CS6375: Machine Learning

Gautam Kunapuli

Machine Learning Theory

Most of these slides are slightly modified from the originals created by Malik-Magdon Ismail for the
Machine Learning from Data course at Rensselaer Polytechnic Institute and the textbook Learning
from Data: A Short Course (co-authored with Yaser S. Abu-Mostafa and Hsuan-Tien Lin).

Please see http.//www.cs.rpi.edu/~magdon/courses/learn/slides.html for the original slides and
http://amlbook.com/index.html for additional resources and the textbook.
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The Bias-Variance Decomposition

test error lea_meg model true model
Eout(x) = Ep [(9”(x) — f(x))’]

= Ep [9°(x)° — 26°(x)f(x) + f(x)°]

— ED :_f]D(‘X !): — _)(] 2 Jf" X)+ f( (X J;’ + understand this; the rest is just algebra
D 27 — 2 sif s A 0= 2
= Ep [¢"(x)"| —9(x)" + g(x)” — 2g(x) f(x) + f(x)
T &, 27 - 2, (= A2
= Ep |97 (x)°] — g(x)"+(g(x) — f(x))
™ N 4 w
var(x) bias(x)
‘ e "'."..‘
P :{a voireta,
H e« bias o ::és.;.':...ﬂ o P
- L4 00: .::': ey *e i |
FEoui(x) = bias(x) + var(x) 7
Very small model Very large model

If you take average over x:  Eoy = bias + var
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Example: A Simple Visual Learning Problem
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Example: A Simple Visual Learning Problem

f=+1
f=7
e Did you say f = +17 (f is measuring symmetry.)
e Did you say f = —17 (f only cares about the top left pixel.)

Who is correct? — we cannot rule out either possibility.
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Example: A Simple Visual Learning Problem

5t
AL

u SR

e An easy visual learning problem just got very messy.

For every f that fits the data and 1s “+1” on the new point, there is one that i1s “—1".

Since f 1s unknown. 1t can take on any value outside the data, no matter how large the data.

e This is called No Free Lunch (NFL).

You cannot know anything for sure about f outside the data without making assumptions.

e What now!

Is there any hope to know anvything about f outside the data set without makine assumptions about f
Yy Yy q . 24 :

Yes, if we are willing to give up the “for sure”.
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Machine Learning Theory

Population Mean From Sample Mean

BIN

SAMPLE
0000000O0OGS

v = fraction of red
marbles in sample

p = probability to
pick a red marble

The BIN Model

e Bin with red and green marbles.
e Pick a sample of N marbles independently.

e ;i: probability to pick a red marble.
v: fraction of red marbles in the sample.

Sample —  the dataset — v
BIN — outside the data — pu

Can we say anything about g (outside the data) after observing v (the data)?’

ANSWER: No. It 1s possible for the sample to be all green marbles and the bin to be mostly red.

Then, why do we trust polling (e.g. to predict the outcome of the presidential election).

ANSWER: The bad case 1s possible, but not

probable.

Erik Jonsson School of Engineering and Computer Science
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Probability to the Rescue: Hoeffding’s Inequality

Hoeftding /Chernoff proved that, most of the time, v cannot be too far from p:

B [l = ] > g £ 22, for any € > 0.

Pllor—p| <€ > 1=2e2N, for any € > 0.

We get to select any € we want.
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Probability to the Rescue: Hoeffding’s Inequality

1 2e—2€N for any
Pllv — p| > €] < 2e ; for any € > 0. box it and (D
B e

memorize

Pllv —p| <€ >21-— 2e—2¢'N for any € > 0.

Example: N = 1,000; draw a sample and observe v.

99% of the time pw—0.05<v<pu+0.05 (e = 0.05)
99.9999996% of the time pnw—010<v<pu+0.10 (e =0.10)

What does this mean? If | repeatedly pick a sample of size 1,000, observe v and claim that

p € [v—0.05v+ 0.05], (the error bar is +0.05)

| will be right 99% of the time. On any particular sample you may be wrong, but not often.
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Machine Learning Theory

How Did Probability Rescue Us?

e Key ingredient samples must be |independent.

this allows us to use the
tools of probability

If the sample is constructed in some arbitrary fashion, then indeed we cannot say anything.

Even with independence, v can take on arbitrary values; but some values are way more likely than others.

This is what allows us to learn something — it is likely that v &~ pu.

2
e The bound 2e= 2N

does not depend on p or the size of the bin

The bin can be infinite.

It’s great that it does not depend on p because p is unknown; and we mean unknown.

dependence of the bound on the number of samples allows

. ¢ _O92N . AT . .
e The key player in the bound 2e=2¢ is| N us to characterize the sample complexity

If N - oo, p =~ v with very very very ... high probabilty, but not for sure.

Can you live with 107!% probability of error?

THE UNIVERSITY OF TEXAS AT DALLAS . .. . . .
U|D Erik Jonsson School of Engineering and Computer Science These slides were originally created by Malik Magdon-Ismail (http://amibook.com/slides.html) 9



CS6375: Machine Learning Machine Learning Theory

Relating the Bin to Learning

Target Function f Fixed hypothesis h
()] ()
= =
:
Age Age
UNKNOWN KNOWN

In learning, the unknown is an entire function f; in the bin it was a single number pu.
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Relating the Bin to Learning: Training Error

Target Function f Fixed a hypothesis h
x o - o o C
O o]
Q) [}
g o : o
£ £
x x x -0
x x
x X
Age Age

green data: h(x,) = f(x,)

° red data: h(x,) # f(X,) misclassified

Ein(h) = fraction of red data

S RN T

in-sample misclassified

Income

Age
KNOWN!
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Machine Learning Theory

Relating the Bin to Learning: Test Error

Income

Target Function f

Fixed a hypothesis h

Income
/
/
[
/
/

.\\_///

Income
e SO SSS RS S S

4442540044440 0 040000000
LR S S
A S e e e o
LA o
R o S S o S S S o
R
PLPALPPP 220900004
LA AR S S RS S A S S S ol
LA R EE SR TR R R E LS
PEELPP22 20004
LAt S S
L
‘*ee ‘e

*
+*
*
+

*Ee e

+* 4
* e
* e
+ 4

LA E R E S EE RS
*PE bbb e e
LR R R R R R
LR R R R
LR R R RS R

*

*

.

*

(AR R R EE R RS

LA AN
tEEE LIS
LA A AR LS LSS S 2
AR LS LSS
LA S L R S SRR S S
LA A E L L S S S S
A Al AR LS SRS A S
LA A S S S A S SR RS S S

L R S

+
*
*ee
+ee
*ee
+ee
+4+4
44
++e
+4+ e
+*ee
+ee
LA d
‘e
+

+*

O IR A A A A R R
O e e e aEE E E E
o e i o
e e e e S S B S
B R R e
D R R
R R R O e e e g
B R R R R S A
D R R Y
R R R R S
D e I R
R R R R R R R
R R
B e R e
R R e R R R

B R R R R R R

e
e R e S RS

UNKNOWN

green “marble”
red “marble”

-

-

h(x) =
h(x) #

f(x)correctly classified
f(x)misclassified

BIN: X

Eout(h) = Px[h(x) # f(x)]

out-of-sample
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Relating the Bin to Learning: The Error Function

Income
Income
e}

Age Age

Unknown f and P(x), fixed h

Learning

input space X
x for which h(x) = f(x)
x for which h(x) # f(x)
P(x)
data set D
Out-of-sample Error: E,(h) = Pi[h(x) # f(x)]

In-sample Error: E;,(h) = % > [h(x) # f(x)]

BIN

SAMPLE

v = fraction of red
marbles in sample

i = probability to
pick a red marble

Bin Model
Bin
@® green marble

® red marble

randomly picking a marble
sample of N marbles

1 = probability of picking a red marble

v = fraction of red marbles in the sample

Erik Jonsson School of Engineering and Computer Science
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Hoeffding Inequality for Learning

P[|En(h) — Eoc(h)| > €] < 26_2€2N, for any € > 0.

P[|Ewn(h) — Eo(h)| <€ > 1— Qe_zng, for any € > 0.

Fi, 1s random, but known: £, fixed, but unknown.

olf B =<0 = FEou =~ 0 (with high probability), i.e. Px|h(x) # f(x)] = 0;

We have learned something about the entire f: f ~ h over X (outside D)

o If F;, > 0, we're out of luck.

But, we have still learned something about the entire f: f % h; it is not very useful though.

o . . . . . .
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Recall that we are currently considering

That,s Verification, NOt Learning just a single hypothesis

The entire previous argument assumed a FIXED h and then came the data.

e Given h € H, a sample can verify whether or not it is good (w.r.t. f):

if Fi, is small, h is good, with high confidence.

if F;, is large, h is bad with high confidence.

We have no control over E;,. It is what it is.

e In learning, you actually try to fit the data, as with the perceptron model

g results from searching an entire hypothesis set H for a hypothesis with small FEj,.

Verification Real Learning

Fixed single hypothesis h Fixed hypothesis set ‘H

h to be certified g to be certified

h does not depend on D g results after searching H to fit D
No control over Ej, Pick best Ej,

o . . . . . .
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Machine Learning Theory

Bounding Learning with Finite Hypothesis Spaces

We can bound the performance of the best hypothesis by
considering all the hypotheses in the hypothesis space

P :lEin(g) — E

P :lEin(g) -

out (g)| > 6:

Eo(g)| < 6:

< 2|H|e 2N, for any € > 0.

>1—2|H|e 2N, for any € > 0.

We don't care how g was obtained, as long as it is from H

Some Basic Probability

Events A, B

Implication

If A = B (AC B) then P[A] < P[B].

Union Bound

P[A or B] = P[AU B] < P[A] + P[B].

This is called the union bound, and can often be too loose

meaninqgful or informativ
Proof: Let M = |H|. to be mea grul o ormative

The event “|Ein(g) — Eouw(g)| > € implies
"|Ein(hl) = Enut[hl)‘ >&" DR ...0OR .'lbﬂin(h.\!) = Eoul(h.\!H > €

So, by the implication and union bounds:

M
IP“Ein(g) = Eoul(gll > d S ]P l()R ‘Ein{h.\l} - E(Jlll(h.\l)i < IE

< ZP|Em(hm = «m hm‘ ’f

m=1

< 2Me %N,

(The last inequality is because we can apply the Hoeffding bound to each summand)

u D THE UNIVERSITY OF TEXAS AT DALLAS
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Probably Approximately Correct Bound

P |E1n(g) - Eullt(g)l > Ej

I

2|H|e 2N, for any € > 0.

P |E1n(g) o Enut(g)l S 6: 2 L= zl?{le_QGQATs for any € > 0.

Theorem. With probability at least 1 — 9, Proof: Let & = 2|H|e~**N. Then
/l l ‘)‘H‘ P:EIH(UJ — Eou(9)| i‘] >3 =8
E 11!’((!) < Em(( ) s \V )—\; l( J == - In words, with probability at least 1 — 4,
A J— 118 \ot / ¢ ()
H o H ];in g) — En‘.ll [ <e
bias variance ) ()
This implies

We don’t care how ¢ was obtained, as long as g € ‘H A i

From the definition of 4, solve for e:

Drawbacks of this bound

 Bound is too loose to be practical as it considers the size of the o= i I8
hypothesis space to measure hypothesis complexity

 Bound breaks down for infinite hypothesis spaces, for
example, linear classifiers

THE UNIVERSITY OF TEXAS AT DALLAS . . . . . ) .
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Probably Approximately Correct Bound

Together, these ensure E,,;; = 0.

How to verify (1) since we do not know FEqyt

must ensure it theoretically - Hoeffding.

We can ensure (2) (for example PLA)

modulo that we can guarantee (1)

out-( )f—.\'%llll])h‘ error

There is a tradeoft: .
model complexity

e Small |H| = Ein =~ Eout

Error
<

I

|

e Large |H| = FEiy =~ 0 is more likely.

H|* ]

o . . . . . .
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The Vapnik-Chervonenkis Dimension

The is @ measure of complexity of a learner, that is, it is a measure of its
representation power

* higher complexity means a classifier has a greater possibility of capturing the true
hypothesis, but more likely to overfit

* lower complexity means that the classifier has a smaller possibility of capturing the true
hypothesis, but more likely to underfit

Machine Learning Theory

We say a classifier f(x) can shatter a set of h points x4, ..., xy, if

and only if for all label assignments y; ... vy, f (x) can achieve
zero error on the training data (x4, y1), ..., (X1, Y1)

a linear classifier in 2 dimensions can shatter

any labeling of this set of three points
g & N & 2
O ® ® O
L BN o . o 9 D@
O ® ® o
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The Vapnik-Chervonenkis Dimension

The is defined as the maximum number of points h that can be arranged
so that f(x) can shatter them.

for a linear classifier in 2 dimensions, there exists at least one arrangement of 3 points that can be shattered. So hy = 3.

o © o~ © ® @
o) ® ® o
o ® o/ ® o ©O 2'®
O @ ® o)

for a linear classifier in 2 dimensions, hy, . = 3.

u D THE UNIVERSITY OF TEXAS AT DALLAS 20
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The Vapnik-Chervonenkis Dimension

The

Machine Learning Theory

is defined as the maximum number of points h that can be arranged
so that f(x) can shatter them.

for axis-aligned rectangles, there exists at least one arrangement of 4 points that can be shattered. So hy = 4.

o ® S
O O
o
o8 °lo| %
o 0 2 2 I
O 0O &
o o &
& e 1| B g 2P @ 4

for axis-aligned rectangles, there exists at least one arrangement of 4 points that can be shattered. So hy, < 5.

v v
P 1~ o
A A

Our minimum enclosing rectangle that allows us to select all five points is defined by only four points

— one for each edge. So, it is clear that the fifth point must lie either on an edge or on the inside of
the rectangle. This prevents us from selecting four points without the fifth.

for axis-aligned rectangles, hy . = 4.

THE UNIVERSITY OF TEXAS AT DALLAS
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Bounding Learning with Infinite HypotheS|s Spaces

~of-sample error

Error

)
Eout(ﬂ) < Ein(..(/) £ \/)\ 10” |?‘-£|

0

H|* H|

e errol

Eout(.(]) S Ein(f/_) i3

Frror

penalty for model complexity

Q(dye)

in-sample error

B VC dimension, dyq
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Sample Complexity

How Many Data Points Do We Need?

Set the error bar at e.

Solve for V:

= O (dycIn N)

Example. d,c = 3; error bar € = 0.1; confidence 90% (6 = 0.1).
A simple iterative method works well. Trying N = 1000 we get

) 1 4(2000)3 + 4 o
N =~ g ~ 21192.
N ~ 55 log ( Ty ) 119

We continue iteratively, and converge to N = 30000.
If dye =4, N = 40000; for dye = 5, N ~ 50000.

(N o< dye, but gross overestimates)

Practical Rule of Thumb: N = 10 x d.

o . . . . . .
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The Test Set

e Another way to estimate Eou:(g) is using a test set to obtain Fiest(g).

e Fi. is better than FEj,: you don’t pay the price for fitting.

You can use |H| = 1 in the Hoeffding bound with Fj..

e Both a test and training set have variance.
The training set has optimistic bias due to selection — fitting the data.

A test set has no bias.

e The price for a test set is fewer training examples. (why is this bad?)

Fiest = E,t but now Fi. may be bad.

o . . . . . .
U|D E}r'fku_?;‘;i';ﬂ;vs c;;i’; /:)Sf EEZ?QZQ?m g and Computer Science These slides were originally created by Malik Magdon-Ismail (http://amibook.com/slides.html) 24



