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Supervised vs Unsupervised Learning
Supervised learning: Given labeled data ௜ ௜ , 
learn a function 
• Categorical : classification
• Continuous : regression
Unsupervised learning: Given unlabeled data ௜ , 
can we infer the underlying structure of X?

Why do unsupervised learning?
• raw data cheap; labeled data expensive
• save memory/computation.
• reduce noise in high-dimensional data
• useful in exploratory data analysis
• pre-processing for supervised learning

• e.g., pca for dimensionality reduction

Basic Idea for Clustering: discover groups such that 
samples within a group are more similar to each other 

than samples across groups
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Example: Image Segmentation

Example: Partition a digital image of pixels into 
segments (also known as super-pixels). The goal of 

segmentation is to extract a higher-order 
representation that is more meaningful and 

(semantically) easier to analyze.

Medical image segmentation partitions a medical 
image into different meaningful segments. Segments 
often correspond to different tissues, organs, 
diseases,  pathologies. Medical image segmentation 
is challenging due to low contrast, noise, 
differences in individuals etc., 

Image from Fang et al., https://arxiv.org/abs/1802.03248
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k-Means Clustering k-means Clustering
Given: Unlabeled data, ௜

Initialize: Pick random points as cluster centers 
௝

while not converged do
• Assign data points ௜ to closest cluster center ௝

• Update the cluster centers ௝ to the mean (average) of 
the points assigned to that cluster

• if the assignments no longer change, converged = true

Ingredients of k-means
• a distance function to identify the “closest” 

cluster centers
• a loss function to evaluate clusters
• an algorithm that optimizes this loss function
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k-Means: Distance Functions
Properties of a distance function (also applies to k-nearest neighbors)
• symmetry

• if symmetry does not hold, we can say that looks like , but does 
not look like , which is not meaningful

• Euclidean distance is symmetric, but KL divergence is not!
• positivity, ; and self-similarity if and only if 

• if these do not hold, the distance function cannot tell apart two different 
objects, which is not useful

• triangle inequality: 
• if the triangle inequality does not hold, we can say is like and is 

like but is not like , which is not meaningful

Two commonly-used distance measures produce two commonly used clustering 
algorithms. Consider a -dimensional data set ( features) with points 
k-Means uses Euclidean distance: 

ଶ ଶ ଵ ଵ
ଶ

ௗ ௗ
ଶ 

k-Medioids uses Manhattan distance: 
ଵ ଵ ଵ ଵ | ௗ ௗ |
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k-Means: Loss Function
The key idea behind k-means clustering is to find clusters 
each described by a prototype (cluster centers) ௝

• Assignment of training example ௜ to clusters can be 
represented by responsibilities ௜௝

• ௜௝ if example ௜ is assigned to the -th cluster
• need to ensure that ௜௝

௞
௝ୀଵ to ensure that the 

example ௜ is assigned to one and only one cluster
• cluster assignments for each data point can be read off the 

responsibility matrix
• columns sum give us the size of each cluster

The responsibilities can be used to define a loss function:

௜௝ ௜ ௝

௞

௝ୀଵ

௡

௜ୀଵ

• if a training example is assigned to a cluster that is not closest 
to it, the loss function will increase

• e.g., ௜ is closer to cluster 3 rather than to cluster 5; it should be 
assigned to cluster 3, otherwise the loss function will be higher 
since ௜ ହ ௜ ଷ

ଵ ଶ ଷ
ଵ

ଶ

ଷ

ସ

ହ

଺

responsibilities for a data set with 
6 examples and 3 clusters

the loss function depends on the choice of 
distance function, which is application 
dependent
• need to consider the type of features

• Categorical, ordinal or continuous
• can learn distance function from data

• ML research area called metric learning
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k-Means: Algorithm
How do we minimize loss with respect to assignments 
and cluster centers ௜௝ ௝ ?
• Chicken and egg problem
• If prototypes ( ௝) known, can assign data points to 
clusters and get responsibilities ( ௜௝)
• If responsibilities ( ௜௝) known, can compute prototypes 
( ௝) by averaging data points in each cluster

• guaranteed to converge in a finite number of iterations
• alternating minimization algorithm is a variant of expectation-maximization (EM)
• Running time per iteration

• E-step: fix prototypes, update assignment of data points to closest prototype is 
• M-step: fix cluster assignments, update prototypes using data points is 

► Implementing Step 1: fix prototypes, update 
cluster assignment of data points to closest prototype

► Implementing Step 2: fix cluster assignments, 
update prototypes using data points

Adapted from slides by Alan Fern
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To Standardize or To Not Standardize?

Without standardization With standardization

Adapted from slides by Sairam Sankararaman
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How To Select k?

Adapted from slides by David Sontag

• Cross-validation: Partition data into two sets. Estimate prototypes on 
train and use these to compute the loss function on validation
• Stability of clusters: Measure the change in the clusters obtained by 
resampling or splitting the data.
• Non-parametric approach: Place a prior on 
• Gap statistic: select a such that the “compactness of clustering” is 
best compared to a reference distribution (that has no obvious 
clustering) see [Tibshirani et al., 2001] for more details



CS6375: Machine Learning Clustering

• results can change dramatically when changes
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Limitations of k-Means

Adapted from slides by David Sontag

• k-means will converge to a local minima
• different initializations can lead to very different results
• run k-means several times with random starting points, pick clustering with smallest loss
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Hierarchical Clustering

Adapted from slides by Sairam Sankararaman

Another limitation of k-means: clusters 
change arbitrarily for different 

Solution: organize clusters in a hierarchical 
way by grouping similar clusters

• Bottom-up (agglomerative): Recursively merge two groups with the smallest between-
cluster similarity
• Top-down (divisive): Recursively split a least-coherent (e.g. largest diameter) cluster
• Users can then choose a cut through the hierarchy to represent the most natural division into 
clusters (e.g. where intergroup similarity exceeds some threshold).
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Agglomerative Clustering

Adapted from slides by David Sontag, Thorsten Joachims

Algorithm:
• Initialize: each training example is its own cluster
• repeat until only one cluster left

• pick two “closest” clusters
• merge them into a new cluster

How do we define “closest” for clusters?
Closest pair (single-link clustering) tends to yield 
elongated clusters
Farthest pair (complete-link clustering) tends to yield 
rounder, more spherical clusters
Average of all pairs trades-off between single and 
complete link
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Agglomerative Clustering

Figure by Hastie et al.,

Algorithm:
• Initialize: each training example is its own cluster
• repeat until only one cluster left

• pick two “closest” clusters
• merge them into a new cluster

How do we define “closest” for clusters?
Closest pair (single-link clustering) tends to yield 
elongated clusters
Farthest pair (complete-link clustering) tends to yield 
rounder, more spherical clusters
Average of all pairs trades-off between single and 
complete link
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Example: Gene Expression Analysis
Example: Discover patterns in gene expression data; 
e.g., new types of cancer from gene expression profiles, 

drug responses from genotypes etc., 

Image from http://genomicsclass.github.io/book/pages/clustering_and_heatmaps.html

Gene expression analysis makes extensive use of 
hierarchical clustering, where each example is 
assigned its own cluster, and then clusters are 
grouped together bottom-up. Each level of the hierarchy 
can be interpreted as a clustering of different granularity 
and is visualized as a dendrogram.

rows represent genes,
columns represent samples
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• k-means performs hard clustering
• cluster assignments using responsibilities ௜௝

• a small perturbation to a data point (noise) to flip it to another cluster (instability)
• assumes spherical clusters and equal probabilities for each cluster

• soft clustering can soften assignments to a range ௜௝
• interpretation: training example can now belong to more than one cluster with a probability ௜௝

• approaches: fuzzy clustering, Gaussian mixture models
• compare with perceptron vs. logistic regression

15

Limitations of k-Means

Figure by Richard O. Afolabi
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Probabilistic clustering (generative model): 
Each cluster is associated with a Gaussian distribution. To generate data, 
• randomly choose a cluster with probability 

• distribution over the clusters is modeled as a multinomial distribution
• generate from the distribution of the -th cluster: ௜ ௝ ௝

• distribution over each cluster is modeled as a multivariate Gaussian distribution 

16

Gaussian Mixture Models

Figure by Richard O. Afolabi

௝ ௝
௞
௝ୀଵ (multinomial distribution)

௜ ௝ ௝ (multivariate Gaussian)
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The Multivariate Gaussian Distribution

Adapted from slides by David Sontag

 
் ିଵ

ଵଵ ଵଶ ଵௗ

ଶଵ ଶଶ ଶௗ

ௗଵ ௗଶ ௗௗ

ଵଵ

ଶଶ

ௗௗ

identity matrix
diagonal matrix: 

Gaussian Naïve Bayes
arbitrary positive semi-definite matrix: 

eigenvectors specify rotation, 
eigenvalues specify (relative) elongation
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Mixtures of Gaussians

Adapted from slides by David Sontag

Single Gaussian
Single Gaussian

Single Gaussian

Mixture of three Gaussians

௜ ௜ ௝ ௝

௞

௝ୀଵ

௝ ௝

௞

௝ୀଵ

mixing coefficient

individual Gaussian
component

For a single data point ௜

For a data set ௜

௝ ௜ ௝ ௝

௞

௝ୀଵ

௡

௜ୀଵ

The log-likelihood simplifies the problem, but the 
parameters of the components are still coupled

௝ ௜ ௝ ௝

௞

௝ୀଵ

௡

௜ୀଵ
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Mixtures of Gaussians

Adapted from slides by David Sontag

Single Gaussian
Single Gaussian

Single Gaussian

Mixture of three Gaussians

Introduce latent variables for each training example (these 
latent variables are essentially cluster responsibilities)

௜ ௜ଵ ௜ଶ ௜௝ ௜௞

௜௝ ௝ ௜ ௝ ௝

௞

௝ୀଵ

௡

௜ୀଵ

The introduction of the latent variables causes the 
parameters ௝ and ௝ ௝ to decouple!
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Expectation Maximization for GMMs

Adapted from slides by David Sontag

E-step: Fix parameters, compute responsibilities

௜௝ ௜௝
௝ ௜ ௝ ௝

௝ ௜ ௝ ௝
௞
௝ୀଵ

M-step: Fix responsibilities, compute parameters by maximizing expected complete log-likelihood

௜௝ ௝ ௜ ௝ ௝

௞

௝ୀଵ

௡

௜ୀଵ

௝
௜௝

௡
௜ୀଵ

௝
௜௝ ௜

௡
௜ୀଵ

௜௝
௡
௜ୀଵ

௝
௜௝ ௜ ௝

்
௜ ௝

௡
௜ୀଵ

௜௝
௡
௜ୀଵ

Loss function:
minimize sum of
squared distance.
• Hard assignment of
points to clusters.
• Assumes spherical
clusters with equal
probability of a
cluster.

Gaussian Mixture Models
• soft assignment of points to clusters
• maximize log likelihood.
• Can be used for non-spherical clusters with 
different probabilities

k-Means
• hard assignment of points to clusters
• minimize sum of squared distance
• assumes spherical clusters with equal probability 
of clusters
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Expectation Maximization for GMMs

21Adapted from slides by David Sontag
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Expectation Maximization for GMMs
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Expectation Maximization for GMMs

23Adapted from slides by David Sontag



CS6375: Machine Learning Clustering

Expectation Maximization for GMMs
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Expectation Maximization for GMMs
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Expectation Maximization for GMMs
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Expectation Maximization for GMMs
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Expectation Maximization for GMMs

28Adapted from slides by David Sontag


