
CS6375: Machine Learning
Gautam Kunapuli

Ensemble Methods: Boosting

CS6375: Machine Learning Ensemble Methods

2

Idea: Train models on different data set samples to reduce the model variance and/or bias
Problem: Only one training set; where do multiple models come from?

Solution: Take a single learning algorithm and generate multiple variations called ensembles

Ensemble Methods

Bagging
• Uses bootstrap sampling to learn many (strong) models, whose

predictions can be aggregated
• bagging reduces variance (and in practice, maybe increases

bias slightly)
• bagging learns with bootstrap samples of the same size as the

original data set
• with decision trees, typically learns full trees
• computational complexity is higher

• each model is learned independently of other models
• insight from one model does not influence the learning of

the next model

Boosting
• uses weak learners that have high bias

• e.g., decision stumps (decision trees with depth 1)
• boosting reduces both bias and variance
• iterative algorithm that increases weights on hard examples

• insight from previous iterations guides learning

CS6375: Machine Learning Ensemble Methods

3

AdaBoost: Adaptive Boosting

• Originally developed by computational learning
theorists to guarantee performance improvements
on fitting training data for a weak learner

• a weak learner only needs to generate a
hypothesis with a training accuracy greater
than 0.5 (Schapire, 1990);

• often, weak learners are only slightly better
than random

• practical algorithm, AdaBoost, for building
ensembles that empirically improves
generalization (Freund & Schapire, 1996).

Basic Algorithm for Boosting:
Initialize: set all examples to have equal weights
for each ,

Learn a hypothesis 𝑡 from weighted examples
Decrease weights of examples 𝑡 classifies correctly
Calculate 𝑡

, the weight of the current weak learner, 𝑡

return ௧ ௧
்
௧ୀଵ

Weighted examples: Base (weak) learner must focus
on correctly classifying the most highly weighted
examples while strongly avoiding over-fitting.

Weighted Hypotheses: During testing, each of the T
hypotheses get a weighted vote proportional to their
accuracy on the training data.

Basic idea behind Boosting: examples are given
weights: at each iteration, a new hypothesis is learned and

examples are reweighted to enable focus on examples
that most recently learned classifier got wrong

CS6375: Machine Learning Ensemble Methods

4

AdaBoost: Weak Learners

a weak learner is typically easy to train and is simple, that
is, of low complexity
• high bias, low variance
• boosting takes a weak learner and converts it to a strong

learner
• just has to achieve an accuracy slightly better than

random guessing, that is, error
• a weak learner achieves accuracy-to-error ratio:

ଵି஫

஫
• we can make the weight of a weak learner during

boosting depend on its accuracy

௧
ଵ

ଶ

ଵି஫

஫
• stronger learners have higher weights

Basic Algorithm for Boosting:
Initialize: set all examples to have equal weights
for each ,

Learn a hypothesis 𝑡 from weighted examples
Decrease weights of examples 𝑡 classifies correctly
Calculate 𝑡

, the weight of the current weak learner, 𝑡

return ௧ ௧
்
௧ୀଵ

Decision stumps are classical and often-used
weak learners; Naïve Bayes, Logistic Regression
also return probability of classification

Weak learners commonly used in practice:
• Decision stumps (axis parallel splits)
• Shallow decision trees
• Multi-layer neural networks
• Radial basis function networks

Note: There is nothing inherently weak about weak
learners – we just think of them this way. In fact, any
learning algorithm can be used as a weak learner.

CS6375: Machine Learning Ensemble Methods

5

AdaBoost: Training Set Distributions

weights on examples can be converted to a distribution that
reflects their “hardness of classification”

thus, each training example ௜ ௜ has weights , with
௡

௜ୀଵ
• most misclassified points get highest weights
• this ensures that the algorithm can focus on training

examples with higher weights

Basic idea behind AdaBoost: maintain a distribution
over examples that reflects their ``hardness’’ of

classification; a new hypothesis is learned and the
distribution is updated to enable focus on examples that

most recently learned classifier got wrong

Basic Algorithm for Boosting:
Initialize: set all examples to have equal weights
for each ,

Learn a hypothesis 𝑡 from weighted examples
Decrease weights of examples 𝑡 classifies correctly
Calculate 𝑡

, the weight of the current weak learner, 𝑡

return ௧ ௧
்
௧ୀଵ

For boosting, we need a weak learner that can
• handle weighted examples/distributions
• alternately, sample training examples according to

the distribution (more on next slide)
• contrast this with bagging!

CS6375: Machine Learning Ensemble Methods

6

Learning with Weighted Training Examples
In a weighted dataset we have a weight associated with each
training example:
• is the weight of -th training example ௜ ௜

• -th training example counts as training examples; if
we “resampled” data, we would get more samples of
“heavier” data points

• Now, in all calculations, the -th training example counts
as “examples”

Example 1: in Maximum Likelihood Estimation
Unweighted data: ௜

Weighted data: ௜

Example 2: in Decision Stumps:
• first, when computing 𝟐௬ for a class , use the weights; for instance, in

the binary classification case:
#(௬ୀ଴)

#(௬ୀ଴)ା#(௬ୀଵ)
(unweighted)

∑௪(௬ୀ଴)

∑௪ ௬ୀ଴ ା ∑௪(௬ୀଵ)
(weighted)

• second, when computing ௬ ଶ𝒙

• alternately, since decision stumps are easy to compute, simply compute all possible decision stumps and
select the one with the smallest weighted error as the best weak learners

CS6375: Machine Learning Ensemble Methods

7

AdaBoost: Full Algorithm

best decision stump is the one that minimizes the
weighted training error

௧
௧

௡
௜ୀଵ

௧ ௧ ௜ ௜

௡

௜ୀଵ

re-normalize the weights into a distribution

௧ ௧ ௧ ௜ ௧ ௜

௡

௜ୀଵ

CS6375: Machine Learning Ensemble Methods

8

AdaBoost: Example
Round 1

Round 2

Round 3

CS6375: Machine Learning Ensemble Methods

9

AdaBoost: Example

CS6375: Machine Learning Ensemble Methods

10

CS6375: Machine Learning Ensemble Methods

11

Boosting Optimizes Exponential Loss

In 2000, Friedman et al. interpreted AdaBoost as stage-
wise forward additive model that actually minimizes the
exponential loss function, 𝐿 𝑦, 𝑓 𝒙 = 𝐸 𝑒ି௬௙(𝒙) .

First, note that the overall model at the t-th iteration is:

Split the exponential loss into positive and negative components

ି௬௙(௫)
௜ ௧ିଵ ௜ ௧ ௧ ௜

௡

௜ୀଵ

௧ ௧ିଵ ௧ ௧

௜ ௧ିଵ ௜

஽೟(௜)

௜ ௧ ௧ ௜

௡

௜ୀଵ

௧ ௧

௬೔௛೟ 𝒙೔ ୀଵ

௧ ௧

௬೔௛೟ 𝒙೔ ୀିଵ

Take the gradient and set to zero

௧

ି௬௙(௫)
௧ ௧

௬೔௛೟ 𝒙೔ ୀଵ

௧ ௧

௬೔௛೟ 𝒙೔ ୀିଵ

Take the gradient and set to zero

௧
௧௬೔௛೟ 𝒙೔ ୀଵ

௧௬೔௛೟ 𝒙೔ ୀିଵ

Take the log on both sides

௧
௧௬೔௛೟ 𝒙೔ ୀଵ

௧௬೔௛೟ 𝒙೔ ୀିଵ

correctly classified misclassified

CS6375: Machine Learning Ensemble Methods

12

Boosting Optimizes Exponential Loss

Boosting optimizes exponential loss

௧
௧௬೔௛೟ 𝒙೔ ୀଵ

௧௬೔௛೟ 𝒙೔ ୀିଵ

Logistic regression optimizes logistic loss

CS6375: Machine Learning Ensemble Methods

13

Boosting Increases The Margin
We can write the combined classifier in a more useful form by
dividing the predictions by the “total number of votes”:

௧ାଵ ௜
ଵ ଵ ௜ ௧ ௧ ௜

ଵ ௧

• This allows us to define a clear notion of “voting margin” that
the combined classifier achieves for each training example:

௜ ௜ ௧ାଵ ௜

• The margin lies in [−1, 1] and is negative for all misclassified
examples.
• Successive boosting iterations improve the majority vote or
margin for the training examples

the margin of a single data point is
defined to be the distance from the data

point to the decision boundary

Cumulative distributions of margin values

CS6375: Machine Learning Ensemble Methods

14

Boosting: Pros and Cons

Pros
• fast
• simple and easy to program
• no parameters to tune (except T)
• flexible — can combine with any learning algorithm
• no prior knowledge needed about weak learner
• provably effective, provided can consistently find
rough rules of thumb

- shift in mind set — goal now is merely to find
classifiers barely better than random guessing
• versatile
• can use with data that is textual, numeric, discrete,
etc.
• has been extended to learning problems well
beyond binary classification

Cons
• performance of AdaBoost depends on data and
weak learner
• consistent with theory, AdaBoost can fail if
• weak classifiers too complex (! overfitting)
• weak classifiers too weak (! underfitting)
• empirically, AdaBoost seems especially susceptible
to uniform noise

