#### CS6375: Machine Learning Gautam Kunapuli

## **Ensemble Methods: Bagging**



## The Bias-Variance Decomposition Revisited

**Example:** Consider the underlying **true labels and model** y = h(x), and a machine learning model that makes predictions as f(x).

Our goal is to **minimize** the squared loss using a sample S:  $E\left[\left(y-f(x)\right)^2\right]$ 

Lemma: 
$$Var[[z]] = E[[(z - E[[z]])^2]] = E[[z^2]] - E[[z]]^2$$

squared mean,  $\mu^2$ 

$$E \left[ \left[ \left( y - f(x) \right)^2 \right] \right] = E \left[ y^2 - 2yf(x) + f(x)^2 \right]$$

$$= E \left[ y^2 \right] - 2E \left[ y \right] E \left[ f(x) \right] + E \left[ f(x)^2 \right]$$
using the lemma for first and last terms
$$= Var \left[ y^2 \right] + E \left[ y \right]^2 - 2E \left[ y \right] E \left[ f(x) \right] + Var \left[ f(x) \right] + E \left[ f(x) \right]^2$$

$$= \epsilon^2 + E \left[ h(x) \right]^2 - 2E \left[ h(x) \right] E \left[ f(x) \right] + E \left[ f(x) \right]^2 + Var \left[ f(x) \right]$$

$$= \epsilon^2 + h(x)^2 - 2h(x) E \left[ f(x) \right] + E \left[ f(x) \right]^2 + Var \left[ f(x) \right]$$

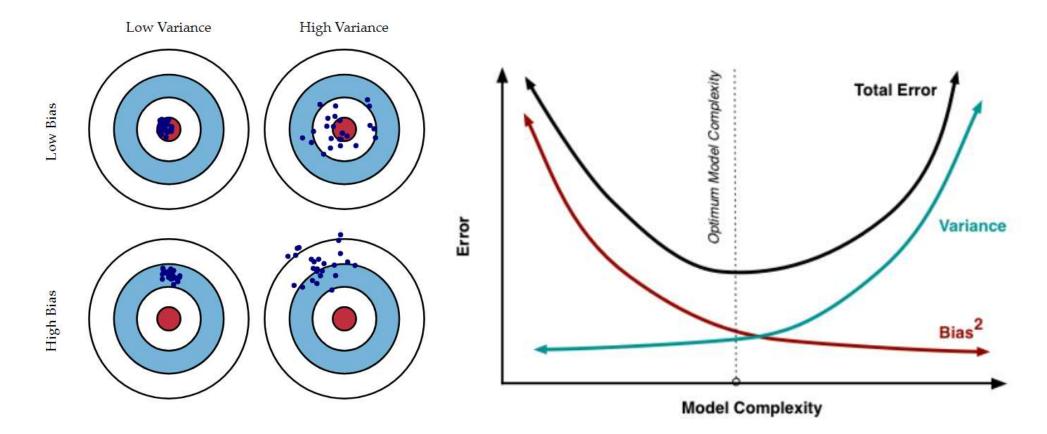
$$= \epsilon^2 + (h(x) - E \left[ f(x) \right] )^2 + Var \left[ f(x) \right]$$

$$= noise + bias^2 + variance$$

## **The Bias-Variance Decomposition Revisited**

**Example:** Consider the underlying **true labels and model** y = h(x), and a machine learning model that makes predictions as f(x).

Our goal is to **minimize** the squared loss using a sample S:  $E\left[\left(y - f(x)\right)^2\right] =$ **noise** + **bias**<sup>2</sup> + **variance** 



## **The Bias-Variance Decomposition Revisited**

**Example:** Consider the underlying **true labels and model** y = h(x), and a machine learning model that makes predictions as f(x).

Our goal is to **minimize** the squared loss using a sample S:  $E\left[\left(y - f(x)\right)^2\right] =$ **noise** + **bias**<sup>2</sup> + **variance** 

#### What causes bias?

- Inability to represent certain decision boundaries
  - e.g., linear hyperplanes, Naïve Bayes, decision trees
- Incorrect assumptions
  - e.g, failure of independence assumption in naïve Bayes
- Classifiers that are "too global" (or too smooth)
  - for example, a single linear separator, a small decision tree, a large number of nearest neighbors
- If the bias is high, the model is **underfitting** the data

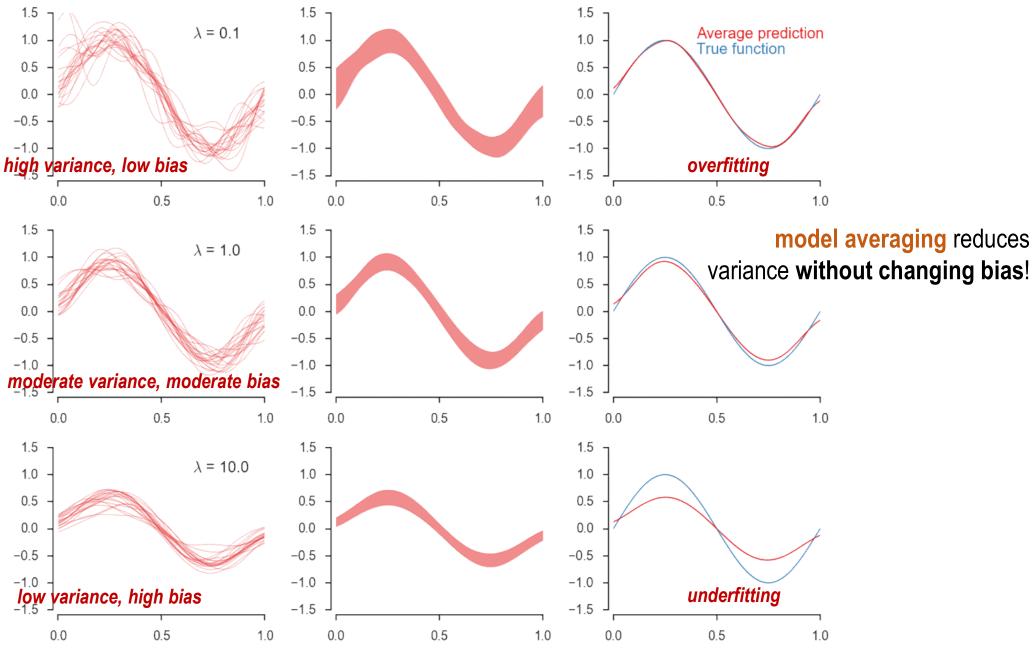
**variance**: describes how much f(x) varies from one training set to another (sensitivity to small fluctuations in the data set) **bias**: describes the average error of f(x)(result of erroneous algorithmic assumptions) **noise**: describes how much y varies from h(x)(irreducible error on unseen samples)

#### What causes variance?

- Making decision based on small subsets of the data
  - e.g., decision tree splits near the leaves
- Computational reasons
  - e.g., randomization in the learning algorithm such as bad initial weights in gradient descent
- Classifiers that are "too local" (or too nonlinear) and can easily fit noisy data
  - e.g., a small number of nearest neighbors, large decision trees
- Learners that make sharp decisions can be **unstable** 
  - e.g. the decision boundary can change if one training example changes)
- If the variance is high, the model is overfitting the data

Ensemble Methods

# **Can We Reduce Variance Without Increasing Bias?**

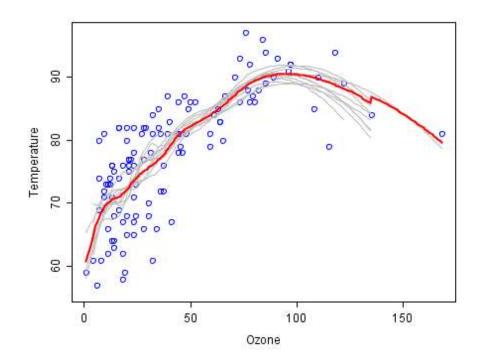


### **Ensemble Methods**

Idea: Train models on different data set samples to reduce the model variance **Problem**: Only one training set; where do multiple models come from? **Solution**: Take a **single** learning algorithm and generate multiple variations called **ensembles** 

#### Why Ensembles?

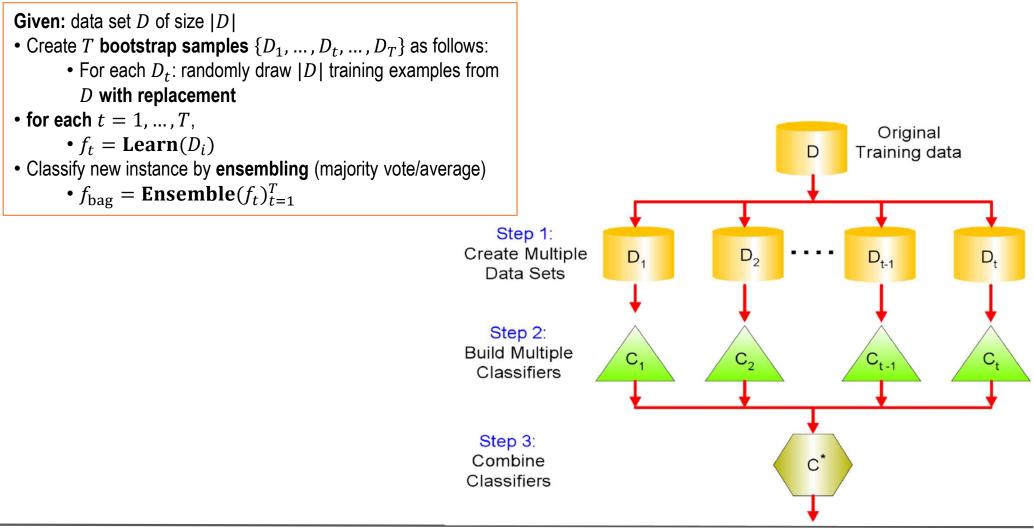
- When combining multiple independent and diverse decisions, random errors cancel each other out, correct decisions are reinforced
  - decision can come from weak learners: at least more accurate than random guessing
- Human ensembles are demonstrably better
  - How many jelly beans in the jar? individual estimates vs. group average
  - Who Wants to be a Millionaire: expert friend v. audience vote
  - crowd-sourcing
- Theoretically: they serve to reduce variance (and/or bias)

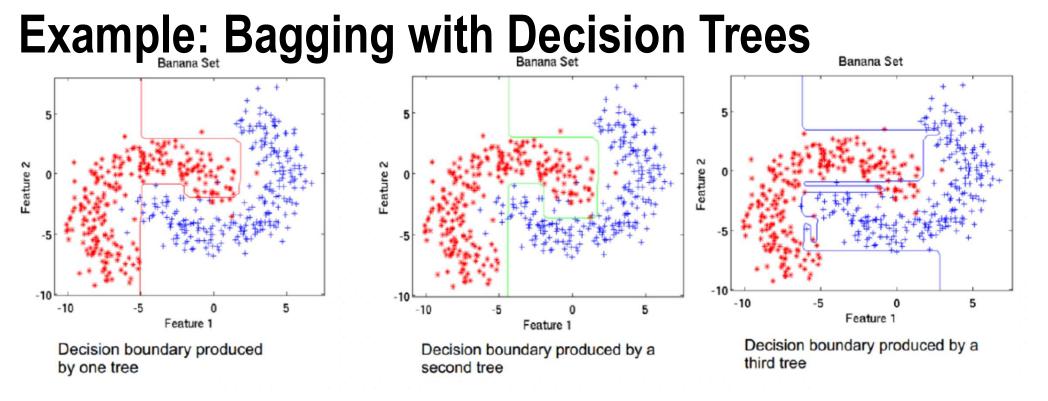


# **Bagging: Bootstrap Aggregation**

**Bagging**: Take repeated bootstrap samples from training set (Breiman, 1994) **Bootstrap sampling**: Given set *D* containing *n* training examples, create a subset  $\widehat{D}$  by drawing *n* samples from *D* with replacement

**Bagging:** Bootstrap Aggregation







#### THE UNIVERSITY OF TEXAS AT DALLAS Erik Jonsson School of Engineering and Computer Science

## **Bagging: Bootstrap Aggregation**

**Bagging**: Take repeated bootstrap samples from training set (Breiman, 1994) **Bootstrap sampling**: Given set *D* containing *n* training examples, create a subset  $\widehat{D}$  by drawing *n* samples from *D* with replacement

#### How does bagging minimize error?

- Let bagging learn T models  $(f_t)_{t=1}^T$  and ensemble them into a final model  $f_{\text{bag}}(x) = \frac{1}{T} \sum_{t=1}^T f_t(x)$
- The bagging model approximates  $f_{\text{bag}}(x) \approx E[[f(x)]]$
- Recall (from the bias-variance decomposition and the definition of variance) that

**bias**<sup>2</sup> +  $Var[f_{bag}(x)] = bias^{2} + E[f_{bag}(x) - E[f(x)]] \approx bias^{2} + 0$ 

 bagging removes the variance while leaving bias unchanged; in reality, bagging only reduces variance and tends to slightly increase bias

#### When do we use Bagging?

- Depends on the stability of the base-level classifiers
  - A learner is **unstable** if a small change to the training set causes a large change in the output hypothesis
- If small changes in *D* cause large changes in the output, then there will **likely be an improvement in performance** with bagging
- Bagging helps unstable procedures, but could hurt the performance of stable procedures
  - decision trees are unstable
  - k-nearest neighbor is stable

### **Random Forests**

Ensemble method specifically designed for decision tree classifiers

- Introduce two sources of randomness: "bagging" and "random input vectors"
- Bagging method: each tree is grown using a bootstrap sample of training data
- Random vector method: best split at each node is chosen from a random sample of m attributes instead of all attributes

