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CS6375: Machine Learning

Support Vector Machines

Example: Text Categorization

Use the bag-of-words representation for this data set

Example: Develop a model to classify news stories into
various categories based on their content.

sports

olitics

)~

corpus of documents

text across all documents in the corpus is represented as a
bag (multiset) of its words

captures the multiplicity/frequency of words and terms
does not capture semantics, sentiment, grammar, or even
word order

vector space model, where each document is simply
represented as a vector of word statistics such as counts
more advanced statistics such as term-frequencyl/inverse
document frequency (tf-idf) can be used
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CS6375: Machine Learning Support Vector Machines

SVM for Linearly Separable Data

Problem: Find a linear classifier f (x) = w”x + b such that
sign(f(x)) = +1, when positive example
sign(f (x)) = —1, when negative example

g@ w, The data set is linearly separable, that is separable
23 by a linear classifier (hyperplane). There exist many
% 2@ different classifiers! Which one is the best?
83 W, * Prefer hyperplanes that achieve maximum
2@ % separation between the two data sets
» the separation between the two data sets

23 83 83 g@ W, achieved by a classifier is called the

g@ O + Bias: select a classifier with the largest margin

O O Linearly separability is a simplifying assumption we make in
O order to derive a maximum-margin model; it assumes that
O there is no noise in the data set, and hence, the resulting
O model does not require a loss function.
Q This is not a realistic assumption for real-world data sets.
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Maximizing the Margin of a Classifier

Problem: Find a linear classifier f (x) = wix + b

such that
sign(f(x)) = +1, when positive example
distance of a point x to the sign( f (x)) = —1, when negative example
hyperplane wix + a = 0 is
T
+
wxtal la — B

wll ,~ vy wll
N\ Let the margin be defined by two (parallel)

hyperplanes wix + & = 0 andw'x + = 0.

The margin (y) of the classifier is the distance
between the two hyperplanes that form the
boundaries of the separation

Cla-Bl

Iwl

Without loss of generality, we canseta = b — 1
and 8 = b + 1 (why?) and the margin is
2

Y =vwu
3 XQ? / distance™e¥'a point x to the lwl|
&“; ’ O O hyperplane wix + 5 = 0 is
Y WTx + ]
o wi
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Maximizing the Margin of a Classifier

Problem: Find a linear classifier f (x) = wix + b

Support Vector Machines

distance of a point x to the
anewlx+a=0is
lwTx + «f

N

hyp

4

T,

such that
sign(f(x)) = +1, when positive example
sign(f(x)) = —1, when negative example

Given a linearly-separable data set (x;, ¥;)i- 1,
learn a linear classifier w’ x + b = 0 such that

« all the training examples with y; = +1 lie above
the margin, thatisw’x + b > 1
« all the training examples with y; = —1 lie below

the marginw’x + b < —1
» the margin is maximized

2
3 o © wi
2
Note that max —-
o O w wll
&$X>/ 4 O O = inM
) / T w 2
s o7 S - Iwl?
R\ X distance*ef'a point x to the = mi
X v O hyperplane wix + 5 = 0 is w2
7 O
! T wiw
O lwl| w2
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Hard-Margin Support Vector Machine

Problem: Find a linear classifier f (x) = wix + b

such that
sign(f(x)) = +1, when positive example
sign(f(x)) = —1, when negative example
1.
mim —w' w
wb 2

¢+ subjectto y;- (Wix;+b)=>1,i=1,..,n

minimization problem called
the primal problem. Guaranteed to have a global
minimum

» The problem is no longer unconstrained; need
O additional optimization tools to ensure feasibility
O of solutions (that solutions satisfy the
constraints)

® * Further properties of the formulation can be
studied by deriving the Lagrangian and the dual
problem

This model is called the as itis rigid and
does not allow flexibility for misclassifications by the
model; only feasible when data set is linearly separable.

]l
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Hard-Margin SVM: Primal Problem

Primal problem for halid-margin SVM
min —w’w
wb 2

subjectto y;- (Wlx; +b)>1,i=1,..,n

for each constraint, which corresponds to each training example (i = 1, ..., n),%'

introduce new variables called dual variables or Lagrange multipliers, a; = 0
(the Lagrange multipliers will give us a mechanism to ensure feasibility, that is, ensure that the
optimal solutions (w and b) indeed achieve linear separation of the two classes)

Lagrangian function for hard-margin SVM

n
1
Lw,b,a) = Sw'w - Z a; - [y; - WTx; + b) — 1]
i=1
the Lagrangian function is a function of the primal variables (w and b) and the dual

variables (a; = 0); (the Lagrangian function converts a constrained optimization problem into an
unconstrained optimization problem)

for each training example (i = 1, ..., n),

the following must hold for the optimal solution:

yi-wWlx; +b)—1=>0 (primal feasibility)
a; =0 (dual feasibility)

a; - [y; - (wWlx; + b) — 1] = 0 (complementarity)

If we can find a minimization of the Lagrangian function with
;- [y, - (whx; + b) — 1] = 0 the resulting solution
will also be the solution to our original constrained problem.
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Hard-Margin SVM: First-Order Conditions

Lagrangian function of a support vector machine

L(w,b,a;) = 3w'w — S [yi(w'x; — b) — 1]

Differentiate the Lagrangian with respect to the primal variables (w and b)
n
=11

n These are the first-order optimality conditions. We
VbL(W, b, a:l;) =0 Zai y; =0 can now eliminate the primal variables by substituting
i—1 the optimality conditions into the Lagrangian.
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Support Vector Machines

Hard-Margin SVM: Dual Problem

MmaxX
s—1 7=l

s.t. Zazyz — O,

support vector machine dual problem

—— ZZQ ajyzij X+ Zaz

—1

the dual problem depends only on the
(a;) and the
(x{ x;) between each pair of training
examples

Why bother with the dual?

* both primal and dual problems are convex (quadratic) optimization

problems. No duality gap (that is, the primal solution and dual solution
will be exactly the same)

» dual has fewer constraints. Easier to solve
» dual solution is sparse. Easier to represent

min  3[[wlj3

s.t.  y;(W'x;

support vector machine primal problem

b >1
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Hard-Margin SVM: Support Vectors

Recall that for each training example (i = 1, ..., n), the
following must hold for the final classifier (optimal solution)
yi-wWlx; +b)—1=0 (primal feasibility) Case3:a; = Oandy; - (W', + b) = 1

a; =0 (dual feasibility) (degenerate case; not shown in figure)
a; - [y; - (wlx; + b) — 1] = 0 (complementarity)

Case1a:a; = 0andy; - (Wlx; +b) > 1 ~—
X R

(training example is not on the margin)

Case2:a; >0andy; - (wix; +b) =1
(training example is on the margin)

7
Case1b:a; = 0and y; - (wlx; + b) >1</.
(training example is not on the margin)
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Hard-Margin SVM: Support Vectors

Recall that for each training example (i = 1, ..., n),
the following must hold

ST 1> fimal feasibili the training examples with a; > 0 (non-zero) are
yi-wWix;+b)—1=0 (primal feasibility) called the because they support

T a; =0 (dual feaS|b|I|Fy) the classifier. All other training examples have
a; - [y; - (Wx; +b) — 1] = 0 (complementarity) ;" — o and this makes the solution

The first order condition that showed that the classifier was a
linear combination of the training data:

n
W = E QY X

72—=1

Only a small number of training examples will have a; > 0
and a large number of training examples will have a; = 0.

The optimal classifier is a sparse linear combination of
the training examples, that is, the classifier depends
only on the support vectors. This means that if we
removed all other training examples except the support
vectors, the solution would remain unchanged.
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Soft-Margin SVM: Loss Function

Problem: Find a linear classifier f (x) = wix + b

So far, assumed that the data is linearly separable, such that
which is not valid in real-world applications. sign(f(x)) = +1, when positive example
sign(f(x)) = —1, when negative example

- , and misclassifications are minimized.
correctly classified points g@
must not be penalized % ’

/
& % 8
misclas%ed points insid; fﬁe E /
margin n the wrong )lde of the 4 4

Measure the misclassification error for each training example

ma ér% must be pen ized
0, yi-whx; +b) =1

Ei - Vi (wal- + b) Vi (WTxi + b) <1

Penalize each misclassification by the size of
O the violation, using the hinge loss (contrast with
O the loss function of the Perceptron)

& = L(f(x;),y;) = max{0,1—y; - wW'x; + b)}

/
OQO

X\ P 7 O Ocorrectly classified points
must not be penalized
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Soft-Margin SVM: Formulation

Problem: Find a linear classifier f (x) = wix + b

such that
(contrast with the sign(f(x)) = +1, when positive example
reqularization function of Ridge Regression) ™~ sign(f (x)) = —1, when negative example
g@ and misclassifications are minimized.

&S ' X
/
83 g@ 83 / min %WTW +C Z max {0,1 —y; - (W'x; + b)}

b
misclas%ed points insid; fﬁe E Y i=1
margin n the wrong )lde of the 4 4
margin must be pen ized
5@ / (C >0),

sometimes also denoted A, trades-off between
margin maximization and loss minimization

O i

Penalize each misclassification by the size of
O the violation, using the hinge loss (contrast with
O the loss function of the Perceptron)

& = L(f(x;),y;) = max{0,1—y; - wW'x; + b)}
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Support Vector Machines

CS6375: Machine Learning

Soft-Margin SVM: Primal Problem

Problem: Find a linear classifier f (x) = wix + b
such that

sign(f(x)) = +1, when positive example
sign(f(x)) = —1, when negative example
and misclassifications are minimized.

*

4 . -
23 23 83 / soft-margin support vector machine
& / k
- 2 -, -
misclasgified points insids fe £ / min %HW 1“+C>» &
L] 4 —_
margin, §§n the wrong )lde of the / i
, - - . .
magn must be pen ized , s.t. i (.W(?:i —b)>1-¢& Vi=1...n
Gi =

This model is called the as it is softens

O the classification constraints with (¢;) and
allows flexibility for misclassifications by the model

hard-margin support vector machine
/ = 1 .
min 5|w|3
2
N ;7O O , .
st. yi(wx; —0)>1 Vi=1...n

14
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Soft-Margin SVM: Dual Problem

| soft-margin svm dual
max _% Z?:l Z’?zl OGOy Y XX+ Z?zl %
% st. Yo ,05y; =0
x ) 0<a;, <COVi=1...n
AR
g@mlsclasﬁgd points |nS|d; fﬁe
margin n the wrong )lde of the

ma ir% must be pen ized

&4 / 7 the only difference between the soft-margin and hard-
margin SVM dual problems is that the Lagrange

/ multipliers (a; training example weights) are upper-
£,/ / O bounded by the (0<a;<C)

,O0 3¢ Ohard-margin svm duaI

/ O 1
O max —— ZZQ ;Y YiX; XJ-I-ZQZ
=1 3=1
/ © o O
/ O 3% Zaiyi = (),
N / O i=1___— T 0=sag =
/ O O(fiZO. Vi=1...m
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Soft-Margin SVM: Dual Problem

soft-margin svm dual

1\ n PR T, W
max —3 Zizl Zj:l ;05 Y; Y XX )+ Zi:l %

n .
s.t. - 0;y; =0
0 < § Vi=1...n
the regularization constant is set by the user; the dual solution depends
this parameter trades off between the regularization of the training data;
term (bias) and the loss term (variance) this is an important property that allows us to

extend linear SVMs to learn nonlinear classification

| . : functions without explicit transformation
soft-margin support vector machine

n
min w2 4@ ¢
g —1

st. y;(wx; —b)>1-¢& Vi=1...n
o> O
S —
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N O n I i n ea r SVM C I a S S ifi e rs Solution Approach 1 (Explicit Transformation)

» transform data to a higher dimensional feature

transform data to a higher space

ol dimensional feature space « train linear SVM classifier in the high-dim. space

15 o % ® g0, SE ki ol « transform high-dimensional linear classifier back
a - o . . . .

| e o © L © o © e tothe original space to obtain a nonlinear classifier
0ar

0oF
a5+

ST
A5k

2

-2

2 train a linear SVM classifier in the higher
. dimensional space using linear SVMs'

= ik N b

1F %ﬁ 2 ’@ 5 . : 3 3
0ar B

0oF
a5+

Ak @

8&° r
&} o . . . .

e transform the leamed high-dimensional linear*

5 8w D.(‘.Iass:ﬂ'.inier back to the original space to obtain a
' nonlinear classiﬁer
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Support Vector Machines

Nonlinear SVM Classifiers

transform data to a higher

Solution Approach 1 (Explicit Transformation)
» transform data to a higher dimensional feature
space

dimensional feature space « train linear SVM classifier in the high-dim. space
15} ,- "L « transform high-dimensional linear classifier back
8 & " . . ‘e
n ¥ 6 to the original space to obtain a nonlinear classifier
0ar "
0oF
ol 1) _~Constant Term
5 v2x 0
ik __‘Tl \"r.? X
A5 } = | V21172 : > Linear Terms
] 1 1‘5 ""E'rm oY
-2 1.5 1 0.5 0 0.5 1 1.5 2 1 =4
Xy
2 Pure
~Quadratic
R Terms
X
ox)=| " g
= V23X, 8
/4 V2 X, X3
\'fE";.l'rna Quadratic
if we have m training features, the size of the N <§OSS-Term5
transformation grows very fast; explicit :
transformations can become very expensive V2xx,
V{E‘Tm—éxm / /
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The Kernel Trick

2 i data in higher-dimensional space

15} 2z1 72 % o = 5.

| 2 o(x) = (21, V2z,129, 23)

| o(z) = (‘:;‘). V22129 :'5)')

g Wwhen IearningalinSVM, recall that the dual solution depends only on
the inner products of the training data, so we only need to compute inner

21 products in the higher-dimensional space:

5] .' T , 2.2 ¢ 2,2

| o(x)" d(z) = 2727 + 221722122 + X525

D&t » ~ Y -~ 2 — T 2

| = (2121 + T222)° = (X" 2z)

the function x(x, z) = (x72)? is an example of a kernel function
448 4 108 0 085 1 15 2 the kernel function relates the inner-products in the original and
transformed spaces; with a kernel, we can avoid explicit transformation
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CS6375: Machine Learning Support Vector Machines

li t vect hi

Kernel SVMS inear suprTJlor T\L/ec or machine .

) n max —%ZZaiajyiij;Xj—l-Zai
=

i=1 j=1
15} n

1 s.t. Zaiyi =0

2—1

i 0<; <C Vi=1...n

or
a5+

P Solution Approach 2 (Kernel SVMs)

« instead of inner-products x; x;, compute the kernel function
1A+ _ T 2 . .
k(x;, x;) = (x] x;)? between all pairs of training examples
e = » use the formulation and algorithm of the linear SVM directly,
simply replacing the inner-product matrix with a kernel matrix

2_

156¢F

il kernel support vector machine

05t n n n

N max —%ZZaiajyiyjmxz. XJ,I—i—Zaz-
a5k n

At A Zaiyi =0
A5k i=1

0<; <C Yi=1...n
2 15 i e 0 05 i 15 2
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Examples of Kernel Functions

Some popular kernels

e Linear kernel: k(x,z) = (x,2z)

e Polynomial kernel: x(x,z) = ({x,2z) +¢)% ¢c,d >0

x——d -

e Gaussian kernel: k(x,z)=¢e¢~~ ¢ ,0 >0

e Sigmoid kernel: x(x,z) = tanh™ ' n(x,z) + @

Kernels can also be constructed from other kernels:
e Conical (not linear) combinations, k(x,2z) = a1k1(X,2) + aska(X, 2)
e Products of kernels, k(x,z) = r1(x,2)r2(X, 2)

e Products of functions, x(x,z) = fi1(x)f2(z). f1, fo are real valued func-
tions.
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Some Popular Kernels

FPolynomial kermel, p =3

Palynomial kermel, p=3

O O
O
O
@%@® O
u N
% &
o ° o
g N Q0
th
= o > ®

e ©° .
polynomial kernel

. ::"'- k(x,2) = ((x,2) + 1)4

Gaussian Kernel, gamma =

G3ussian kernel
K(X,Z) = exp —

2
[x—z||
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Support Vector Machines

Overfitting with Kernels

observe that the Gaussian kernel can be written as

202 202

ItlEIEI

F 4200

+-200

nr

AN\

—|lx — z||? —|lxll* + 2x"z — ||z||? xTz
exp (— = exp = exp(=llxll*) exp(=llzll*) exp | —

using the Taylor expansion for exp(-), we have

x'z (xT2)k
exp ? =

k=0

Gaussian kernels can represent polynomials of every
degree, which means they can overfit, especially when
features spaces are larger

margin maximization (regularization) helps learn robust
models; selection of kernel parameter (o) is also critical

202k . !
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Regularization and Overfitting

The regularization parameter, C, is chosen a
priori, and defines the relative trade-off between

soft-margin support vector machine norm (bias/complexity) and loss (error/variance)
n
o %HWHQ n (Z £; er }Na}nt to find C|a.SSIf!eI’S that
P minimize (regularization + C loss)
st. yi(wx;—b)>1-¢& Vi=1...n

& >0

Regularization

» introduces inductive bias over solutions

« controls the complexity of the solution

* imposes smoothness restriction on solutions

As C increases, the effect of the regularization
decreases and the SVM tends to overfit the data

| soft-margin svm dual

1 U AP no.
max —3 Zi:1 Zj:l Q05 Y Y XX+ Zizl %
n g
s.t. . 10;y; =0

OSOZS(' 7 =1zl
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The Effect of C on Classification

small values of C
(low complexity, high error)

: large values of C E
(high complexity, low error)
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SVM Modeling Choices

« Select the kernel function to use (important but often trickiest
part of SVM)

— In practice, a low degree polynomial kernel or RBF kernel with a
reasonable width is a good initial try and usually support by off-
the-shelf software

+ Select the parameter of the kernel function and the value of ¢
— You can use the values suggested by the SVM software

see www.kernel-machines.ora/software.html for a list of available
software

— You can set apart a validation set to determine the values of the
parameter
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SVM Implementations Over The Years

» Earliest solution approaches: Quadratic Programming Solvers
(CPLEX, LOQO, Matlab QP, SeDuMi)

* Decomposition methods: SVM chunking (Osuna et. al., 1997);
SVMlight (Joachims, 1999)

 Sequential Minimization Optimization (Platt, 1999); implementation:
LIBSVM (Chang et. al., 2000)

* Interior Point Methods (Munson and Ferris, 20006),
Successive Over-relaxation (Mangasarian, 2004)

 Co-ordinate Descent Algorithms (Keerthi et. al., 2009), Bundle
Methods (Teo et. al., 2010)

* Present: scikit-learn’s Stochastic Gradient Descent can learn linear
SVMs; also has a dedicated SVM package that can handle binary and
multi-class classification, regression, one-class classification and kernels
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Support Vector Machines
» Advantages of SVMs

— polynomial-time exact optimization rather than approximate
methods
« unlike decision trees and neural networks
— Kernels allow very flexible hypotheses

— Can be applied to very complex data types, e.g., graphs,
sequences

* Disadvantages of SVMs

— Must choose a good kernel and kernel parameters

— Very large problems are computationally intractable

« quadratic in number of examples

« problems with more than 20k examples are very difficult to solve
exactly
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