CS6375: Machine Learning

Gautam Kunapuli

up

THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning Neural Networks

Neural Networks: A Brief History

Deep Neural Network

(Pretraining)
Multi-layered SVM
XOR Perceptron Y 1
ADALINE (Backpropagation) 4
A A
A

Perceptron
Golden Age Dark Age (“Al Winter”)

Electronic Brain

1960 1970 1980

D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow - M. Hoff
XAND Y XORY NOTX -y @ Foward Acivity B) ;
b— A || @ 0 e O - .: . e o=
\ wow] N\ . {2 ~emm wommveem o
+1 4] 2 +1 #l -1 - ’ . .
)</ l \.; x/ \‘- \.| l ‘ ° o «f—— Backward Error
» Learnable Weights and Threshold + XOR Problem + Solution to nonlinearly separable problems + Limitations of learning prior knowledge * Hierarchical feature Learning
+ Big computation, local optima and overfitting + Kernel function: Human Intervention

= Adjustable Weights
* Weights are not Learned

Source: Unknown

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning Neural Networks

Neural Networks
* The basis of neural networks was developed in the AN
1940s-1960s \
* The idea was to build mathematical models that
might “compute” in the same way that neurons in
the brain do \ /
* As a result, neural networks are biologically

inspired, though many ?f the algo”_thms developed 10 neurons of more than 20 types, 101* synapses, 1ms—10ms
for them are not biologically plausible cycle time; signals are noisy “spike trains” of electrical potential

* Perform surprisingly well for many tasks

McCulloch-Pitts “unit”: a; « g(in;) = g(X; W x;)

xo=—1 Bias weight a: = o(in
WO,i 1 g(l)

Output Links

7

Ji

Xj

-
Input LiM

Input Function

Output

Activation
Function

A gross oversimplification of real neurons, but its purpose is to develop an
understanding of what networks of simple units can do

[H—D [HIE UNIVERSITY OF TEZAS AT DALEAS Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi 3

Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Neural Networks g(in))

* Neural networks consist of a collection of artificial neurons
* There are different types of neuron activation functions
» the perceptron (one of the first studied)
» the sigmoid neuron (one of the most common)
» rectified linear units (deep learning)
* Aneural network is a directed graph consisting of a collection
of neurons (the nodes), directed edges (each with an
associated weight), and a collection of fixed binary inputs

Neural Networks

the activation function can be a step function %Pi
threshold function, changing the bias weight W, ;
moves the threshold location

4 g(in;)

+1

-
1n;

the activation function can be a sigmoid
function: 1+i—x; changing the bias weight W ;
moves the threshold location

HE UNIVEF S A
[TID Erik Jonsson School of Engmeermg and Computer Science Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi 4

CS6375: Machine Learning Neural Networks

Network Architectures

Feed-forward networks implement functions, have no internal state
* single-layer perceptrons

* multi-layer perceptrons

Recurrent networks have directed cycles with delays

* have internal state (like flip-flops), can oscillate etc.

A feed-forward network is a parameterized
family of nonlinear functions; adjusting the
weights changes the function

Learning problem: learn the weights for a
given architecture

as = g(Wss . az , Wys . as)

gWss . gWis . a1, Wasz . az) + Was . g(Wis. a1 , Was . az))

mb P UNIVERSITY OF TEXAS AT DALLAS Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi 5

Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Single-Layer Perceptron

A perceptron is an artificial neuron that takes a collection of binary
inputs and produces a binary output .
* The output of the perceptron is determined by summing up the 2 4
weighted inputs and thresholding the result -
« if the weighted sum is larger than the threshold, the output is one
(and zero otherwise) y = {1 WiX; +WyXy + wixz +b >0

« the perceptron algorithm we previously studied uses the hard step 0 otherwise
function g = step(-)

Neural Networks

adjusting weights moves the location, orientation,
and steepness of the thresholding cliff

i
)
W

jr 0 i)’?:’2"";’:
i i) /f W
/ﬁi’{ i ,’ ;91 i
lj”:?:‘;ff;;j’ﬁj W
Input W Qutput
Units Pt Units

THE UNIVERSITY OF TEXAS AT DALLAS
U|D Erik Jonsson School of Engineering and Computer Science Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi 6

CS6375: Machine Learning Neural Networks

Single-Layer Perceptron

A perceptron can represent the Boolean functions and, or and not easily

1 x;+x,>15 1 Xy +x,>0 yz{l —x> —I5
YZ10 x+x, <15 Y=10 x,+x,<0 0 —x<-5
Wy =15 W,= 0.5 W,=-0.5

AND OR NOT

and/or can be represented as linear functions, but xor?

X1 X1
] ® 1 @)
?
0 0
0 | R 0 | R

(a) x; and x, (¢) x; xor x,

[TID LHE UNIVERSITY OF TEXAS AT DALLAS Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi 7

Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning Neural Networks

Multi-Layer Perceptron

Recall that the xor function can be written as: Xy o
x1 D x5 = (%1 Vx3) A (X1 Axy)
Can be expressed by combining multiple perceptron units

with multiple layers! o e
X2

Gluing a bunch of perceptrons together gives us a neural network

«in general, neural nets have a collection of inputs and a collection of
outputs; can be binary, continuous (need appropriate loss functions)

* layers are usually fully connected

« numbers of hidden units typically chosen by hand

Output units a;
I,

Hidden units a;
i,

Input units ay

Erik Jonsson School of Engineering and Computer Science

[]TD [T UNIVERSITY OF TERAS AT DALLAS Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi 8

CS6375: Machine Learning

Multi-Layer Perceptron

Neural Networks

Multi-layer perceptrons can encode all continuous functions with 2 layers,
all functions with 3 layers

» combine two opposite-facing threshold functions to make a ridge

 combine two perpendicular ridges to make a bump

» add bumps of various sizes and locations to fit any surface

» proof requires exponentially many hidden units

hy(x,. x,)

u D THE UNIVERSITY OF TEXAS AT DALLAS 9
Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning Neural Networks

Backpropagation: Forward Pass

Wl 1

x1 - hl \
1
Wi, Ws4 Ypred

f = C f(x)

/ VC(Ytrue» :Vpred)
2
> hz

W22

For each example, with the current network parameters, compute the prediction by forward-
propagating the inputs through the network

« hidden layer values depend on the input layer: e.g., hy = o(Wy1x1 + Wy x,) = o(wlx)
« output layer values depend on the hidden layer: f = u;h; + uyh,

» activation function is sigmoid, o (z) = 1+2—x

Use the squared loss (cost) to evaluate the prediction
1

1
C(:Vtrue» :Vpred) = E(y - f(x))z = E(y - uTG(Wx))Z

u D THE UNIVERSITY OF TEXAS AT DALLAS 10
Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Neural Networks

Backpropagation: Chain Rule

oh,
X1 B hl 9r
ohy 5
RS dhq oL
6W12 6W21 af
[+ C(,f(x)
of
X, ah,
2 oh, 2 2
oWy,

» sigmoid functions have a nice property, %a(z) =0(z)(1—0(2))

* we can chain derivatives to compute gradients e.g.,
ac dC of dh

oW,, df 0h, 0W,,

=—(—f(x) - o(wix)(1 —o(wix)) - x;

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

11

CS6375: Machine Learning Neural Networks

Backpropagation: Multiple Layers

(L — 1)-th layer: hidden layer L-th layer: output layer

loss at the j-th output node:
1 2
C=50—q)

z} - input o the j-th neuron in the L-th layer

L __ L L-1
Zj = Zijak
k

a;: output of the j-th neuron in the L-th layer

L _ L
ai = o(z;)

z;~ . input to the k-th neuron in the (L — 1)-th layer

L—1 _ L—1 ,L-2
Zy = Z Wim Am
m
L

ar~': output of the k-th neuron in the (L — 1)-th layer
ak ™ = o(zk™)

u D THE UNIVERSITY OF TEXAS AT DALLAS 12
Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Neural Networks

Backpropagation: Output Layer

layer L — 1: hidden layer layer L: output layer
1
o gk I o

ka
WkM

zj - input to the j-th neuron in the L-th layer

loss at the j-th output node:
1 2
C=50j-qa)

=) wha™ ac .\ da}
k dzL —(v; —) oL
a;: output of the j-th neuron in the L-th layer J 2 J(Ly
L _ L ol z;
of = a(z}) = (-) =
J
L—1.; : 1)\
z;;~ . input to the k-th neuron in the (L — 1)-th layer _ _(yj . ajL) O(Zj;_) (1 _ O(Z]_L))
z -1 L 2
ka
_ <L
ay~': output of the k-th neuron in the (L — 1)-th layer =9
af ™ = o(zk™)
l]lb IIEIt*'iIkIJJNc;\;\ls”s:JI;\YS?}w;L;;[:)} l\E]n[g);[i\rllle;:ing and Computer Science Adapted from slides by Nicholas Ruozzi 13

CS6375: Machine Learning

Backpropagation: Hidden Layers

layer L — 1: hidden Iayer layer L: output layer L—1
o

WL—1
\ \Vkl \Vll : afh_l km
: ' L

ka
WkM

Z]LZ input to the j-th neuron in the L-th layer

Neural Networks

Z(a y] OZL -1
dzt
J

L-1
0z,

a’: output of the j-th neuron in the L-th layer 7%
] Z;
at = o(z") =) (@ =)o) (1= o)) 5z
J
Z r W ra ’ +bL
z-~: input to the k-th neuron in the (L — 1)-th layer = Z(af ;) o(zt) (1 - o(2F)) — dzA
,- :

Z Wi G 2 . Z(a} —y) o(21) (1 - 0(z1) a(2) (1 - (22) wh

ay~': output of the k-th neuron inthe (L — 1)-th layer _ (](6L)rwgk) (1 _ O.(Z}%—l)) o(zkY)

L—1 L—1
ay =0(zg)

THE UNIVERSITY OF TEXAS AT DALLAS . . .
U|D Erik Jonsson School of Engineering and Computer Science Adapted from slides by Nicholas Ruozzi 14

CS6375: Machine Learning Neural Networks

Backpropagation: Parameter Gradients

layer L — 1: hidden layer layer L: output layer
-1
o a1 o

\Vm \Vz :
-1 ak1 ZL ' L

ka
W%M

We can compute these derivatives one layer at a time

Can use stochastic gradient descent to
update gradients one example at a time!

aC oc ac 0z
=0 = ()W) (1 - 0 (2t) ozt o0l o apl
f 4 bias term is implicit in each node
5l — ((5l+1)TWl+1) (1 = O'(Zl)) O'(Zl) dC dC 62} 5[.
= = Sra;

= - T A T
owj, 0z; 0wy

mb LHE UNIVERSITY OF TEXAS AT DALLAS. : Adapted from slides by Nicholas Ruozzi 15

Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Neural Networks

Backpropagation

layer L — 1: hidden Iayer layer L: output layer

0}

1
\ \V"l \Vll :
. a-L

* Backpropagation converges to a local minimum
(loss is not convex in the weights and biases)

» Like EM, can just run it several times with different
initializations

« Training can take a very long time

* even with stochastic gradient descent

* Prediction after learning is fast

» Sometimes include a momentum term « in the
gradient update

wt) =w(—-1) -y %C0t-1)+al-y-R,C0-2))

* Compute the inputs/outputs for each layer by starting at the input

layer and applying the sigmoid functions

» Compute 8% for the output layer

R

» Starting from [= L — 1 and working backwards, compute

- ((5t+1)rwl+1) o(z") (1 _ a(zl))

* Perform gradient descent

T
bj =bj—v -4

gyl 1 i1
Wik = Wi — ¥ - b ay,

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Adapted from slides by Nicholas Ruozzi 16

CS6375: Machine Learning

Neural Networks

Overfitting

Error versus weight updates (example 1)

0.01 T . T
-
K

0.009 Training set error
Validation set error
0.008
0.007
i
£ 0.006
/M
0.005
0.004
0.003
0.002
0 5000 10000 15000 20000
Number of weight updates Error versus weight updates (example 2)
0.08 o, T T ‘ T ‘
007 F .*. Training set error $.
[H Validation set error +
006 | =4 -
-3
005 I ,***“#Mmmm .
=
g 004 . M
m *
0.03 r . .
0.02 r % 4
’0
001 r ’\M‘“ -
O 1 1 ROS0000056800000500000000000000000N1:28 HOSALALAERIRARN00!
0 1000 2000 3000 4000 5000 6000
Number of weight updates
lﬂb Ililr‘:k“JNc;\r:sRssc)I;YS(gh;:; /:f E;Z?Aéz:ing and Computer Science Adapted from slides by Nicholas Ruozzi 17

CS6375: Machine Learning Neural Networks

Neural Networks in Practice

Many ways to improve weight learning in NNs
» Use regularized squared loss (cost) prediction (can still use backpropagation in this setting)

1 A
C()’truer)’pred) = 5 b —-flxw, b))z + 5 ”W”%

* L, regularization can also be useful
* A > 0 should be chosen with a validation set
* Try other loss functions, e.g., the cross entropy
* C(ytruerYpred) —ylogf(x)—(1-y) log(l - f(x))
* Initialize weights of the network more cleverly
 Random initializations are likely to be far from optimal
» Learning procedure can have numerical difficulties if there are a large number of layers
» Early stopping: stop the learning early in the hopes that this prevents overfitting

Drop out: A heuristic bagging-style approach applied to

neural networks to counteract overfitting

» Randomly remove a certain percentage of neurons from
the network and then train only on the remaining neurons

* networks recombined using an approximate averaging

» keeping around too many networks and doing proper
bagging can be costly in practice

a) Standard Neural Net (b) After applying dropout.

l]I_D THE UNIVERSITY OF TEXAS AT DALLAS Adapted from Slldes by NlChOIaS RUOZZl 18

Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Neural Networks

Parameter Tying

: Assume some of the weights
in the model are the same to reduce the
dimensionality of the learning problem;

* Also a way to learn “simpler” models
» Can lead to significant compression in neural
networks (i.e., >90%)

* Instead of the output of every neuron at layer £ being used as an
input to every neuron at layer £ + 1, edges between layers are
chosen more locally

 Many tied weights and biases

» convolution nets apply the same process to many different
local chunks of neurons

» Often combined with pooling layers

* layers that replacing small regions of neurons with their
aggregated output

» Used extensively for image classification tasks

Topological Visualization of a Convolutional Neural Network by
Terence Broad http://terencebroad.com/nnvis.html

Erik Jonsson School of Engineering and Computer Science

Adapted from slides by Nicholas Ruozzi 19

CS6375: Machine Learning

Neural Networks

Activation Functions

-1, z<0,
Ppz2)=40, z=0,
1, z>0,

Activation function Equation Example 1D Graph
Unit step 0, z<0, Perceptron 1
(Heaviside) P(z) = {{).5, 7= variant >
L, 237
Sign (Signum) Perceptron | —
variant >

Linear Adaline, linear
$2) =z regression
Piece-wise linear ik z2 1, Support vector /I/_
H2)=3z+ 7, _% <z % machine | .
1
0, o= -3
Logistic (sigmoid) Logistic
$) = - — regression, f .
£ Multi-layer NN |
Hyperbolic tangent et —e* Multi-layer
P(z) = 5 - N I
el 4 e 2 eura -
Networks —/|
Rectifier, ReLU Multi-layer T/
(Rectified Linear $(z) = max(0, z) Neural >
Unit) Networks |
Rectifier, softplus Multi-layer J/
#(z) = In(1 + €7) Neural >
Copyright © Sebastian Raschka 2016 NetWOka |

(http://sebastianraschka.com)

ujp

THE UNIVERSITY OF

TEXAS A
Erik Jonsson School of Engineering and Computer Science

JALLAS

20

CS6375: Machine Learning Neural Networks

Example: Self Driving Cars

u D THE UNIVERSITY OF TEXAS AT DALLAS 21
Erik Jonsson School of Engineering and Computer Science

