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CS6375: Machine Learning Logistic Regression

Naive Bayes Classifier for Continuous Features

Naive Bayes assumption: features are conditionally independent given y
d
P(xlerJ"'rxdly) = Hj=1p(xj|y) y

For a continuous feature x;, we can represent P(x;|y = c) with a /\

Gaussian distribution, with parameters u ;. (mean) and o; (standard

deviation) X1 X9 Xd
1 Xj — Hjc
P(ley:C): exp( (]20_2] ) )
2maf, je

Thatis, if thereare ¢ = 1, ..., C classes, we model each conditional
distribution with its own Gaussian distribution.

We can use Maximum Likelihood Estimation as before to estimate the parameters of the distribution:
n

=5
—— x...] .= C
e = ST =0 0 =0
n

I(y; = c) is an indicator function
. - o — . 2 . P — t
Gjc Y I(y; = z :(xlf Hje)® 1y = c) that simply indicates if its
i1=1 (yl C) .
t=1 argument is true or not, that is:

oy 11, ity =c
(i =c) = {0, otherwise

where i indexes training examples, j indexes features and c indexes class labels.
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Logistic Regression
Logistic Regression
Misclassification Minimization: Logistic Loss Function:
Learn p(y|x) directly from the data Learn or p(y|x) directly from the data
» Assume a functional form, (e.g., a linear classifier * Assume a functional form, (e.g., a linear classifier
f(x) = wlx + b) such that f(x) = wlx + b) such that
*p(y = 1] x) = 1 on one side and ‘p(y =—1|x) = on one side and

1+exp (wTx+b)

exp(w! x+b)

1+exp (wlx+b)
thatisp(y = —1|x) =1 —p(y = 1| x)

» Differentiable

« Easy to learn

 Handles noisy labels naturally

*p(y = 1| x) = 0 on the other side
thatisp(y = —1|x)=1—-p(y=1|x) =1 ‘p(y=1|x) =
* Not differentiable
* Makes it difficult to learn
« Can't handle noisy labels

on the other side
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Logistic Regression

The Logistic Function 1 —

l +
Alinear function y = f(x) = wlx + b has arange of © ¢ o ‘% a
from [—oo, co]. The logistic function transforms this Z: < : - ¥
range to a probability [0, 1]. £ oo’ i &
Given some w and b, we can classify a new point x o e / "
by assigning the labels as follows: L. ¢ ¢

cy=1,ifp(y =1|x) > p(y = —1|x) and

*y = —1, otherwise

From To

x | -10.0000 | 10.0000

z -0.499119 1.49970
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Logistic Regression
The Logistic Function 1 :
Alinear functiony = f(x) = wlx + b has arange of ® % e /;/ "
from [—oo, oo]. The logistic function transforms this o I . +]
range to a probability [0, 1]. g oo e®? i +

Given some w and b, we can classify a new point x
by assigning the labels as follows:

‘y=1ifp(y =1x) > p(y = —1|x) and
*y = —1, otherwise

Logistic regression implements a linear classifier, that is:

y=1,ifwlx+ b > 0and
«y = —1, otherwise

We can show this by showing the log-odds of a training
example belonging to class y = 1 are:
o p(y=1|x) _

T
g =w'x+b
p(y =—1|x)

0.4

0.3

0.2

Q.1

S From To
x  -10.0000 10.0000
y 10.0000 10.0000

z -0.499119 1.49970
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Formulating Logistic Regression

Since we are fitting a conditional probability distribution, The distribution P(S|h) is called the likelihood
we no longer minimize the loss on the training data. Instead,
we are interested in finding the distribution h that is most
likely given the training data.

function. The log likelihood is frequently used as
the objective function for learning.
The h that maximizes the likelihood on the training

data is called the maximum likelihood estimator.
Let S = (x;,y;)™ , be the training data set (sample). Our ! Ximuim ket |

goal is to find h to maximize P (h|S):

arg max P(h | S) — arg max P(SP?;)P(}Z) by Bayes’RuIe
h h
=argmax P(S | h)P(h) because P(S) doesn’t depend on h
= arg ;lnax P(S | h) assuming P (h) is uniform
= arg l;nax log P(S | h) because log is monotonic
h

In our framework, we assume that each training example is identically and independently distributed (i.i.d.)
n n

log P(sIh) = log| | PGxsyilh) = ) log P(xi, yilh)
i=1 i=1

this shows that the log likelihood of a data set is the sum of the log likelihoods of
the individual training examples in the data set
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Learning the Weights

max log P(S|w, b)
w,b

= max logl_[ P(x;,y;|lw,b)

maxz log P(x;,y;|lw,b)
w,b —

= ma}sz log [P(y;|x;,w,b) P(x;|lw,b)] by Bayes’Rule
w, .

= max Z log P(y;|x;,w,b) because P(x;|w, b)doesn’t depend on w and b

=mw§}mmmx—wmwm+m.wﬁ%mx—mnwm

if y, = 1 the log likelihood is log p(y = 1| x)
if y, = 0 the log likelihood is log p(y = 0| x)

= maxz log PGy = 1lx,w,b) + log P(y; = 0|x;, w,b)
YOS PGy = Ol w, by T O T
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Learning the Weights

Logistic Regression

n P(y; = 1|x;, w, b) _
m?v),(b Zi=1 yilogp(yi = lei’w’ b) + logp(yl - lei;W; b)

= max Y yiwTx; + b) —log(1 + exp(w”x; + b))

= max L(w,b) find parameters w, b to maximize the conditional log-likelihood

w,b

n
Vul = ) 0 = PO = 1lx,w) - %
i=1

n
| Vol = ) i = p(yi = 1, w))
no closed-form solution! =1

gradient depends , the difference between the

true label and the predicted probability

* ify; = 1 (positive example), the gradient pushes p(y; = 1|x;)
closer to 1 (hopefully resulting in a high probability of y; = 1)

* ify; = 0 (negative example), the gradient pushes p(y; = 1|x;)
closer to 0 (hopefully resulting in a low probability of y; = 1,
which is a high probability of y; = 0)
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Logistic Regression

Learning the Weights

P(y; = 1|x;,w, b)
P(y; = 0|x;,w, b)

max 3, y;log

w,b

+ log P(y; = 0|x;,w, b)
= max Y-, vi(w'x; + b) —log(1 + exp(w'x; + b))

= max L(w,b) find parameters w, b to maximize the conditional log-likelihood

w,b

Initialize: w = wy,b = by,t =0
Iterate until convergence
Compute updates:
W1 = we + 1 B L(f (x),y)
bt11 = by + 1 VpL(f (%), )
Check for convergence
Continue to next iteration: t =t + 1

« Batch algorithm: use all the data points together; L(w, b) is a
, S0 gradient ascent (because maximization)
will converge to a
* Online algorithm: use (small chunks or) one data point at a time;
leads to , which is highly efficient

n
Vul = ) 0 = PO = 1lx,w) - %
i=1

n
Vol = ) i = p(yi = 1, w))
i=1

gradient depends , the difference between the

true label and the predicted probability

* ify; = 1 (positive example), the gradient pushes p(y; = 1|x;)
closer to 1 (hopefully resulting in a high probability of y; = 1)

* ify; = 0 (negative example), the gradient pushes p(y; = 1|x;)
closer to 0 (hopefully resulting in a low probability of y; = 1,
which is a high probability of y; = 0)
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Priors and Regularization

Overfitting the training data is possible in Logistic Regression, especially when data is very high dimensional and
training data is sparse; can be avoided by adding a , which leads to a penalized log-likelihood
n

max E log P(y;|x;,w, b)
w,b £ 4
1=

Consider a on the weights to prevent overfitting

» assume weights from a normal distribution with zero mean, identity W,

o 1 lIwll?
covariance: P(w) = Gz XP~ 502
To

* maximizing P(w) pushes weights to zero, which minimizes the < Q (Q
complexity of the resulting classifier; this in turn also helps avoid

t Laplacian prior t Gaussian prior

large weights and overfitting W .,
« taking the logarithm gives us log P(w) = —||w||? + const /
n w W
ma}gxz y;(wlx; + b) —log(1 + exp(wlx; + b)) / kj
s 1 t)
« can also be solved by gradient ascent different priors can lead to
« batch algorithm still has global optimal solution different regularization functions

« online algorithm with one/few data points at a time will lead to a
stochastic gradient descent algorithm
* regularization parameter:
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Naive Bayes vs. Logistic Regression

Non-asymptotic analysis (for Gaussian NB)
Size of training data to get close to infinite data solution, (m= # of attributes/features in X)
* Naive Bayes needs O(log m) samples
NB converges quickly to its (perhaps less helpful) asymptotic estimates;, makes very strong independence assumptions
* Logistic Regression needs O(m) samples
LR converges more slowly but makes no independence assumptions

Logistic Regression
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Multiclass Logistic Regression

Let there be C classes: ¢ = 1, ..., C. Choose class C to be the reference class and represent each of
the other classes as a logistic function with respect to class

POy =11 2) EXpWix + b)
1 =wix+b =1x) =
ng(y — | x) WiX + bq p(y | ) 1+ Zc;l exp (ng + bc)

T
p(y = Cl x) T = — exp(wcx i bC)
— =C|lX) =

logp(y =[x et +he PO =0 =13 Y1 exp (wex + be)

Py =C~ 1/ EXPWe-1 + be-o)
1 — wl. b_ =C—-1|x) =
B =l e e PO ETI S T o Wik + )

1
— xX) =
POy =Clx) =17 S Texp (WIx + by)

Gradient ascent can be applied simultaneously to train all the weight vectors and bias constants.
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