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CS6375: Machine Learning Ensemble Methods

The Bias-Variance Decomposition Revisited

Example: Consider the underlying true labels and model
y = h(x), and a machine learning model that makes Lemma: Var[z] = E[(z — E[z])?] = E[z?] — E[z]?

predictions as f(x). \

squared mean, u®

Our goal is to minimize the squared loss using a sample S:

E|(y-r@)]

E[(y-f00)°] = Ey? - 25f () + ()]

=Ely 1- 2EIYIELf (0l + ELf ()%] using the lemma for first and last terms

= Varly?] + Ely]* = 2E[y]E[f ()] + Var[f (0] + E[f ()?
usingy = h(x), the true model

= e + E[h()]? = 2E[R()IE[f ()] + E[f COI* + Var[f (x)]

=€ + h(x)* = 2h()E[f )] + E[fC)]* + Var[f (x)]

= €? + (h(x) — E[f()D)? + Var[f (x)]

— noise + bias? + variance
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CS6375: Machine Learning Ensemble Methods

The Bias-Variance Decomposition Revisited

Example: Consider the underlying true labels and model
y = h(x), and a machine learning model that makes
predictions as f(x).

Our goal is to minimize the squared loss using a sample S:
E [[(y — f(x))z]] = noise + bias? + variance
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Ensemble Methods

The Bias-Variance Decomposition Revisited

Example: Consider the underlying true labels and model
y = h(x), and a machine learning model that makes
predictions as f(x).

Our goal is to minimize the squared loss using a sample S:
E [[(y — f(x))z]] = noise + bias? + variance

What causes bias?
* Inability to represent certain decision boundaries
* e.9., linear hyperplanes, Naive Bayes, decision trees
* Incorrect assumptions
* e.¢, failure of independence assumption in naive
Bayes
» Classifiers that are “too global” (or too smooth)
» for example, a single linear separator, a small decision
tree, a large number of nearest neighbors
« If the bias is high, the model is underfitting the data

: describes how much £ (x) varies from
one training set to another

bias: describes the average error of f(x)
(result of erroneous algorithmic assumptions)
noise: describes how much y varies from h(x)
(irreducible error on unseen samples)

What causes variance?
 Making decision based on small subsets of the data
* e.g., decision tree splits near the leaves
» Computational reasons
* e.g., randomization in the learning algorithm such as
bad initial weights in gradient descent
» Classifiers that are “too local” (or too nonlinear) and can
easily fit noisy data
* €.¢., a small number of nearest neighbors, large
decision trees
» Learners that make sharp decisions can be unstable
* .¢. the decision boundary can change if one training
example changes)

« If the variance is high, the model is overfitting the data
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Can We Reduce Variance Without Increasing Bias?
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Ensemble Methods

Ensemble Methods

Idea: Train models on different data set samples to reduce the model variance
Problem: Only one training set; where do multiple models come from?
Solution: Take a single learning algorithm and generate multiple variations called ensembles

Why Ensembles?
 When combining multiple independent and diverse decisions,
random errors cancel each other out, correct decisions are
reinforced
» decision can come from weak learners:at least more accurate
than random guessing
* Human ensembles are demonstrably better
» How many jelly beans in the jar? individual estimates vs. group
average
» Who Wants to be a Millionaire: expert friend v. audience vote
» crowd-sourcing
» Theoretically: they serve to reduce variance (and/or bias)
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Bagging: Bootstrap Aggregation

Bagging: Take repeated bootstrap samples from training set (Breiman, 1994)
Bootstrap sampling: Given set D containing n training examples, create a
subset D by drawing n samples from D with replacement

Bagging: Bootstrap Aggregation

Given: data set D of size |D|
* Create T bootstrap samples {D,, ..., Dy, ..., D7} as follows:

* For each D;: randomly draw | D| training examples from

D with replacement

sforeacht =1, ..., T, Srigirial

* f¢ = Learn(D;) D  Training data
» Classify new instance by ensembling (majority vote/average)

* fbag = Ensemble(ft)z;l

Step 1: i
Create Multiple D, D, " D, D,
Data Sets
Step 2: ey /
Build Multiple /¢ \ o /C .\ /e
Classifiers  / ¢1 \\ y f A i'1 A 4 £ \
Step 3: '
Combine c”
Classifiers
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Ensemble Methods

Example: Bagging with

Decision Trees
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Final result from bagging all trees.
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Bagging: Bootstrap Aggregation

Bagging: Take repeated bootstrap samples from training set (Breiman, 1994)
Bootstrap sampling: Given set D containing n training examples, create a
subset D by drawing n samples from D with replacement

How does bagging minimize error?

« Let bagging learn T models (f;)I_, and ensemble them into a final model f;,,(x) = z i
t g T

» The bagging model approximates fi,,q(x) = E[f (x)]

» Recall (from the bias-variance decomposition and the definition of variance) that
bias? + Var|foae ()] = bias? + E | fiag(x) — E[f(x)]|  bias? + 0
* bagging removes the variance while leaving bias unchanged,; , bagging only reduces

variance and tends to slightly increase bias

When do we use Bagging?
» Depends on the stability of the base-level classifiers
* Alearneris if a small change to the training
set causes a large change in the output hypothesis
« If small changes in D cause large changes in the output,
then there will likely be an improvement in performance
with bagging
» Bagging helps unstable procedures, but could hurt the
performance of stable procedures
* decision trees are unstable
» k-nearest neighbor is stable
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Random Forests

Ensemble method specifically designed for decision tree classifiers

* Introduce : “bagging” and “random input vectors”

* Bagging method: each tree is grown using a bootstrap sample of training data

* Random vector method: best split at each node is chosen from a random sample of
m attributes instead of all attributes

= i Y Step 1:
Original { D (Randomize}  Create random
fore=1,..,T: Training data \ 7 vectors

* Draw a bootstrap sample of size n from the data
* Grow a decision tree DT; using the bootstrap sample: o g 4
» Choose m attributes uniformly at random from the data Sep2 | [ |
» Choose the best attribute among the m to split on il
» Split on the best attribute and recurse (until partitions have |  build multiple |

> i T,E : Tgi : T!—Ti | Ty
fewer than s,,,;,, number of nodes) SR & 1 M L @ B M
| B o | | |

Prediction for a new data point x:
« Regression: Y.1_, DT, (x) Step 3:
« Classification: choose the majority class label among Mol
(DT, ..., DT}
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