize each misclassification by the size of 
the violation, using the hinge loss (contrast with 
the loss function of the Perceptron)
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Soft-Margin SVM: Primal Problem

This model is called the soft-margin SVM as it is softens 
the classification constraints with slack variables (𝜉௜) and 

allows flexibility for misclassifications by the model𝟏

𝟐

𝟑

𝟒
misclassified points inside the 
margin, or on the wrong side of the 
margin must be penalized

Problem: Find a linear classifier 𝑓 𝒙 = 𝒘்𝒙 + 𝑏 with the largest 
margin such that 

𝐬𝐢𝐠𝐧 𝑓 𝒙 =  +1, when positive example
𝐬𝐢𝐠𝐧 𝑓 𝒙 = −1, when negative example
and misclassifications are minimized.

𝑛
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Soft-Margin SVM: Dual Problem

𝟏

𝟐

𝟑

𝟒
misclassified points inside the 
margin, or on the wrong side of the 
margin must be penalized

the only difference between the soft-margin and hard-
margin SVM dual problems is that the Lagrange 

multipliers ( ୧ training example weights) are upper-
bounded by the regularization parameter (0 ≤ 𝛼௜ ≤ 𝐶)

hard-margin svm dual

௜
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Soft-Margin SVM: Dual Problem

the dual solution depends only on the inner 
products of the training data;

this is an important property that allows us to 
extend linear SVMs to learn nonlinear classification 

functions without explicit transformation

the regularization constant is set by the user;
this parameter trades off between the regularization 

term (bias) and the loss term (variance)

𝑛
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Nonlinear SVM Classifiers

train a linear SVM classifier in the higher 
dimensional space using linear SVMs

transform data to a higher 
dimensional feature space

transform the learned high-dimensional linear 
classifier back to the original space to obtain a 
nonlinear classifier

Solution Approach 1 (Explicit Transformation)
• transform data to a higher dimensional feature 

space
• train linear SVM classifier in the high-dim. space
• transform high-dimensional linear classifier back 

to the original space to obtain a nonlinear classifier
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Nonlinear SVM Classifiers
transform data to a higher 
dimensional feature space

Solution Approach 1 (Explicit Transformation)
• transform data to a higher dimensional feature 

space
• train linear SVM classifier in the high-dim. space
• transform high-dimensional linear classifier back 

to the original space to obtain a nonlinear classifier

if we have training features, the size of the
transformation grows very fast; explicit 

transformations can become very expensive
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The Kernel Trick
data in higher-dimensional space

the function ் ଶ is an example of a kernel function
the kernel function relates the inner-products in the original and 

transformed spaces; with a kernel, we can avoid explicit transformation

when learning a linear SVM, recall that the dual solution depends only on 
the inner products of the training data, so we only need to compute inner 

products in the higher-dimensional space:
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Kernel SVMs

Solution Approach 2 (Kernel SVMs)
• instead of inner-products 𝒙௜

்𝒙௝, compute the kernel function
𝜅 𝒙௜, 𝒙௝ = (𝒙௜

்𝒙௝)ଶ between all pairs of training examples
• use the formulation and algorithm of the linear SVM directly, 

simply replacing the inner-product matrix with a kernel matrix

𝑛
𝑛 𝑛 𝑛

𝑛

𝑛 𝑛 𝑛

𝑛
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Examples of Kernel Functions
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Some Popular Kernels

polynomial kernel

Gaussian kernel
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Overfitting with Kernels

exp
− 𝒙 − 𝒛 ଶ

2𝜎ଶ
= exp

− 𝒙 ଶ + 2𝒙்𝒛 − 𝒛 ଶ

2𝜎ଶ
= exp(− 𝒙 ଶ) exp − 𝒛 ଶ exp

𝒙்𝒛

𝜎ଶ

observe that the Gaussian kernel can be written as

்

ଶ

் ௞

ଶ௞

ஶ

௞ୀ଴

using the Taylor expansion for , we have 
Gaussian kernels can represent polynomials of every 
degree, which means they can overfit, especially when 
features spaces are larger

margin maximization (regularization) helps learn robust 
models; selection of kernel parameter ( ) is also critical
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Regularization and Overfitting
The regularization parameter, C, is chosen a 
priori, and defines the relative trade-off between 
norm (bias/complexity) and loss (error/variance)

We want to find classifiers that
minimize (regularization + C loss)

Regularization
• introduces inductive bias over solutions
• controls the complexity of the solution
• imposes smoothness restriction on solutions

As C increases, the effect of the regularization 
decreases and the SVM tends to overfit the data
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C = 0.001

The Effect of C on Classification

C = 0.01 C = 0.1

C = 1 C = 10 C = 100

small values of C 
(low complexity, high error)

large values of C 
(high complexity, low error)
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SVM Modeling Choices
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• Earliest solution approaches: Quadratic Programming Solvers 
(CPLEX, LOQO, Matlab QP, SeDuMi)

• Decomposition methods: SVM chunking (Osuna et. al., 1997);
SVMlight (Joachims, 1999)

• Sequential Minimization Optimization (Platt, 1999); implementation: 
LIBSVM (Chang et. al., 2000)

• Interior Point Methods (Munson and Ferris, 2006), 
Successive Over-relaxation (Mangasarian, 2004)    

• Co-ordinate Descent Algorithms (Keerthi et. al., 2009), Bundle 
Methods (Teo et. al., 2010)

• Present: scikit-learn’s Stochastic Gradient Descent can learn linear 
SVMs; also has a dedicated SVM package that can handle binary and 
multi-class classification, regression, one-class classification and kernels

SVM Implementations Over The Years



CS6375: Machine Learning Support Vector Machines

28

Support Vector Machines


