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CS6375: Machine Learning Clustering

Supervised vs Unsupervised Learning

Supervised learning: Given labeled data (x;, y;),i = 1,...,n, Why do unsupervised learning?
learnafunction f : x — y * raw data cheap; labeled data expensive
« Categorical y : classification * save memory/computation.

* Continuous y : regression * reduce noise in high-dimensional data
Unsupervised learning: Given unlabeled data x;,i = 1,...,n, « useful in exploratory data analysis
can we infer the underlying structure of X? * pre-processing for supervised learning

* e.g., pca for dimensionality reduction

Basic |dea for Clustering: discover groups such that
samples within a group are more similar to each other
than samples across groups
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CS6375: Machine Learning Image from Fang et al., https://arxiv.org/abs/1802.03248 Clustering

Example: Image Segmentation

Example: Partition a digital image of pixels into
segments (also known as super-pixels). The goal of
segmentation is to extract a higher-order
representation that is more meaningful and
(semantically) easier to analyze.

Medical image segmentation partitions a medical
image into different meaningful segments. Segments
often correspond to different tissues, organs,
diseases, pathologies. Medical image segmentation
is challenging due to low contrast, noise,
differences in individuals efc.,
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CS6375: Machine Learning

Clustering

k-Means Clustering

Ingredients of k-means

« a distance function to identify the “closest”
cluster centers

* a loss function to evaluate clusters

» an algorithm that optimizes this loss function

(&)
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k-means Clustering

Given: Unlabeled data, x;,i = 1,...,n
Initialize: Pick k random points as cluster centers

ﬂ],] = 1, ,k
while not converged do

* Assign data points x; to closest cluster center u;

* Update the cluster centers ; to the mean (average) of

the points assigned to that cluster

« if the assignments no longer change, converged = true
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CS6375: Machine Learning

k-Means: Distance Functions

Properties of a distance function (also applies to k-nearest neighbors)
*symmetry d(x,z) = d(z,x)
« if symmetry does not hold, we can say that x looks like z, but z does
not look like x, which is not meaningful A
« Euclidean distance is symmetric, but KL divergence is not! =
* positivity, d(x, z) = 0; and self-similarity d(x,z) = O ifandonly if x = z ,
« if these do not hold, the distance function cannot tell apart two different
objects, which is not useful
* triangle inequality: d(a, b) + d(b,c) = d(a, c)
« if the triangle inequality does not hold, we can say a is like b and b is
like ¢ but a is not like ¢, which is not meaningful

Clustering

b oHigh Line ™
Park &

Two commonly-used distance measures produce two commonly used clustering * T e i

algorithms. Consider a d-dimensional data set (d features) with points x, z a4 dy(A, B} =5
k-Means uses Euclidean distance: N T —
dy(x,2) = |lx = zll; =/ (x; — 21)? + -+ (xg — 24)? 2+ <8

k-Medioids uses Manhattan distance:
di(x,z) = ||lx — z||l{ = |xq — z1| + - +] xq — 2z4|

Cosine:
oA, B)=41.6°
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CS6375: Machine Learning Clustering

k-Means: Loss Function

The key idea behind k-means clustering is to find k clusters N |
each described by a prototype (cluster centers) u;,j = 1, ..., k responsibilities for a data set with

. . 6 examples and 3 clusters
» Assignment of training example x; to clusters can be

represented by responsibilities r;; € {0, 1} X %1 C(l)z Ci?
-r;; = 1if example x; is assigned to the j-th cluster lo 1 o
*need to ensure that 2921 r;j = 1to ensure that the X311 0 0
example x; is assigned to one and only one cluster X410 0 1
» cluster assignments for each data point can be read off the X511 0 O
responsibility matrix XelO 1 O
» columns sum give us the size of each cluster
The responsibilities can be used to define a loss function:
n k the loss function depends on the choice of
] = S“i=1 S“j=1 Ty - d(xy py) distance function, which is application

«if a training example is assigned to a cluster that is not closest - -Pencen!
* need to consider the type of features

to it, thelloss function will increase | + Categorical, ordinal or continuous

*e.g., x; is closer to cluster 3 rather than to cluster 5; it should be - can learn distance function from data
assigned to cluster 3, otherwise the loss function will be higher * ML research area called metric learning
since d (x;, us) > d(x;, 13)
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CS6375: Machine Learning Clustering

. How do we minimize loss with respect to assignments
k-Mea ns: AI gorlth m and cluster centers (r;;, u;)?

» Chicken and egg problem

* If prototypes (g ;) known, can assign data points to
clusters and get responsibilities (r; ;)

- If responsibilities (; ;) known, can compute prototypes

2
mﬁnmcln Z —1 Zxecyl® — il (1 ;) by averaging data points in each cluster

L. PR, optimize R

Objective

Step 1 of kmeans

mmz Z lx — u; |2 B mln z |xl i| Implementing Step 1: fix prototypes, update

cluster assignment of data points to closest prototype
i=1 X€Cj
2. Fix C, optimize u:
2
min B Ve x = il

— Take partial derivative of u; and set to zero, we have Implementing Step 2: fix cluster assignments,
g update prototypes using data points

= 1Ci x Step 2 of kmeans

« guaranteed to converge in a finite number of iterations

« alternating minimization algorithm is a variant of expectation-maximization (EM)

* Running time per iteration
« E-step: fix prototypes, update assignment of data points to closest prototype is O (kn)
* M-step: fix cluster assignments, update prototypes using data points is O (n)

THE UNIVERSITY OF TEXAS AT DALLAS H
U|D Erik Jonsson School of Engineering and Computer Science Adapted from slides by Alan Fern 7
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To Standardize or To Not Standardize?
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How To Select k?

* Cross-validation: Partition data into two sets. Estimate prototypes on

train and use these to compute the loss function on validation

» Stability of clusters: Measure the change in the clusters obtained by

resampling or splitting the data.

» Non-parametric approach: Place a prior on k

* Gap statistic: select a k such that the “compactness of clustering” is

best compared to a reference distribution (that has no obvious

clustering) see [Tibshirani et al., 2001] for more details
K=2

K=10 Original

<
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CS6375: Machine Learning Clustering

Limitations of k-Means

* k-means will converge to a local minima
« different initializations can lead to very different results
* run k-means several times with random starting points, pick clustering with smallest loss
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Would be better to have %o PN
one cluster here o W

... and two clusters here

* results can change dramatically when k changes

Erik Jonsson School of Engineering and Computer Science
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CS6375: Machine Learning Clustering

Hierarchical Clustering

?tep 0 ?tep 1 ?tep 2 ?tep 3 ?tep B ;lgglomerative
Another limitation of k-means: clusters
change arbitrarily for different k
Solution: organize clusters in a hierarchical
way by grouping similar clusters
4 divisive

| [ | [ I
Step4 Step3 Step2 Stepl Step0

* Bottom-up (agglomerative): Recursively merge two groups with the smallest between-
cluster similarity

* Top-down (divisive): Recursively split a least-coherent (e.g. largest diameter) cluster

» Users can then choose a cut through the hierarchy to represent the most natural division into
clusters (e.g. where intergroup similarity exceeds some threshold).
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CS6375: Machine Learning Clustering

Agglomerative Clustering  Agoritm

» Initialize: each training example is its own cluster
* repeat until only one cluster left

* pick two “closest” clusters

» merge them into a new cluster

How do we define “closest” for clusters?

Closest pair (single-link clustering) tends to yield
elongated clusters

Farthest pair (complete-link clustering) tends to yield
rounder, more spherical clusters

Average of all pairs trades-off between single and

complete link
Closest pair Farthest pair
(single-link clustering) (complete-link clustering)
ol 02 '5 6. .l ‘2 .:‘ 6.
37 7= 3 % 7 8
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CS6375: Machine Learning

Clustering

Agglomerative Clustering

How do we define “closest” for clusters?

Closest pair (single-link clustering) tends to yield
elongated clusters

Farthest pair (complete-link clustering) tends to yield
rounder, more spherical clusters

Average of all pairs trades-off between single and
complete link

Algorithm:
» Initialize: each training example is its own cluster
* repeat until only one cluster left

* pick two “closest” clusters

» merge them into a new cluster

Average Farthest Nearest
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CS6375: Machine Learning Clustering

Example: Gene Expression Analysis

Example: Discover patterns in gene expression data; Gene expression analysis makes extensive use of
e.g., new types of cancer from gene expression profiles, hierarchical clustering, where each example is
drug responses from genotypes etc., assigned its own cluster, and then clusters are

grouped together bottom-up. Each level of the hierarchy
can be interpreted as a clustering of different granularity
and is visualized as a dendrogram.

Color Key

e —

] ] "'II
& B 10 12 14

T i e T dalis

Gt
L1 AN L1 1]
Lill

H@ﬁﬁmm

EE
=
Tl

_.__-!kl__.gzu_r BE
R L

uE
ik EMEdRE ER

5]
=
O 8 R g

EoTE M e e i

T S, )
T R e i s Lo
e b cmsn

M EMEE R

TEes

A TR SR
E- "'E,‘I\_‘ " '-\'._. E'l'\':u- Lo

e mEEE OB R

B N B K

= jree
Sl

]

THE UNIVERSITY OF TEXAS AT DALLAS . . . . .
UID Erik Jonsson School of Engineering and Computer Science Image from http://genomicsclass.github.io/book/pages/clustering_and heatmaps.html 14



CS6375: Machine Learning Clustering

Limitations of k-Means

* k-means performs hard clustering
* cluster assignments using responsibilities r;; € {0, 1}
« a small perturbation to a data point (noise) to flip it to another cluster (instability)
« assumes spherical clusters and equal probabilities for each cluster
* soft clustering can soften assignments to a range r;; € [0, 1]
* interpretation: training example can now belong to more than one cluster with a probability 7; ;
« approaches: fuzzy clustering, Gaussian mixture models
* compare with perceptron vs. logistic regression

Hard clustering Soft clustering
An observation can belong to more than

Each observation belongs to exactly one
cluster one cluster to a certain degree (e.g.

likelihood of belonging to the cluster)
(0.97,0.03)

, O
(0.03, 0.97) -
\ @0@ Q\(S
0% OQ (047, 0.53)
[ Ye)
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CS6375: Machine Learning

Clustering

Gaussian Mixture Models

Probabilistic clustering (generative model):
Each cluster is associated with a Gaussian distribution. To generate data,
*randomly choose a cluster j with probability P(y = j)
* distribution over the clusters is modeled as a multinomial distribution
* generate from the distribution of the j-th cluster: P(x; | y = j) = N(x | uj, %))

« distribution over each cluster is modeled as a multivariate Gaussian distribution

0.5

Of

0 0.5 1
0 0.5 1

P(y = j) = mj, Xf_y m; = 1 (multinomial distribution)

P(x; |y =j) = N(x | u;, Z;) (multivariate Gaussian)

TEXAS AT DAL S . . .
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The Multivariate Gaussian Distribution

2 Eigenvalue, A, of 2

A us \/
1 1 S
P(x;p,2) = exp| —s (-2 (x - p)
\/det(27E)
>
-1 0 O- -0-11 0 0 7 -0-11 012 O-ld-
1 o o o
> — 0 0 5 — 0 o0y, 0 > ?1 22 2d
x ‘ [ . . i ‘ . . L4 . ,‘ ‘ ¢

’ o 0 - 1. 2 0 0 *** Oddl . 0. Od2 *** Odd|

- T - i) - o

. . diagonal matrix: arbitrary positive semi-definite matrix:
iaentity matrix Gaussian Naive Bayes eigenvectors specify rotation,

eigenvalues specify (relative) elongation
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CS6375: Machine Learning Clustering
Mixtures of Gaussians 4
For a single data point x;
k mixing coefficient
Mixture of three Gaussians
PG =) T Nexi ;%) 2N

j=1
individual Gaussian
component

20y
j= 1 l&?

Foradatasetx;,i =1,..,n

P(x) = ﬁzk:ﬂj N(x; | pj, Zp)
1

i=1 j= 0.5
0
The log-likelihood simplifies the problem, but the 0 05 I 0 0.5 1
parameters of the components are still coupled
logP(x) = Z logz i+ N(x; | pj, Zp)
j=
[TID E:iEkUE;Zg;YSiLZ?I l:)? LI\ELZ?;ZZIS'ing and Computer Science Adapted from slides by David Sontag 18



CS6375: Machine Learning Clustering
Mixtures of Gaussians 4
Introduce latent variables for each training example (these
latent variables are essentially cluster responsibilities) e ofree Gatesane
Z; = [Zil’ AV IREE Zij' . Zik]
n k
logP(x,z) = Z Z zij - (logm; +logN(x; | uj, Z;))
i=1j=1 .
T

The introduction of the latent variables causes the

parameters 7; and (u, Z;) to decouple!

0.5
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CS6375: Machine Learning Clustering

Expectation Maximization for GMMs

E-step: Fix parameters, compute responsibilities
N (x; | pj, Z5)

T = E Z::) =
Y (2;) Foa N (x|, 2p)
M-step: Fix responsibilities, compute parameters by maximizing expected complete log-likelihood

n k
maximizelogP(x,z |, u, X) = erij - (logm; +logN(x; | uj, Z;))

i=1j=1
?:1 Tij Loss function:
mp=——— minimize sum of
n squared distance.
i=1TijXi - Hard assignment of
Hj = yn points to clusters.
=1 UT - Assumes spherical
N (. — - . — clusters with equal
% ER1G] - my) (xi—m) probability of N
i=1Tij cluster.
k-Means Gaussian Mixture Models
* hard assignment of points to clusters * soft assignment of points to clusters
* minimize sum of squared distance * maximize log likelihood.
* assumes spherical clusters with equal probability * Can be used for non-spherical clusters with
of clusters different probabilities
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Expectation Maximization for GMMs

iy
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Expectation Maximization for GMMs

lTIl-) THE UNIVERSITY OF TEXAS AT DALLAS Adapted from slides by David Sontag 22

Erik Jonsson School of Engineering and Computer Science



CS6375: Machine Learning Clustering

Expectation Maximization for GMMs
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Expectation Maximization for GMMs

[TI'D THE UNIVERSITY OF TEXAS AT DALLAS Adapted from slides by David Sontag 24

Erik Jonsson School of Engineering and Computer Science



CS6375: Machine Learning Clustering

Expectation Maximization for GMMs
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Expectation Maximization for GMMs
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Expectation Maximization for GMMs
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Expectation Maximization for GMMs

ljl]—) THE UNIVERSITY OF TEXAS AT DALLAS Adapted from slides by David Sontag 28

Erik Jonsson School of Engineering and Computer Science



