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Motivation!
•  Not all problems can be converted into one with fixed-

length inputs and outputs!
!

•  Problems such as Speech Recognition or Time-series 
Prediction require a system to store and use context 
information!
–  Simple case: Output YES if the number of 1s is even, else NO!

1000010101 – YES, 100011 – NO, …  !
!

•  Hard/Impossible to choose a fixed context window!
–  There can always be a new sample longer than anything seen!



Recurrent Neural Networks (RNNs)!
•  Recurrent Neural Networks take the previous output or 

hidden states as inputs. !
The composite input at time t has some historical 
information about the happenings at time T < t!

•  RNNs are useful as their intermediate values (state) can 
store information about past inputs for a time that is not 
fixed a priori!

!



Sample Feed-forward Network!
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Sample RNN!
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Input – Output Scenarios!

Single - Single!

Single - Multiple!

Multiple - Single!

Multiple - Multiple!

Feed-forward Network!

Image Captioning!

Sentiment Classification!

Translation!

Image Captioning!
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Vanilla Neural Networks

“Vanilla” Neural Network
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. Sentiment Classification
sequence of words -> sentiment
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Recurrent Neural Networks: Process Sequences

e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks: Process Sequences

e.g. Video classification on frame level



The Vanilla RNN Cell!
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The Vanilla RNN Forward!
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yt = F(ht )
Ct = Loss(yt ,GTt )

“Unfold” network through time by 
making copies at each time-step!
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h0 fW h1 fW h2 fW h3

x3

… 

x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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RNN: Computational Graph: Many to Many
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RNN: Computational Graph: Many to One

hT
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Sequence to Sequence: Many-to-one + 
one-to-many
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Many to one: Encode input 
sequence in a single vector
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Sequence to Sequence: Many-to-one + 
one-to-many
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BackPropagation Through Time 
(BPTT)!

•  One of the methods used to train RNNs!
•  The unfolded network (used during forward pass) is 

treated as one big feed-forward network!
•  This unfolded network accepts the whole time series as 

input!

•  The weight updates are computed for each copy in the 
unfolded network, then summed (or averaged) and then 
applied to the RNN weights!
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient



The Unfolded Vanilla RNN!
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•  Treat the unfolded network as one 
big feed-forward network!!

•  This big network takes in entire 
sequence as an input!

•  Compute gradients through the 
usual backpropagation!

!
•  Update shared weights!



The Vanilla RNN Backward!
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps
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Truncated Backpropagation through time
Loss



Issues with the Vanilla RNNs!
•  In the same way a product of k real numbers can shrink to 

zero or explode to infinity, so can a product of matrices!

•  It is sufficient for           , where    is the largest singular 
value of W, for the vanishing gradients problem to occur 
and it is necessary for exploding gradients that          , 
where       for the tanh non-linearity and          for the 
sigmoid non-linearity 1!

•  Exploding gradients are often controlled with gradient 
element-wise or norm clipping!

λ1 <1/γ λ1

λ1 >1/γ
γ = 1

1 On the difficulty of training recurrent neural networks, Pascanu et al., 2013!

γ = 1/ 4
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht 
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013



The Identity Relationship!
•  Recall !

ht = ht−1 + F(xt )
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•  Suppose that instead of a matrix multiplication, we had an 
identity relationship between the hidden states!

•  The gradient does not decay as the error is propagated all 
the way back aka “Constant Error Flow”!

⇒ ∂ht
∂ht−1
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ht = tanhW
xt
ht−1
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yt = F(ht )
Ct = Loss(yt ,GTt )



Long Short-Term Memory (LSTM)1!

46	  

•  The LSTM uses this idea of “Constant Error Flow” for 
RNNs to create a “Constant Error Carousel” (CEC) which 
ensures that gradients don’t decay!

•  The key component is a memory cell that acts like an 
accumulator (contains the identity relationship) over time!

•  Instead of computing new state as a matrix product with 
the old state, it rather computes the difference between 
them. Expressivity is the same, but gradients are better 
behaved!

!

1 Long Short-Term Memory, Hochreiter et al., 1997!
!
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Long Short-Term Memory (LSTM) Networks

Figures and notes by Christopher Olah

All recurrent neural networks have the 
form of a chain of repeating modules. 
In standard RNNs, this repeating module 
will have a very simple structure, such 
as a single tanh layer.

LSTMs also have this chain-like 
structure, but the repeating module has 
a different structure. Instead of having a 
single neural network layer, there are 
four gates, interacting in a very special 
way
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Long Short-Term Memory (LSTM) Networks

Figures and notes by Christopher Olah

The LSTM has the ability to add or remove or add information to the cell 
state with structures called gates. Gates are composed out of a sigmoid 
neural net layer and a pointwise multiplication operation.

The key to LSTMs is the cell state, the horizontal 
line running through the top of the diagram.

The cell state is like a conveyor belt. It runs straight 
down the entire chain, with only some minor linear 
interactions. It’s very easy for information to just 
flow along it uninterrupted.
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Forget Gate

Figures and notes by Christopher Olah

The first step in the LSTM cell is to decide what 
information we’re going to throw away from the cell 
state. This decision is made by a sigmoid layer 
called the forget gate layer
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Input Gate

Figures and notes by Christopher Olah

The next step is to decide what new information 
we’re going to store in the cell state. This has two 
parts: the input gate layer decides which values to 
update, the update layer decides how much to 
update them by
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Update the Cell State

Figures and notes by Christopher Olah

Simply combine the outputs of the forget and 
input gates to determine how much information this 
cell adds to or removes from the “carousel”
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Output Gate

Figures and notes by Christopher Olah

This output will be based on our cell 
state, but will be a filtered version. 



Summary!
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•  RNNs allow for processing of variable length inputs and 
outputs by maintaining state information across time steps!

•  Various Input-Output scenarios are possible !
(Single/Multiple)!

•  Vanilla RNNs are improved upon by LSTMs which address 
the vanishing gradient problem through the CEC!

•  Exploding gradients are handled by gradient clipping!

•  More complex architectures are listed in the course 
materials for you to read, understand, and present!

!



Other Useful Resources / References!
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•  http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf !
•  http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf !

•  R. Pascanu, T. Mikolov, and Y. Bengio, 
On the difficulty of training recurrent neural networks, ICML 2013!

•  S. Hochreiter, and J. Schmidhuber, Long short-term memory, Neural computation, 
1997 9(8), pp.1735-1780!

•  F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000!
•  K. Greff , R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber, 

LSTM: A search space odyssey, IEEE transactions on neural networks and learning 
systems, 2016 !

•  K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, 
and Y. Bengio, 
Learning phrase representations using RNN encoder-decoder for statistical machine 
translation, ACL 2014!

•  R. Jozefowicz, W. Zaremba, and I. Sutskever, 
An empirical exploration of recurrent network architectures, JMLR 2015!


