
CS6375: Machine Learning
Gautam Kunapuli

Recurrent Neural Networks
Slides by Arun Mallya, Fei-Fei Li, Justin Johnson, Serena Yeung,

LSTM figures and notes by Christopher Olah



Motivation!
•  Not all problems can be converted into one with fixed-

length inputs and outputs!
!

•  Problems such as Speech Recognition or Time-series 
Prediction require a system to store and use context 
information!
–  Simple case: Output YES if the number of 1s is even, else NO!

1000010101 – YES, 100011 – NO, …  !
!

•  Hard/Impossible to choose a fixed context window!
–  There can always be a new sample longer than anything seen!



Recurrent Neural Networks (RNNs)!
•  Recurrent Neural Networks take the previous output or 

hidden states as inputs. !
The composite input at time t has some historical 
information about the happenings at time T < t!

•  RNNs are useful as their intermediate values (state) can 
store information about past inputs for a time that is not 
fixed a priori!

!



Sample Feed-forward Network!

5	  

h1!

y1!

x1!
t = 1!



Sample RNN!

6	  

h1!

y1!

x1!
t = 1!

h2!

y2!

x2!

h3!

y3!

x3!

t = 2!

t = 3!



Input – Output Scenarios!

Single - Single!

Single - Multiple!

Multiple - Single!

Multiple - Multiple!

Feed-forward Network!

Image Captioning!

Sentiment Classification!

Translation!

Image Captioning!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201711

Vanilla Neural Networks

“Vanilla” Neural Network



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201712

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201713

Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentiment



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201714

Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201715

Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level



The Vanilla RNN Cell!

8	  

ht!

 xt!
!
!
ht-1!
!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

W!



The Vanilla RNN Forward!

28	  

h1!

 x1     h0!
!

C1!

y1!

h2!

 x2     h1!
!

C2!

y2!

h3!

 x3     h2!
!

C3!

y3! ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht )
Ct = Loss(yt ,GTt )

“Unfold” network through time by 
making copies at each time-step!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201726

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201727

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201728

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201729

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201730

h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1W

RNN: Computational Graph: Many to One

hT



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201731

h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y3y3



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201732

Sequence to Sequence: Many-to-one + 
one-to-many

h
0

fW
h
1

fW
h
2

fW
h
3

x
3

… 

x
2

x
1

W
1

h
T

Many to one: Encode input 
sequence in a single vector



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201733

Sequence to Sequence: Many-to-one + 
one-to-many

h
0

fW
h
1

fW
h
2

fW
h
3

x
3

… 

x
2

x
1

W
1

h
T

y
1

y
2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW
h
1

fW
h
2

fW

W
2



BackPropagation Through Time 
(BPTT)!

•  One of the methods used to train RNNs!
•  The unfolded network (used during forward pass) is 

treated as one big feed-forward network!
•  This unfolded network accepts the whole time series as 

input!

•  The weight updates are computed for each copy in the 
unfolded network, then summed (or averaged) and then 
applied to the RNN weights!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201741

Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient



The Unfolded Vanilla RNN!

38	  

h1!

 x1        !
!

C1!

y1!

h2!

C2!

y2!

h3!

C3!

y3!

h0!
!

h1!
!

h2!
!

 x2       !
!

 x3       !
!

•  Treat the unfolded network as one 
big feed-forward network!!

•  This big network takes in entire 
sequence as an input!

•  Compute gradients through the 
usual backpropagation!

!
•  Update shared weights!



The Vanilla RNN Backward!

41	  

h1!

 x1     h0!
!

C1!

y1!

h2!

 x2     h1!
!

C2!

y2!

h3!

 x3     h2!
!

C3!

y3!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht )
Ct = Loss(yt ,GTt )

 

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201742

Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201743

Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201744

Truncated Backpropagation through time
Loss



Issues with the Vanilla RNNs!
•  In the same way a product of k real numbers can shrink to 

zero or explode to infinity, so can a product of matrices!

•  It is sufficient for           , where    is the largest singular 
value of W, for the vanishing gradients problem to occur 
and it is necessary for exploding gradients that          , 
where       for the tanh non-linearity and          for the 
sigmoid non-linearity 1!

•  Exploding gradients are often controlled with gradient 
element-wise or norm clipping!

λ1 <1/γ λ1

λ1 >1/γ
γ = 1

1 On the difficulty of training recurrent neural networks, Pascanu et al., 2013!

γ = 1/ 4



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201790

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201791

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201792

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201793

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201794

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201795

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



The Identity Relationship!
•  Recall !

ht = ht−1 + F(xt )

 

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

•  Suppose that instead of a matrix multiplication, we had an 
identity relationship between the hidden states!

•  The gradient does not decay as the error is propagated all 
the way back aka “Constant Error Flow”!

⇒ ∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
= 1

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht )
Ct = Loss(yt ,GTt )



Long Short-Term Memory (LSTM)1!

46	  

•  The LSTM uses this idea of “Constant Error Flow” for 
RNNs to create a “Constant Error Carousel” (CEC) which 
ensures that gradients don’t decay!

•  The key component is a memory cell that acts like an 
accumulator (contains the identity relationship) over time!

•  Instead of computing new state as a matrix product with 
the old state, it rather computes the difference between 
them. Expressivity is the same, but gradients are better 
behaved!

!

1 Long Short-Term Memory, Hochreiter et al., 1997!
!



CS6375: Machine Learning Recurrent Neural Networks

2

Long Short-Term Memory (LSTM) Networks

Figures and notes by Christopher Olah

All recurrent neural networks have the 
form of a chain of repeating modules. 
In standard RNNs, this repeating module 
will have a very simple structure, such 
as a single tanh layer.

LSTMs also have this chain-like 
structure, but the repeating module has 
a different structure. Instead of having a 
single neural network layer, there are 
four gates, interacting in a very special 
way



CS6375: Machine Learning Recurrent Neural Networks

3

Long Short-Term Memory (LSTM) Networks

Figures and notes by Christopher Olah

The LSTM has the ability to add or remove or add information to the cell 
state with structures called gates. Gates are composed out of a sigmoid 
neural net layer and a pointwise multiplication operation.

The key to LSTMs is the cell state, the horizontal 
line running through the top of the diagram.

The cell state is like a conveyor belt. It runs straight 
down the entire chain, with only some minor linear 
interactions. It’s very easy for information to just 
flow along it uninterrupted.



CS6375: Machine Learning Recurrent Neural Networks

4

Forget Gate

Figures and notes by Christopher Olah

The first step in the LSTM cell is to decide what 
information we’re going to throw away from the cell 
state. This decision is made by a sigmoid layer 
called the forget gate layer



CS6375: Machine Learning Recurrent Neural Networks

5

Input Gate

Figures and notes by Christopher Olah

The next step is to decide what new information 
we’re going to store in the cell state. This has two 
parts: the input gate layer decides which values to 
update, the update layer decides how much to 
update them by



CS6375: Machine Learning Recurrent Neural Networks

6

Update the Cell State

Figures and notes by Christopher Olah

Simply combine the outputs of the forget and 
input gates to determine how much information this 
cell adds to or removes from the “carousel”



CS6375: Machine Learning Recurrent Neural Networks

7

Output Gate

Figures and notes by Christopher Olah

This output will be based on our cell 
state, but will be a filtered version. 



Summary!

51	  

•  RNNs allow for processing of variable length inputs and 
outputs by maintaining state information across time steps!

•  Various Input-Output scenarios are possible !
(Single/Multiple)!

•  Vanilla RNNs are improved upon by LSTMs which address 
the vanishing gradient problem through the CEC!

•  Exploding gradients are handled by gradient clipping!

•  More complex architectures are listed in the course 
materials for you to read, understand, and present!

!



Other Useful Resources / References!

52	  

•  http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf !
•  http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf !

•  R. Pascanu, T. Mikolov, and Y. Bengio, 
On the difficulty of training recurrent neural networks, ICML 2013!

•  S. Hochreiter, and J. Schmidhuber, Long short-term memory, Neural computation, 
1997 9(8), pp.1735-1780!

•  F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000!
•  K. Greff , R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber, 

LSTM: A search space odyssey, IEEE transactions on neural networks and learning 
systems, 2016 !

•  K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, 
and Y. Bengio, 
Learning phrase representations using RNN encoder-decoder for statistical machine 
translation, ACL 2014!

•  R. Jozefowicz, W. Zaremba, and I. Sutskever, 
An empirical exploration of recurrent network architectures, JMLR 2015!


