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[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017
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First strong results
Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks 
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright 
CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Imagenet classification with deep convolutional 
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012
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A bit of history:

Hubel & Wiesel,
1959
RECEPTIVE FIELDS OF SINGLE 
NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR 
INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968... Cat image by CNX OpenStax is licensed 

under CC BY 4.0; changes made
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A bit of history:
Gradient-based learning applied to 
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

14
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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A bit of history:
ImageNet Classification with Deep 
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

15
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Fast-forward to today: ConvNets are everywhere
Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with 

permission. 
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Fast-forward to today: ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]
Figures copyright Clement Farabet, 2012. 

Reproduced with permission. 
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Fast-forward to today: ConvNets are everywhere

NVIDIA Tesla line
(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup 
would involve NVIDIA Tegras, with integrated 
GPU and ARM-based CPU cores.self-driving cars

Photo by Lane McIntosh. Copyright CS231n 2017.

This image by GBPublic_PR is 

licensed under CC-BY 2.0 
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Fast-forward to today: ConvNets are everywhere

[Taigman et al. 2014]

[Simonyan et al. 2014] Figures copyright Simonyan et al., 2014. 

Reproduced with permission.

Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma McIntosh, 

used with permission. Figure and architecture not from Taigman et al. 2014.

Illustration by Lane McIntosh, 
photos of Katie Cumnock 
used with permission.
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Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,

 and Xiaoshi Wang, 2014. Reproduced with permission. 
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Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

This image by Christin Khan is in the public domain 
and originally came from the U.S. NOAA.

Photo and figure by Lane McIntosh; not actual 
example from Mnih and Hinton, 2010 paper.
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[Vinyals et al., 2015]
[Karpathy and Fei-Fei, 
2015]

Image 
Captioning

No errors Minor errors Somewhat related

A white teddy bear sitting in 
the grass

A man riding a wave on 
top of a surfboard

A man in a baseball 
uniform throwing a ball

A cat sitting on a 
suitcase on the floor

A woman is holding a 
cat in her hand

All images are CC0 Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

A woman standing on a 
beach holding a surfboard



(Goodfellow 2016)

Convolutional Networks
• Scale up neural networks to process very large images / 

video sequences 

• Sparse connections 

• Parameter sharing 

• Automatically generalize across spatial translations of inputs 

• Applicable to any input that is laid out on a grid (1-D, 2-D, 
3-D, …)
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Sparse Connectivity

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3
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Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.
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Sparse 
connections 
due to small 
convolution 

kernel

Dense 
connections

Figure 9.2



(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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(Goodfellow 2016)

Growing Receptive Fields

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.
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g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function
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Convolution 
shares the same 

parameters 
across all spatial 

locations

Traditional 
matrix 

multiplication 
does not share 
any parameters

Figure 9.5



(Goodfellow 2016)

Edge Detection by Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)
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(Goodfellow 2016)

Efficiency of Convolution
Input size: 320 by 280 
Kernel size: 2 by 1 
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

Stored floats 2 319*280*320*280 
> 8e9

2*319*280 = 
178,640

Float muls or 
adds

319*280*3 = 
267,960 > 16e9

Same as 
convolution 
(267,960)



(Goodfellow 2016)

Convolutional Network 
Components

CHAPTER 9. CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:
Affine transform

Detector stage:
Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:
Affine transform 

Detector layer: Nonlinearity
e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left)In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with
each layer having many “stages.” In this terminology, there is a one-to-one mapping
between kernel tensors and network layers. In this book we generally use this terminology.
(Right)In this terminology, the convolutional net is viewed as a larger number of simple
layers; every step of processing is regarded as a layer in its own right. This means that
not every “layer” has parameters.
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Figure 9.7
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Example:  200x200 image
                  40K hidden units

         ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Ranzato
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STATIONARITY? Statistics is similar at 
different locations

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters
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Learn multiple filters.

E.g.: 200x200 image
        100 Filters
        Filter size: 10x10

   10K parameters

Ranzato

Convolutional Layer
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)



Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201732

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



(Goodfellow 2016)

Convolution with Stride
CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s1s1 s2s2

x4x4 x5x5

s3s3

x1x1 x2x2 x3x3

z2z2z1z1 z3z3

x4x4

z4z4

x5x5

z5z5

s1s1 s2s2 s3s3

Strided
convolution

Downsampling

Convolution

Figure 9.12: Convolution with a stride. In this example, we use a stride of two.
(Top)Convolution with a stride length of two implemented in a single operation. (Bot-
tom)Convolution with a stride greater than one pixel is mathematically equivalent to
convolution with unit stride followed by downsampling. Obviously, the two-step approach
involving downsampling is computationally wasteful, because it computes many values
that are then discarded.
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Figure 9.12
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201743

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:



Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201751

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.
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Zero Padding Controls Size
CHAPTER 9. CONVOLUTIONAL NETWORKS

... ...

...

... ...

... ...

... ...

Figure 9.13: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, we do not use any pooling, so
only the convolution operation itself shrinks the network size. (Top)In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,
so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. (Bottom)By adding five implicit zeroes
to each layer, we prevent the representation from shrinking with depth. This allows us to
make an arbitrarily deep convolutional network.
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Figure 9.13

With zero 
padding

Without zero 
padding
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In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0
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Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24
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Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to 
the exact location of the eye?

Pooling Layer

Ranzato
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By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer
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Pooling Layer: Examples

h j
n x , y =max

x∈N x  , y∈N y h j
n−1x ,y

Max-pooling:

h j
n x , y =1/K∑

x∈N  x , y∈N  y
h j
n−1x ,y

Average-pooling:

h j
n x , y =∑x∈N  x , y∈N  y

h j
n−1 x ,y 

2

L2-pooling:

h j
n x , y =∑k∈N  j 

hk
n−1 x , y 2

L2-pooling over features:



(Goodfellow 2016)

Max Pooling and Invariance to 
Translation

CHAPTER 9. CONVOLUTIONAL NETWORKS

0.1 1. 0.2

1.1. 1.

0.1

0.2

... ...

... ...

0.3 0.1 1.

1.0.3 1.

0.2

1.

... ...

... ...

DETECTOR STAGE

POOLING STAGE

POOLING STAGE

DETECTOR STAGE

Figure 9.8: Max pooling introduces invariance. (Top)A view of the middle of the output
of a convolutional layer. The bottom row shows outputs of the nonlinearity. The top
row shows the outputs of max pooling, with a stride of one pixel between pooling regions
and a pooling region width of three pixels. (Bottom)A view of the same network, after
the input has been shifted to the right by one pixel. Every value in the bottom row has
changed, but only half of the values in the top row have changed, because the max pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location.
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(Goodfellow 2016)

Cross-Channel Pooling and Invariance 
to Learned TransformationsCHAPTER 9. CONVOLUTIONAL NETWORKS

Large response
in pooling unit

Large response
in pooling unit

Large
response

in detector
unit 1

Large
response

in detector
unit 3

Figure 9.9: Example of learned invariances: A pooling unit that pools over multiple features
that are learned with separate parameters can learn to be invariant to transformations of
the input. Here we show how a set of three learned filters and a max pooling unit can learn
to become invariant to rotation. All three filters are intended to detect a hand-written 5.
Each filter attempts to match a slightly different orientation of the 5. When a 5 appears in
the input, the corresponding filter will match it and cause a large activation in a detector
unit. The max pooling unit then has a large activation regardless of which detector unit
was activated. We show here how the network processes two different inputs, resulting
in two different detector units being activated. The effect on the pooling unit is roughly
the same either way. This principle is leveraged by maxout networks (Goodfellow et al.,
2013a) and other convolutional networks. Max pooling over spatial positions is naturally
invariant to translation; this multi-channel approach is only necessary for learning other
transformations.

0.1 1. 0.2

1. 0.2

0.1

0.1

0.0 0.1

Figure 9.10: Pooling with downsampling. Here we use max-pooling with a pool width of
three and a stride between pools of two. This reduces the representation size by a factor
of two, which reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included if we do not
want to ignore some of the detector units.
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Figure 9.9
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Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to 
the exact location of the eye?

Pooling Layer

Ranzato
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By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer
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Pooling Layer: Examples

h j
n x , y =max

x∈N x  , y∈N y h j
n−1x ,y

Max-pooling:

h j
n x , y =1/K∑

x∈N  x , y∈N  y
h j
n−1x ,y

Average-pooling:

h j
n x , y =∑x∈N  x , y∈N  y

h j
n−1 x ,y 

2

L2-pooling:

h j
n x , y =∑k∈N  j 

hk
n−1 x , y 2

L2-pooling over features:
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LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Total nr. params: 60M
4M

16M

37M

442K

1.3M

884K

307K

35K

Total nr. flops: 832M
4M

16M

37M

74M

224M

149M

223M

105M

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category 
prediction

input
Ranzato

Architecture for Classification
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Choosing The Architecture

 Task dependent

 Cross-validation

 [Convolution → LCN → pooling]* + fully connected layer 

 The more data: the more layers and the more kernels
Look at the number of parameters at each layer
Look at the number of flops at each layer

 Computational resources

 Be creative :)
Ranzato
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How To Optimize

 SGD (with momentum) usually works very well

 Pick learning rate by running on a subset of the data
Bottou “Stochastic Gradient Tricks” Neural Networks 2012
Start with large learning rate and divide by 2 until loss does not diverge
Decay learning rate by a factor of ~1000 or more by the end of training 

 Use          non-linearity

 Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation.

Ranzato
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Improving Generalization

 Weight sharing (greatly reduce the number of parameters)

 Data augmentation (e.g., jittering, noise injection, etc.)

 Dropout 
Hinton et al. “Improving Nns by preventing co-adaptation of feature detectors” 
arxiv 2012

 Weight decay (L2, L1)

 Sparsity in the hidden units

 Multi-task (unsupervised learning) 

Ranzato
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ConvNets: till 2012

Loss

parameter

Common wisdom: training does not work 
because we “get stuck in local minima”



109

ConvNets: today

Loss

parameter

Local minima are all similar, there are long plateaus, 
it can take long time to break  symmetries.

w w

input/output invariant to permutations

breaking ties
 between parameters

W
T
X

1

Saturating units 

Dauphin et al. “Identifying and attacking the saddle point problem..” arXiv 2014
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ConvNets: today

Loss

parameter

Local minima are all similar, there are long 
plateaus, it can take long to break symmetries.

Optimization is not the real problem when:
– dataset is large
– unit do not saturate too much
– normalization layer
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ConvNets: today

Loss

parameter

Today's belief is that the challenge is about:
– generalization 
   How many training samples to fit 1B parameters?
    How many parameters/samples to model spaces with 1M dim.? 

– scalability
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 Check gradients numerically by finite differences

 Visualize features (feature maps need to be uncorrelated) 
and have high variance.

 Visualize parameters

 Measure error on both training and validation set.

 Test on a small subset of the data and check the error → 0.

Ranzato

Good To Know
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What If It Does Not Work?

 Training diverges:
Learning rate may be too large → decrease learning rate
BPROP is buggy → numerical gradient checking

 Parameters collapse / loss is minimized but accuracy is low
 Check loss function:

Is it appropriate for the task you want to solve?
Does it have degenerate solutions? Check “pull-up” term.

 Network is underperforming
Compute flops and nr. params. →  if too small, make net larger
Visualize hidden units/params → fix optmization

 Network is too slow
Compute flops and nr. params. → GPU,distrib. framework, make 
net smaller 

Ranzato
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SOFTWARE
Torch7: learning library that supports neural net training

http://www.torch.ch
http://code.cogbits.com/wiki/doku.php  (tutorial with demos by C. Farabet)
https://github.com/sermanet/OverFeat

Python-based learning library  (U. Montreal) 

- http://deeplearning.net/software/theano/  (does automatic differentiation)

Caffe (Yangqing Jia)

– http://caffe.berkeleyvision.org

Efficient CUDA kernels for ConvNets  (Krizhevsky) 

– code.google.com/p/cuda-convnet

Ranzato


