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Naïve Bayes Classifier for Continuous Features
Naïve Bayes assumption: features are conditionally independent given 
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For a continuous feature ௝, we can represent ௝ with a 
Gaussian distribution, with parameters ௝௖ (mean) and ௝௖ (standard 
deviation)
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That is, if there are classes, we model each conditional 
distribution with its own Gaussian distribution.

We can use Maximum Likelihood Estimation as before to estimate the parameters of the distribution:
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where indexes training examples, indexes features and indexes class labels.

𝐼(𝑦௜ = 𝑐) is an indicator function 
that simply indicates if its 
argument is true or not, that is:

𝐼 𝑦௜ = 𝑐 = ቊ
1, if 𝑦௜ = 𝑐
0, otherwise
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Logistic Regression
Misclassification Minimization: 
Learn directly from the data 
• Assume a functional form, (e.g., a linear classifier 

் ) such that 
• on one side and 
• on the other side 

that is 
• Not differentiable
• Makes it difficult to learn 
• Can’t handle noisy labels

Logistic Loss Function: 
Learn or directly from the data 

• Assume a functional form, (e.g., a linear classifier 
் ) such that 

•
ଵ

ଵାୣ୶୮  (𝒘೅𝒙ା௕)
on one side and 

•
ୣ୶୮ (𝒘೅𝒙ା௕)

ଵାୣ୶୮  (𝒘೅𝒙ା௕)
on the other side

that is 
• Differentiable
• Easy to learn
• Handles noisy labels naturally
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The Logistic Function
A linear function ் has a range 
from . The logistic function transforms this 
range to a probability .

Given some and , we can classify a new point 
by assigning the labels as follows:
• , if and
• , otherwise
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The Logistic Function
A linear function ் has a range 
from . The logistic function transforms this 
range to a probability .

Given some and , we can classify a new point 
by assigning the labels as follows:
• , if and
• , otherwise

Logistic regression implements a linear classifier, that is:
• , if ் and
• , otherwise

We can show this by showing the log-odds of a training 
example belonging to class are:

்
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Formulating Logistic Regression
Since we are fitting a conditional probability distribution, 
we no longer minimize the loss on the training data. Instead, 
we are interested in finding the distribution that is most 
likely given the training data.

Let ௜ ௜ ௜ୀଵ
௡ be the training data set (sample). Our 

goal is to find to maximize :
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by Bayes’ Rule

because doesn’t depend on 

assuming is uniform

because log is monotonic

The distribution is called the likelihood 
function. The log likelihood is frequently used as 

the objective function for learning. 
The that maximizes the likelihood on the training 
data is called the maximum likelihood estimator.

In our framework, we assume that each training example is identically and independently distributed (i.i.d.)
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this shows that the log likelihood of a data set is the sum of the log likelihoods of 
the individual training examples in the data set
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Learning the Weights to make everything simpler, assume that the labels 
are (for positive examples) and (for 

negative examples, instead of )
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by Bayes’ Rule

because ௜ doesn’t depend on and 

if 𝑖 the log likelihood is 
if 𝑖 the log likelihood is 
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Learning the Weights to make everything simpler, assume that the labels 
are (for positive examples) and (for 

negative examples, instead of )
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       𝒘,௕
find parameters to maximize the conditional log-likelihood 
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gradient depends 𝑦௜  −  𝑝(𝑦௜ = 1|𝒙௜), the difference between the 
true label and the predicted probability
• if 𝑦௜ = 1 (positive example), the gradient pushes 𝑝(𝑦௜ = 1|𝒙௜)

closer to 1 (hopefully resulting in a high probability of 𝑦௜ = 1)
• if 𝑦௜ = 0 (negative example), the gradient pushes 𝑝(𝑦௜ = 1|𝒙௜)

closer to 0 (hopefully resulting in a low probability of 𝑦௜ = 1, 
which is a high probability of 𝑦௜ = 0)

no closed-form solution!
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Learning the Weights to make everything simpler, assume that the labels 
are (for positive examples) and (for 

negative examples, instead of )
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(Batch) Gradient Ascent for Logistic Regression
Initialize: 𝑤 = 𝑤଴,𝑏 = 𝑏଴,𝑡 = 0
Iterate until convergence

Compute updates:
𝑤௧ାଵ = 𝑤௧ + 𝜂௧ 𝛻௪𝐿 𝑓 𝒙 , 𝑦
𝑏௧ାଵ = 𝑏௧ + 𝜂௧ 𝛻௕𝐿(𝑓 𝒙 , 𝑦)

Check for convergence 
Continue to next iteration: 𝑡 = 𝑡 + 1

• Batch algorithm: use all the data points together; 𝐿(𝒘, 𝑏) is a 
concave function, so gradient ascent (because maximization) 
will converge to a global minimum

• Online algorithm: use (small chunks or) one data point at a time; 
leads to stochastic gradient descent, which is highly efficient

gradient depends 𝑦௜  −  𝑝(𝑦௜ = 1|𝒙௜), the difference between the 
true label and the predicted probability
• if 𝑦௜ = 1 (positive example), the gradient pushes 𝑝(𝑦௜ = 1|𝒙௜)

closer to 1 (hopefully resulting in a high probability of 𝑦௜ = 1)
• if 𝑦௜ = 0 (negative example), the gradient pushes 𝑝(𝑦௜ = 1|𝒙௜)

closer to 0 (hopefully resulting in a low probability of 𝑦௜ = 1, 
which is a high probability of 𝑦௜ = 0)
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Priors and Regularization
Overfitting the training data is possible in Logistic Regression, especially when data is very high dimensional and 
training data is sparse; can be avoided by adding a prior, which leads to a penalized log-likelihood
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Consider a  prior distribution on the weights to prevent overfitting
• assume weights from a normal distribution with zero mean, identity 

covariance: 
ଵ
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• maximizing pushes weights to zero, which minimizes the 
complexity of the resulting classifier; this in turn also helps avoid 
large weights and overfitting

• taking the logarithm gives us ଶ
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• can also be solved by gradient ascent
• batch algorithm still has global optimal solution
• online algorithm with one/few data points at a time will lead to a 

stochastic gradient descent algorithm
• regularization parameter:

different priors can lead to 
different regularization functions
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Naïve Bayes vs. Logistic Regression
Non-asymptotic analysis (for Gaussian NB)
Size of training data to get close to infinite data solution, (𝑚= # of attributes/features in 𝑋)
• Naïve Bayes needs 𝑂(log 𝑚) samples

NB converges quickly to its (perhaps less helpful) asymptotic estimates; makes very strong independence assumptions
• Logistic Regression needs 𝑂(𝑚) samples

LR converges more slowly but makes no independence assumptions 
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Multiclass Logistic Regression
Let there be classes: . Choose class to be the reference class and represent each of 
the other classes as a logistic function with respect to class :
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Gradient ascent can be applied simultaneously to train all the weight vectors and bias constants.


