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Neural Networks
• The basis of neural networks was developed in the 

1940s-1960s
• The idea was to build mathematical models that 

might  “compute” in the same way that neurons in 
the brain do

• As a result, neural networks are biologically 
inspired, though many of the algorithms developed 
for them are not biologically plausible

• Perform surprisingly well for many tasks

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

10ଵଵ neurons of more than 20 types, 10ଵସ synapses, 1ms–10ms 
cycle time; signals are noisy “spike trains” of electrical potential
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Neural Networks

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

• Neural networks consist of a collection of artificial neurons
• There are different types of neuron activation functions 

• the perceptron (one of the first studied)
• the sigmoid neuron (one of the most common)
• rectified linear units (deep learning)

• A neural network is a directed graph consisting of a collection  
of neurons (the nodes), directed edges (each with an  
associated weight), and a collection of fixed binary inputs
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the activation function can be a step function or 
threshold function; changing the bias weight 𝑊଴,௜

moves the threshold location

the activation function can be a sigmoid 
function:
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moves the threshold location
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Network Architectures

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

Feed-forward networks implement functions, have no internal state  
• single-layer perceptrons
• multi-layer perceptrons
Recurrent networks have  directed cycles with delays
• have  internal state (like flip-flops), can  oscillate  etc.

5 3,5 ·  3 +  4,5 ·  4

3,5 ·  1,3 ·  1 +  2,3 ·  2 4,5 ·  1,4 ·  1 +  2,4 ·  2

A feed-forward network is a  parameterized 
family of nonlinear functions; adjusting the 
weights changes the function

Learning problem: learn the weights for a 
given architecture
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Single-Layer Perceptron

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

A perceptron is an artificial neuron that takes a collection of  binary 
inputs and produces a binary output
• The output of the perceptron is determined by summing up the 

weighted inputs and thresholding the result
• if the  weighted sum is larger than the threshold, the output is one 

(and zero otherwise)
• the perceptron algorithm we previously studied uses the hard step 

function 

adjusting weights moves the location, orientation, 
and  steepness  of the thresholding cliff
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Single-Layer Perceptron

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

A perceptron can represent the Boolean functions and, or and not easily

and/or can be represented as linear functions, but xor? 
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Multi-Layer Perceptron

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

Recall that the xor function can be written as:
ଵ ଶ ଵ ଶ ଵ ଶ

Can be expressed by combining multiple perceptron units 
with multiple layers!

Gluing a bunch of perceptrons together gives us a neural network
• in general, neural nets have a collection of inputs and a collection of 

outputs; can be binary, continuous (need appropriate loss functions)
• layers are usually fully connected
• numbers of hidden units typically chosen by hand
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Multi-Layer Perceptron

Multi-layer perceptrons can encode all continuous functions with 2 layers, 
all functions with 3 layers
• combine two opposite-facing threshold functions to make a ridge
• combine  two perpendicular ridges to make a bump
• add bumps of various sizes and locations to fit any surface
• proof requires exponentially many hidden units
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Backpropagation: Forward Pass

For each example, with the current network parameters, compute the prediction by forward-
propagating the inputs through the network
• hidden layer values depend on the input layer: e.g., ଵ ଵଵ ଵ ଶଵ ଶ ଵ

்

• output layer values depend on the hidden layer: ଵ ଵ ଶ ଶ

• activation function is sigmoid, 
ଵ

ଵା௘షೣ

Use the squared loss (cost) to evaluate the prediction
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Backpropagation: Chain Rule

• sigmoid functions have a nice property, 
డ

డ௭

• we can chain derivatives to compute gradients e.g., 
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Backpropagation: Multiple Layers

loss at the -th output node:
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Backpropagation: Output Layer

loss at the -th output node:

௝ ௝
௅ ଶ

௝
௅

Adapted from slides by Nicholas Ruozzi

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer
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Backpropagation: Hidden Layers

Adapted from slides by Nicholas Ruozzi

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer
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Backpropagation: Parameter Gradients

௞
௅ିଵ

We can compute these derivatives one layer at a time

bias term is implicit in each node

Adapted from slides by Nicholas Ruozzi

Can use stochastic gradient descent to 
update gradients one example at a time!

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer
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Backpropagation

Adapted from slides by Nicholas Ruozzi

• Backpropagation converges to a local minimum
(loss is not  convex in the weights and biases)

• Like EM, can just run it several times with different 
initializations

• Training can take a very long time
• even with stochastic  gradient descent

• Prediction after learning is fast
• Sometimes include a momentum term in the  

gradient update
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Overfitting

Adapted from slides by Nicholas Ruozzi
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Neural Networks in Practice

Adapted from slides by Nicholas Ruozzi

Many ways to improve weight learning in NNs
• Use regularized squared loss (cost) prediction (can still use backpropagation in this setting)

୲୰୳ୣ ୮୰ୣୢ
ଶ

ଶ
ଶ

• ଵ regularization can also be useful
• should be chosen with a validation set

• Try other loss functions, e.g., the cross entropy
• ୲୰୳ୣ ୮୰ୣୢ

• Initialize weights of the network more cleverly
• Random initializations are likely to be far from optimal

• Learning procedure can have numerical difficulties if there are a large number of layers
• Early stopping: stop the learning early in the hopes that this prevents  overfitting

Drop out: A heuristic bagging-style approach applied to 
neural networks to counteract overfitting
• Randomly remove a certain percentage of neurons from 

the network and then train only on the remaining neurons
• networks recombined using an approximate averaging 
• keeping around too many networks and doing proper 

bagging can be costly in practice
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Parameter Tying

Adapted from slides by Nicholas Ruozzi

Convolutional neural networks
• Instead of the output of every neuron at layer being  used as an 

input to every neuron at layer , edges between layers are 
chosen more locally

• Many tied weights and biases 
• convolution nets apply the same process to many different 

local chunks of  neurons
• Often combined with pooling layers 

• layers that replacing small regions of neurons with their 
aggregated output

• Used extensively for image classification tasks

Parameter tying: Assume some of the weights 
in the model are the same to reduce the 
dimensionality of the learning problem; 
• Also a way to learn “simpler” models
• Can lead to significant compression in neural 

networks  (i.e., >90%)

Topological Visualization of a Convolutional Neural Network by 
Terence Broad http://terencebroad.com/nnvis.html
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Activation Functions
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Example: Self Driving Cars


