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Every point in space can be expressed as a linear
combination of standard basis (or natural basis) vectors 3
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— . . »
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The components of the vector tell you how far along each 2 3
direction of the basis you must travel to describe your point. [0] [2]
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A matrix can be used to transform (rotate and scale) points.
. . . 7/3
This corresponds to a change of basis. The eigenvectors al [ 4
describe the new basis of the transformation matrix. For .‘\ 1/3 2/3
instance, data points transformed by a matrix A \Vi2/3 1 ]
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can be described in terms of its eigenvectors 0.85 3
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What happens when we apply the transformation to the
eigenvectors themselves?

The directions of eigenvectors themselves remain _ A v4
unchanged under the transformation! They only get rescaled,;

the amount of rescaling is captured by the eigenvalue. 2
Avy = 4y g 5l
A”Z - /12172
In matrix form: v di L1
2
1] o ]
Al V2= 1o [P V2 0 1 2 3 4 5
| | — | | X-axis
~———— ~————
|74 |74
The prefix eigen- is adopted from the German word eigen
: : for "proper* or "characteristic". Eigenvalues and
The e!genvectors are orthono_rmal, that is, they have o eigenvectors have a wide range of applications, for
magnitude 1 and are perpendicular to each other; which is example in stability analysis, vibration analysis, atomic
written as VTV = I (and thus, VT = V=1 for an orthonormal orbitals, facial recognition, and matrix diagonalization.

matrix). So we have
A=VTaAV

This is known as the eigen-decomposition of a matrix.

Eigenvalues and eigenvectors visualized:
http://setosa.io/ev/eigenvectors-and-eigenvalues/
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If the transformation A € R*%is symmetric, then it has d linearly
independent eigenvectors vy, ..., v4 corresponding to d real il
eigenvalues; moreover, it has n linearly independent orthonormal AV
eigenvectors

.. 3+
Vv, =0,Vi#]j £
T : Ny
‘v;v; =1,VI >,
* There can be zero, negative or multiple eigenvalues corresponding .
to a matrix. v, [
* The orthonormal eigenvectors form a basis of R™ (similar to the | | | | |
standard coordinate axes) 0 1 2 3 4 5
« A symmetric matrix is positive definite if and only if all of its X-axis

eigenvalues are positive

Examples:
* The 2 x 2 identity (1) 2] has all eigenvalues equal to 1 (positive definite) with orthonormal eigenvectors [(1)] and [(1)]
| 1] L
* The matrix H 1 has eigenvalues 0 and 2 with orthonormal eigenvectors \/12 and \/12
' V2] V2
1 1
* The matrix [i %] has eigenvalues 1 and 3 with orthonormal eigenvectors ‘/12 and ‘/12
V2] Ve,
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Principal Component Analysis: Intuition

Any point x € R? can be written using the eigenvector basis of a
(symmetric) matrix

d
X = z CiV; Intuition: Can we use fewer eigen-vectors to obtain
i=1 a low-dimensional representation that approximates

« the weight ¢; (also, co-ordinate) is the projection of x along the the transformed data point well-enough to be useful?
line given by the eigenvector ¢; = v} x
« Transformations using a matrix can be written as Ax = VT AVx
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Note that in this example, contrary to common convention,
features are rows and training examples are columns.
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Example: Face Recognition

Example: Develop a model to quickly and efficiently identify
people from photographs, videos etc. in a robust manner (that
IS, stable and reliable under changing facial expressions,
orientations, lighting conditions)

Let’s suppose that our data is a collection of images of the
faces of individuals
* The goal is, given the "training data“ of n images, to
correctly match new images to the training data
* Eachimageisans X s array of pixels: x; € R%,d = s?
» As with digit recognition, construct the matrix X € R™*¢,
whose i-th row is the i-th vectorized image

* pre-process to subtract the mean from each image
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Pixel intensities (64 x 64 = 4096)
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Principal Component Analysis

« Can be used to reduce the dimensionality of the

data while still maintaining a good approximation of TTO ggvafiancehmat”x Or]: the4 gggan 'X i3|4g96

. X , aS €acn Image nas eatures! Can
the sample mean and varlanc.e we represent each face using significantly
« Can also be used for selecting good features that fewer features than 40967

are combinations of the input features
 Unsupervised - just finds a good representation of
the data in terms of combinations of the input features

Covariance Matrix of the Face Data

500 3

Principal Component Analysis identifies the principal components
in the sample covariance matrix of the data, X7 X

(note that since our data is #examples (n) x features (d), the
covariance matrix will be d X d)

Pixel intensities (64 x 64 = 4096)
]
=

« PCAfinds a set of orthogonal vectors that best explain the 4000

variance of the sample covariance matrix

» These are exactly the eigenvectors of the covariance matrix X7 X _ o _ - _

« We can discard the eigenvectors corresponding to small covariance matrix IS symmetric, positive sem-
. : ) L definite; this means all the eigen-values will be

magnitude eigenvalues to yield an approximation positive or zero

« Simple algorithm to describe, MATLAB and other programming

languages have built in support for eigenvector/eigenvalue

computations
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Principal Component Analysis: Training

PCA Training

Given: training data X € R™*¢

* pre-process and center the training data

« Compute the eigenvalues and eigenvectors of the
covariance matrix [V, A] = eig(XTX) .
» Save the top k eigenvectors (columns of V) as Eigenface5(5.09%)  Eigenface 6 (4.18%)  Eigenface 7 (3.16%)
Vk = Rdxk - ]

R
Principal Component Analysis identifies the principal -
components in the covariance matrix of the face data  eigentace s (1.96%
« in face recognition, the eigenvectors are called
eigenfaces; as there are 4096 features, there are
4096 eigenfaces
* in this example, the first k = 16 eigenvectors
capture 80.5% of the total variance (sum of all the Py
eigenvalues)

* in practice, we compute the cumulative sum of
the eigenvalues and choose k such that we
reach a satisfactory approximation threshold
(typically, 90% of the variance)

Eigenface 1 (22.40%) Eigenface 2 (13.99%)

Eigenface 3 (11.88%) Eigenface 4 (5.62%)

Eigenface 8 (2.74%)

d

Eigenface 11 (1.77%) Eigenface 12 (1.42%)

/

Eigenface 15 (0.98%) Eigenface 16 (0.94%)
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Principal Component Analysis: Prediction

(c, =-0.67) * Eigf 3

(c, =2.25) * Eigf 1 (c,=0.09) * Eigf 2

l

(c, =0.93) * Eigf 4

PCA Testing

Given: test example x ¢ € R*!

* pre-process and center the test example

* compute the projection of x.s; onto each of the k
€igen-vectors: Crest = Vi Xtest, WHere cresr € RFX1
» determine if the input image is close to one of the faces
in the data set

y

(cg = 0.43) * Eigf 8

i il

(cq = 0.82) * Eigf 5 (cg =-0.24) * Eigf 6 (c, =0.60) * Eigf 7

B85S

(¢4 = -0.51) * Eigf 10 (¢4, =-0.11) * Eigf 11 (c,, = -0.04) * Eigf 12

(¢,5 = -0.10) * Eigf 15

Using more eigenvectors improves the accuracy of reconstruction, but also
increases the complexity of representation and decreases the efficiency of
computation. Here, the choice of k = 100 is still several orders of
magnitude smaller than the original dimension, d = 4096.

(¢, = 0.16) * Eigf 16

Original Image
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PCA In Practice

Forming the sample covariance matrix X7 X can require a
lot of memory (especially if n > d)

* higher resolution images (256 x 256) say, require that we
construct a 65536 x 65536 covariance matrix

* Need a faster way to compute this without forming the L
covariance matrix explicitly

* Typical approach: use the singular value decomposition M — U Z V*
mxn mxm mxnN Nxn

Relationship between the eigenvalue decomposition
and the singular value decomposition: 1
« every matrix X € R™ %admits a decomposition of 1
the form X = UV’ -
«where U € R™ ™is an orthonormal matrix, X € U U
R™ ¢ is a non-negative diagonal matrix, and 3
V € R%*4 is an orthonormal matrix 1
* the o;; entries of the diagonal matrix Z are .
called the singular values V V = |n
e XTX =vETUTUZVT = V(ETZ)VT; eigenvalues
are squares of singular values; right singular vectors
are eigenvectors!

Il
3
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PCA In Practice

While PCA is an unsupervised method, it is

commonly used as a pre-processing/dimensionality T
reduction step for supervised classification problems
« PCA does not take labels into account to T

determine a low-dimensional projection subspace

« this means that if two classes both share a direction
of maximum variance, projection into PCA space will
make them inseperable!

Approaches such as Linear Discriminant Analysis °
handle this drawback by using other criteria to identify .|
a low-dimensional subspace
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