
CS6375: Machine Learning
Gautam Kunapuli

CS6375: Machine Learning Neural Networks

Source: Unknown

Neural Networks: A Brief History

CS6375: Machine Learning Neural Networks

3

Neural Networks
• The basis of neural networks was developed in the

1940s-1960s
• The idea was to build mathematical models that

might “compute” in the same way that neurons in
the brain do

• As a result, neural networks are biologically
inspired, though many of the algorithms developed
for them are not biologically plausible

• Perform surprisingly well for many tasks

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

10ଵଵ neurons of more than 20 types, 10ଵସ synapses, 1ms–10ms
cycle time; signals are noisy “spike trains” of electrical potential

Output

Input Links

Activation
Function

Input Function

Output Links

x0 = 1 ai = g(ini)

ai

g
௜Wj,i

W0,i

xj

McCulloch-Pitts “unit”: 𝑎௜ ← 𝑔 in௜ = 𝑔 ∑ 𝑊௝,௜𝑥௝
௝

A gross oversimplification of real neurons, but its purpose is to develop an
understanding of what networks of simple units can do

Bias weight

CS6375: Machine Learning Neural Networks

4

Neural Networks

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

• Neural networks consist of a collection of artificial neurons
• There are different types of neuron activation functions

• the perceptron (one of the first studied)
• the sigmoid neuron (one of the most common)
• rectified linear units (deep learning)

• A neural network is a directed graph consisting of a collection
of neurons (the nodes), directed edges (each with an
associated weight), and a collection of fixed binary inputs

1

ini

g(ini)

1

ini

g(ini)

the activation function can be a step function or
threshold function; changing the bias weight 𝑊଴,௜

moves the threshold location

the activation function can be a sigmoid
function:

ଵ

ଵା௘షೣ; changing the bias weight 𝑊଴,௜

moves the threshold location

CS6375: Machine Learning Neural Networks

5

Network Architectures

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

Feed-forward networks implement functions, have no internal state
• single-layer perceptrons
• multi-layer perceptrons
Recurrent networks have directed cycles with delays
• have internal state (like flip-flops), can oscillate etc.

5 3,5 · 3 + 4,5 · 4

3,5 · 1,3 · 1 + 2,3 · 2 4,5 · 1,4 · 1 + 2,4 · 2

A feed-forward network is a parameterized
family of nonlinear functions; adjusting the
weights changes the function

Learning problem: learn the weights for a
given architecture

CS6375: Machine Learning Neural Networks

6

Single-Layer Perceptron

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

A perceptron is an artificial neuron that takes a collection of binary
inputs and produces a binary output
• The output of the perceptron is determined by summing up the

weighted inputs and thresholding the result
• if the weighted sum is larger than the threshold, the output is one

(and zero otherwise)
• the perceptron algorithm we previously studied uses the hard step

function

adjusting weights moves the location, orientation,
and steepness of the thresholding cliff

CS6375: Machine Learning Neural Networks

7

Single-Layer Perceptron

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

A perceptron can represent the Boolean functions and, or and not easily

and/or can be represented as linear functions, but xor?

CS6375: Machine Learning Neural Networks

8

Multi-Layer Perceptron

Adapted from slides by Stuart Russell, David Sontag, Nicholas Ruozzi

Recall that the xor function can be written as:
ଵ ଶ ଵ ଶ ଵ ଶ

Can be expressed by combining multiple perceptron units
with multiple layers!

Gluing a bunch of perceptrons together gives us a neural network
• in general, neural nets have a collection of inputs and a collection of

outputs; can be binary, continuous (need appropriate loss functions)
• layers are usually fully connected
• numbers of hidden units typically chosen by hand

CS6375: Machine Learning Neural Networks

9

Multi-Layer Perceptron

Multi-layer perceptrons can encode all continuous functions with 2 layers,
all functions with 3 layers
• combine two opposite-facing threshold functions to make a ridge
• combine two perpendicular ridges to make a bump
• add bumps of various sizes and locations to fit any surface
• proof requires exponentially many hidden units

CS6375: Machine Learning Neural Networks

10

Backpropagation: Forward Pass

For each example, with the current network parameters, compute the prediction by forward-
propagating the inputs through the network
• hidden layer values depend on the input layer: e.g., ଵ ଵଵ ଵ ଶଵ ଶ ଵ

்

• output layer values depend on the hidden layer: ଵ ଵ ଶ ଶ

• activation function is sigmoid,
ଵ

ଵା௘షೣ

Use the squared loss (cost) to evaluate the prediction

୲୰୳ୣ ୮୰ୣୢ
ଶ ் ଶ

ଵଵ

ଵଶ

ଶଶ

ଶଵ

ଵ

ଶ
୲୰୳ୣ ୮୰ୣୢ

୮୰ୣୢ

ଵ

ଶ ଶ

ଵ

𝐶(𝑦, 𝑓(𝒙))

CS6375: Machine Learning Neural Networks

11

Backpropagation: Chain Rule

• sigmoid functions have a nice property,
డ

డ௭

• we can chain derivatives to compute gradients e.g.,

ଵଵ ଵ

ଵ

ଵଵ

డ௅

డ௙

ଵ

ଶ ଶ

ଵ

𝐶(𝑦, 𝑓(𝒙))

డ௙

డ௛భ

డ௙

డ௛మ

డ௛భ

డௐభభ

డ௛భ

డௐమభ

డ௛మ

డௐభమ

డ௛మ

డௐమమ

ଵ
்

ଵ
்

ଵ

CS6375: Machine Learning Neural Networks

12

Backpropagation: Multiple Layers

loss at the -th output node:

௝ ௝
௅ ଶ

௝
௅: input to the -th neuron in the -th layer

௝
௅

௝௞
௅

௞
௅ିଵ

௞

௝
௅: output of the -th neuron in the -th layer

௝
௅

௝
௅

௞
௅ିଵ: input to the -th neuron in the -th layer

௞
௅ିଵ

௞௠
௅ିଵ

௠
௅ିଶ

௠

௞
௅ିଵ: output of the -th neuron in the -th layer

௞
௅ିଵ

௞
௅ିଵ

௝
௅

௝
௅

ଵ
௅ିଵ

௞
௅ିଵ

ே
௅ିଵ

௝௞
௅

௝ே
௅

௝ଵ
௅

௞
௅ିଵ

௞
௅ିଵ

ଵ
௅ିଵ

௠
௅ିଵ

ெ
௅ିଵ

௞௠
௅ିଵ

௞ெ
௅ିଵ

௞ଵ
௅ିଵ

-th layer: output layer-th layer: hidden layer

CS6375: Machine Learning Neural Networks

13

Backpropagation: Output Layer

loss at the -th output node:

௝ ௝
௅ ଶ

௝
௅

Adapted from slides by Nicholas Ruozzi

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer

௝
௅

௞
௅ିଵ

ଵ
௅ିଵ

ே
௅ିଵ

௝
௅

௝௞
௅

௝ே
௅

௝ଵ
௅

௞௠
௅

௞ெ
௅

௞ଵ
௅ିଵ

௞
௅ିଵ

௝
௅

௝
௅

ଵ
௅ିଵ

௞
௅ିଵ

ே
௅ିଵ

௝௞
௅

௝ே
௅

௝ଵ
௅

௝
௅: input to the -th neuron in the -th layer

௝
௅

௝௞
௅

௞
௅ିଵ

௞

௝
௅: output of the -th neuron in the -th layer

௝
௅

௝
௅

௞
௅ିଵ: input to the -th neuron in the -th layer

௞
௅ିଵ

௞௠
௅ିଵ

௠
௅ିଶ

௠

௞
௅ିଵ: output of the -th neuron in the -th layer

௞
௅ିଵ

௞
௅ିଵ

CS6375: Machine Learning Neural Networks

௞
௅ିଵ

14

Backpropagation: Hidden Layers

Adapted from slides by Nicholas Ruozzi

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer

௝
௅

௞
௅ିଵ

ଵ
௅ିଵ

ே
௅ିଵ

௝
௅

௝௞
௅

௝ே
௅

௝ଵ
௅

௞௠
௅

௞ெ
௅

௞ଵ
௅ିଵ

௞
௅ିଵ

௞
௅ିଵ

௞
௅ିଵ

ଵ
௅ିଵ

௠
௅ିଵ

ெ
௅ିଵ

௞௠
௅ିଵ

௞ெ
௅ିଵ

௞ଵ
௅ିଵ

௝
௅: input to the -th neuron in the -th layer

௝
௅

௝௞
௅

௞
௅ିଵ

௞

௝
௅: output of the -th neuron in the -th layer

௝
௅

௝
௅

௞
௅ିଵ: input to the -th neuron in the -th layer

௞
௅ିଵ

௞௠
௅ିଵ

௠
௅ିଶ

௠

௞
௅ିଵ: output of the -th neuron in the -th layer

௞
௅ିଵ

௞
௅ିଵ

CS6375: Machine Learning Neural Networks

15

Backpropagation: Parameter Gradients

௞
௅ିଵ

We can compute these derivatives one layer at a time

bias term is implicit in each node

Adapted from slides by Nicholas Ruozzi

Can use stochastic gradient descent to
update gradients one example at a time!

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer

௝
௅

௞
௅ିଵ

ଵ
௅ିଵ

ே
௅ିଵ

௝
௅

௝௞
௅

௝ே
௅

௝ଵ
௅

௞௠
௅

௞ெ
௅

௞ଵ
௅ିଵ

௞
௅ିଵ

CS6375: Machine Learning Neural Networks

16

Backpropagation

Adapted from slides by Nicholas Ruozzi

• Backpropagation converges to a local minimum
(loss is not convex in the weights and biases)

• Like EM, can just run it several times with different
initializations

• Training can take a very long time
• even with stochastic gradient descent

• Prediction after learning is fast
• Sometimes include a momentum term in the

gradient update

layer 𝐿: output layerlayer 𝐿 − 1: hidden layer

௝
௅

௞
௅ିଵ

ଵ
௅ିଵ

ே
௅ିଵ

௝
௅

௝௞
௅

௝ே
௅

௝ଵ
௅

௞௠
௅

௞ெ
௅

௞ଵ
௅ିଵ

௞
௅ିଵ

CS6375: Machine Learning Neural Networks

17

Overfitting

Adapted from slides by Nicholas Ruozzi

CS6375: Machine Learning Neural Networks

18

Neural Networks in Practice

Adapted from slides by Nicholas Ruozzi

Many ways to improve weight learning in NNs
• Use regularized squared loss (cost) prediction (can still use backpropagation in this setting)

୲୰୳ୣ ୮୰ୣୢ
ଶ

ଶ
ଶ

• ଵ regularization can also be useful
• should be chosen with a validation set

• Try other loss functions, e.g., the cross entropy
• ୲୰୳ୣ ୮୰ୣୢ

• Initialize weights of the network more cleverly
• Random initializations are likely to be far from optimal

• Learning procedure can have numerical difficulties if there are a large number of layers
• Early stopping: stop the learning early in the hopes that this prevents overfitting

Drop out: A heuristic bagging-style approach applied to
neural networks to counteract overfitting
• Randomly remove a certain percentage of neurons from

the network and then train only on the remaining neurons
• networks recombined using an approximate averaging
• keeping around too many networks and doing proper

bagging can be costly in practice

CS6375: Machine Learning Neural Networks

19

Parameter Tying

Adapted from slides by Nicholas Ruozzi

Convolutional neural networks
• Instead of the output of every neuron at layer being used as an

input to every neuron at layer , edges between layers are
chosen more locally

• Many tied weights and biases
• convolution nets apply the same process to many different

local chunks of neurons
• Often combined with pooling layers

• layers that replacing small regions of neurons with their
aggregated output

• Used extensively for image classification tasks

Parameter tying: Assume some of the weights
in the model are the same to reduce the
dimensionality of the learning problem;
• Also a way to learn “simpler” models
• Can lead to significant compression in neural

networks (i.e., >90%)

Topological Visualization of a Convolutional Neural Network by
Terence Broad http://terencebroad.com/nnvis.html

CS6375: Machine Learning Neural Networks

20

Activation Functions

CS6375: Machine Learning Neural Networks

21

Example: Self Driving Cars

