CS6375: Machine Learning

Gautam Kunapuli

Convolutional Neural Networks
Slides by lan Goodfellow, Fei-Fei Li, Justin Johnson,
Serena Yeung, Marc'Aurelio Ranzato

D

THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in
Deep Learning

Restricted Boltzmann Machines

30 Decoder
O
_________________________ .
. T,
I)
500 I I
T
Ws Wy
_ T
W3
wi
1000
Wa Wi t
------------------------- W
[__2000units | g
Wy W,
A ~ |
Encoder
Pretraining RBM:-initialized autoencoder Fine-tuning with backprop

Ilustration of Hinton and
Mlntosh, copyright CS231n 2017

Salakhutdinov 2006 by Lane

First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks

for Large Vocabulary Speech Recognition

George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional
neural networks

Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

P

Deep Neural
Network

—

Spectrogram

lustration of Dahi et al. 2012 by Lane Mclntosh, copyright
€5231n 2017

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history:

Hubel & Wiesel,
1959

RECEPTIVE FIELDS OF SINGLE
NEURONES IN
THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR
INTERACTION

AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...

Stimulus

_V
-0

Stimulus

Electrical
signal from
brain

A

L~

Response

R —

Cat image by CNX Openstax s licensed
under CC BY 4.0; changes made

A bit of history:

Gradient-based learning applied to
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input

Col nvo\ tions Fully Connected
Sul bsampl ng

LeNet-5

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

‘. i =h | 3. |
[AR | | Zill \
‘ Ry | e\
| i
Al \ 1 |« ‘
gl 4 |
1

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“‘AlexNet”

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

beach wagon gill fung, indri
gine | dead-man's-fing currant howler monkey

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fast-forward to today: ConvNets are everywhere

Segmentation

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figurescnpyrigh(Clement Farabet, 2012.
permission. o Reproduced with permission. [Farabet et al., 2012]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Fast-forward to today: ConvNets are everywhere

self-driving cars

Photo by Lane Mclntosh. Copyright C5231n 2017.

This image by GBPublic_PR is
licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.

Fast-forward to today: ConvNets are everywhere

‘ h % ‘ ‘)
i

o}
B
4,
g
§a
3, |
& o
1
. E ! : -
Originalimage ~ RGB channels conv3 conv4 -+ mixed3/conv --- mixed10/conv - -+ Softmax

[Taigman et a/ 2014] Activations of inception-v3 architecture [Szegedy et al. 2015] to image of Emma Mclntosh,
used with permission. Figure and architecture not from Taigman et al. 2014.

Spatial stream ConvNet
full? ||softmax|
so06 | 208
stride 2 | stride 1 | stride 1 || stride 1 || dropout || dropout
o ool 22

g
E

conv2 |[conva | [conva |[convs

Temporal stream ConvNet
16 ;“021 [softmax|

convZ |['conv3 | [‘conva |[conv5 |[Tul

] id
stride 2 || stride 1 || sride 1 || stide 1 [aropout |[cropout yoeo
pool 22| pool 2¢2| input

fe1

Hllustration by Lane Mclntosh,
Figures copyright Simonyan et al., 2014. photos of Katie Cumnock

[Simonyan et al. 2014] Reproduced with permission. used with permission.

Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

frame: t-3

“submarine”

enemyrdver

[Guo et al. 2014] Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,
and Xiaoshi Wang, 2014. Reproduced with permission.

nage by Chistin Khan is in the public domain Photo and figure by Lane Mcintosh; not actual
na arinal came fom he U5, NOAA ‘example from Mnih and Hinton, 2010 paper,

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010

No errors

A white teddy bear sitting in
the grass

A man riding a wave on
top of a surfboard

A man in a baseball
uniform throwing a ball

A cat sitting on a
suitcase on the floor

A woman is holding a
cat in her hand

A woman standing on a
beach holding a surfboard

Image
Captioning
[Vinyals et al., 2015]

[Karpathy and Fei-Fei,
2015]

Allimages are CCO Public domain:
hitps:/ipixabay.com/en/l -antique-cat- 1643010/

Captions generated by Justin Johnson using Neuralalk2

Convolutional Networks

e Scale up neural networks to process very large images /
video sequences

e Sparse connections
o Parameter sharing
o Automatically generalize across spatial translations of inputs

e Applicable to any input that is laid out on a grid (1-D, 2-D,
3-D, ...)

(Goodfellow 2016)

Sparse Connectivity

S ON ()
connections

due to small

convolution
kernel ° a G ° °

Dense
connections

(Goodfellow 2016)

Sparse Connectivity

aoJoy-Jogo

connections
due to small

COIlVOhltiOIl ° a 6 a °
kernel

Dense
connections

(Goodfellow 2016)

Growing Receptive Fields

Figure 9.4

Parameter Sharing

Convolution
shares the same

parameters
across all spatial G

locations

Traditional @ @
matrix

multiplication
does not share @ @ @
any parameters

Figure 9 . 5 (Goodfellow 2016)

Edge Detection by Convolution

Output

Figure 9 . 6 (Goodfellow 2016

Efficiency of Convolution

Input size: 320 by 280
Kernel size: 2 by 1
Output size: 319 by 280

Convolution Dense matrix Sparse matrix

319*280%320%280 2*319*280 =

Stored floats

~ 8¢9 178,640
Float muls or ERIEREIEE Same a-s
> 16e9 convolution

adds 267,960
(267,960)

(Goodfellow 2016)

Convolutional Network
Components

Complex layer terminology Simple layer terminology

| Next layer | | Next layer |

f f

Convolutional Layer

Pooling stage Pooling layer

)

Detector layer: Nonlinearity

Detector stage:
Nonlinearity [
. .‘ e.g., rectified linear

ed linear

A A

Convolution stage: Convolution layer:
Affine transform Affine transform
I *

Tnput to layer | | Input to layers

Figure 9.7

(Goodfellow 2016)

Fully Connected Layer

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough N
training samples anyway..

g P yway Ranzaton

Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., i
face recognition). Ranzaton

Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wx —
1) 10 x 3072 1
3072 X /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

CO nVOI Utlon I—ayer Filters always extend the full

. depth of the input volume
32x32x3 image /
/ 5x5x3 filter
32 £
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

|

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
32
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz+b

™~ 1 number:

|

Convolution Layer

activation map

__— 32x32x3 image

/ 5x5x3 filter /
32
@>® convolve (slide) over all

spatial locations
32 28

28

|
-_—

Convolution Layer

7
I

|

32

__— 32x32x3 image

5x5x3 filter
32

convolve (slide) over all
spatial locations

consider a second, green filter

activation maps

y

/A

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

4

32

3

32

Convolution Layer

activation maps

28

28

We stack these up to get a “new image” of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

A A

CONYV,
RelLU

eg.6
5x5x3
32 fiters |} %8

w |
o

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

4

32

w |

32

CONYV,

RelLU
eg.6
5x5x3
filters

A

1L

»

28

CONYV,

RelLU
e.g. 10
5x5x6
filters

A
1L

24

CONV,

RelLU

Convolution with Stride

Stride
convolut

d
fon
Downsampling

Convolution

>

Figure 9.12

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

=> 5x5 output

A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3xa3 filter
applied with stride 2
=> 3x3 output!

A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3xa3 filter
applied with stride 3?

A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3xa3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
7X7 input with stride 3.

Zero Padding Controls Size

Without zero

aero 1N
7N/
Oégggboooddézsgo

000 HH OOOOOOOOOOOOOOLO®

wmhmm)¢é?@%600000000066§®§»
R OO &
000000000
././CLX\)Q D/(!é\. Figure 9.13
000000000

In practice: Common to zero pad the border

0j0j0j9]° e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

oO|lo|o| o| oo

(recall:)
(N - F) / stride + 1

In practice: Common to zero pad the border

0|(0[(0|0|O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

oO|lo|o| o| oo

In practice: Common to zero pad the border

0j0j0j9]° e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

oO|lo|o| o| oo

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

A A A

CONYV, CONYV, CONV,
RelLU RelLU RelLU

e.g.6 e.g. 10
5x5x3 5x5x6
32 filters L] 28 filters L] 24

S
o)
-
o

Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60
Ranzaton

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton

Pooling Layer: Examples
Max-pooling:
h';(x y>:max7ceN(x),j;eN(y)h?‘_l(X) 7)

Average-pooling:
— n—1/_ _
SUKD v ey B (3 7)
L2-pooling:

n _ n—1,/—_ —\2
hj(x’y)_\/zxeN(x),yeN(y) h/ (x’y)

L2-poo|ing over features:

e)= 2)

62
Ranzaton

Max Pooling and Invariance to

Translation

POOLING STAGE

ojoyoyol

Ris o

DETECTOR STAGE

POOLING STAGE

OJONOJ0

V’i'><‘i'><‘i'><‘i‘v

DETECTOR STAGE

Figure 9.8

(Goodfellow 2016)

Cross-Channel Pooling and Invariance
to Learned Transformations

Large response

Large response

in pooling unit in pooling unit

Large

response
in detector
unit 1

Large
response
in detector

unit 3

Figure 9 . 9 (Goodfellow 2016)

Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60
Ranzaton

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton

Pooling Layer: Examples
Max-pooling:
h';(x y>:max7ceN(x),j;eN(y)h?‘_l(X) 7)

Average-pooling:
— n—1/_ _
SUKD v ey B (3 7)
L2-pooling:

n _ n—1,/—_ —\2
hj(x’y)_\/zxeN(x),yeN(y) h/ (x’y)

L2-poo|ing over features:

e)= 2)

62
Ranzaton

Architecture for Classification

category

Total nr. params: 60M *predicﬁon Total nr. flops: 832M
4M | LINEAR | 4M

I

16M | FULLY CONNECTED | 16M

37M | FULLY CONNECTED | 37M
I

| MAX POOLING |

442K | CONV | 74Mm
I

1.3M | CONV | 224Mm

884K | CONV | 149M

I
| MAX POOLING |
LOCAL CONTRAST NORM
307K CONV 223M

I
| MAX POOLING |
| LOCAL CONTRAST NORM |

35K | CONV | 105M

96
inpuyt
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012 Ranzatoﬁ

Choosing The Architecture

= Task dependent
= Cross-validation
s [Convolution — LCN — pooling]* + fully connected layer
= The more data: the more layers and the more kernels
» Look at the number of parameters at each layer
» Look at the number of flops at each layer

= Computational resources

= Be creative :)

105
Ranzaton

How To Optimize
= SGD (with momentum) usually works very well

= Pick learning rate by running on a subset of the data
Bottou “Stochastic Gradient Tricks” Neural Networks 2012

= Start with large learning rate and divide by 2 until loss does not diverge

» Decay learning rate by a factor of ~1000 or more by the end of training

= Use _/ non-linearity

= |nitialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

106
Ranzaton

Improving Generalization
= Weight sharing (greatly reduce the number of parameters)
= Data augmentation (e.g., jittering, noise injection, etc.)

= Dropout
Hinton et al. “Improving Nns by preventing co-adaptation of feature detectors”
arxiv 2012

= Weight decay (L2, L1)
= Sparsity in the hidden units

= Multi-task (unsupervised learning)

107
Ranzaton

ConvNets: till 2012

Common wisdom: training does not work
ALoss because we “get stuck in local minima”

>

parameter

ConvNets: today

Local minima are all similar, there are long plateaus,
ALoss it can take long time to break symmetries.

i A

breaking ties Saturating units
input/output invariant to permutations between parameters

>

Dauphin et al. “Identifying and attacking the saddle point problem..” arXiv 2014 pa rameter

ALoss

ConvNets: today
Local minima are all similar, there are long
plateaus, it can take long to break symmetries.

Optimization is not the real problem when:
— dataset is large

— unit do not saturate too much

— normalization layer

>

parameter

ConvNets: today

Today's belief is that the challenge is about:
A Loss — generalization

How many training samples to fit 1B parameters?
How many parameters/samples to model spaces with 1M dim.?

— scalability

>

parameter

Good To Know

» Check gradients numerically by finite differences

= Visualize features (feature maps need to be uncorrelated)
and have high variance.

» Visualize parameters
» Measure error on both training and validation set.

=« Test on a small subset of the data and check the error — 0.

118
Ranzaton

What If It Does Not Work?

= Training diverges:
= Learning rate may be too large — decrease learning rate
s« BPROP is buggy — numerical gradient checking

= Parameters collapse / loss is minimized but accuracy is low
= Check loss function:
= |s it appropriate for the task you want to solve?
= Does it have degenerate solutions? Check “pull-up” term.

» Network is underperforming
s Compute flops and nr. params. — if too small, make net larger
= Visualize hidden units/params — fix optmization

» Network is too slow
s Compute flops and nr. params. — GPU,distrib. framework, make
net smaller 119

Ranzaton

SOFTWARE

Torch7: learning library that supports neural net training

http://www.torch.ch
http://code.cogbits.com/wiki/doku.php (tutorial with demos by C. Farabet)
https://github.com/sermanet/OverFeat

Python-based learning library (U. Montreal)

- http://deeplearning.net/software/theano/ (does automatic differentiation)

Efficient CUDA kernels for ConvNets (Krizhevsky)

— code.google.com/p/cuda-convnet

Caffe (Yangqing Jia)

— http://caffe.berkeleyvision.org

121
Ranzaton

