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Recommender  Systems

A  Common  Challenge:
– Assume  you’re  a  company  
selling  items of  some  sort:  
movies,  songs,  products,  
etc.

– Company  collects  millions  
of  ratings from  users of  
their  items

– To  maximize  profit  /  user  
happiness,  you  want  to  
recommend items  that  
users  are  likely  to  want
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Recommender  Systems
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Recommender  Systems
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Problem  Setup
• 500,000  users
• 20,000  movies
• 100  million  ratings
• Goal:  To  obtain  lower  root  mean  squared  error  

(RMSE)  than  Netflix’s  existing  system  on  3  million  
held  out  ratings  



Recommender  Systems
• Setup:

– Items:  
movies,  songs,  products,  etc.
(often  many  thousands)

– Users:  
watchers,  listeners,  purchasers,  etc.
(often  many  millions)

– Feedback:  
5-­‐star  ratings,  not-­‐clicking  ‘next’,  
purchases,  etc.

• Key  Assumptions:
– Can  represent  ratings  numerically  

as  a  user/item  matrix
– Users  only  rate  a  small  number  of  

items  (the  matrix  is  sparse)

15

D
oc

to
r  

St
ra
ng

e

St
ar
  T
re
k:
  

Be
yo

nd

Zo
ot
op

ia

Alice 1 5

Bob 3 4

Charlie 3 5 2



Two  Types  of  Recommender  Systems

Content  Filtering
• Example:  Pandora.com

music  recommendations  
(Music  Genome  Project)

• Con: Assumes  access  to  
side  information  about  
items  (e.g.  properties  of  a  
song)

• Pro:  Got  a  new  item  to  
add?  No  problem,  just  be  
sure  to  include  the  side  
information

Collaborative  Filtering
• Example:  Netflix movie  

recommendations
• Pro:  Does  not  assume  

access  to  side  information  
about  items  (e.g.  does  not  
need  to  know  about  movie  
genres)

• Con:  Does  not work  on  
new  items  that  have  no  
ratings
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Collaborative  Filtering
• Everyday  Examples  of  Collaborative  Filtering...
– Bestseller  lists
– Top  40  music  lists
– The  “recent  returns”  shelf  at  the  library
– Unmarked  but  well-­‐used  paths  thru  the  woods
– The  printer  room  at  work
– “Read  any  good  books  lately?”
– …

• Common  insight:  personal  tastes  are  correlated
– If  Alice  and  Bob  both  like  X  and  Alice  likes  Y  then  
Bob  is  more  likely  to  like  Y

– especially  (perhaps)  if  Bob  knows  Alice

20
Slide  from  William  Cohen



Two  Types  of  Collaborative  Filtering

1.  Neighborhood  Methods 2.  Latent  Factor  Methods

21
Figures  from  Koren et  al.  (2009)



Two  Types  of  Collaborative  Filtering
1.  Neighborhood  Methods

22

In  the  figure,  assume  that  
a  green  line  indicates  the  
movie  was  watched

Algorithm:
1. Find neighbors based  

on  similarity  of  movie  
preferences

2. Recommendmovies  
that  those  neighbors  
watched

Figures  from  Koren et  al.  (2009)



Two  Types  of  Collaborative  Filtering
2.  Latent  Factor  Methods

23
Figures  from  Koren et  al.  (2009)

• Assume  that  both  
movies  and  users  
live  in  some  low-­‐
dimensional  
space  describing  
their  properties

• Recommend a  
movie  based  on  
its  proximity to  
the  user  in  the  
latent  space



Example:  MF  for  Netflix  Problem

28
Figures  from  Aggarwal  (2016)
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(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix
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(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix



Regression  vs.  Collaborative  Filtering

29

72 CHAPTER 3. MODEL-BASED COLLABORATIVE FILTERING

TRAINING
ROWS

TEST
ROWS

INDEPENDENT
VARIABLES

DEPENDENT
VARIABLE

NO
DEMARCATION

BETWEEN
TRAINING AND
TEST ROWS

NO DEMARCATION BETWEEN DEPENDENT
AND INDEPENDENT VARIABLES

(a) Classification (b) Collaborative filtering

Figure 3.1: Revisiting Figure 1.4 of Chapter 1. Comparing the traditional classification
problem with collaborative filtering. Shaded entries are missing and need to be predicted.

the class variable (or dependent variable). All entries in the first (n− 1) columns are fully
specified, whereas only a subset of the entries in the nth column is specified. Therefore, a
subset of the rows in the matrix is fully specified, and these rows are referred to as the
training data. The remaining rows are referred to as the test data. The values of the missing
entries need to be learned for the test data. This scenario is illustrated in Figure 3.1(a),
where the shaded values represent missing entries in the matrix.

Unlike data classification, any entry in the ratings matrix may be missing, as illustrated
by the shaded entries in Figure 3.1(b). Thus, it can be clearly seen that the matrix com-
pletion problem is a generalization of the classification (or regression modeling) problem.
Therefore, the crucial differences between these two problems may be summarized as follows:

1. In the data classification problem, there is a clear separation between feature (inde-
pendent) variables and class (dependent) variables. In the matrix completion problem,
this clear separation does not exist. Each column is both a dependent and independent
variable, depending on which entries are being considered for predictive modeling at
a given point.

2. In the data classification problem, there is a clear separation between the training
and test data. In the matrix completion problem, this clear demarcation does not
exist among the rows of the matrix. At best, one can consider the specified (observed)
entries to be the training data, and the unspecified (missing) entries to be the test
data.

3. In data classification, columns represent features, and rows represent data instances.
However, in collaborative filtering, it is possible to apply the same approach to ei-
ther the ratings matrix or to its transpose because of how the missing entries are
distributed. For example, user-based neighborhood models can be viewed as direct

Figures  from  Aggarwal  (2016)

Regression Collaborative  Filtering



Matrix  Factorization

• User  vectors:

• Item  vectors:

• Rating  prediction:

33

Figures  from  Koren et  al.  (2009)

H�i � Rr

(Wu�)
T � Rr

Matrix$factorization$as$SGD$V$why$does$
this$work?$$Here’s$the$key$claim:


Figures  from  Gemulla et  al.  (2011)

Vui = Wu�H�i

= [WH]ui

(with  matrices)



Probabilistic	Graphical	Model:
A	view	from	moon

Kayhan	Batmanghelich



Reasoning	under	uncertainty!

Speech	recognition

Information	retrieval

Computer	vision

Robotic	control

Planning

Games

Evolution

Pedigree

7©	Eric	Xing	@	CMU,	2005-2015



So	What	Is	a	PGM	After	All?

• The	informal	blurb:
• It	is	a	smart	way	to	write/specify/compose/design exponentially-large	probability	
distributions	without	paying	an	exponential	cost,	and	at	the	same	time	endow	the	
distributions	with	structured	semantics

• A	more	formal	description:
• It	refers	to	a	family	of	distributions	on	a	set	of	random	variables	that	are	compatible	
with	all	the	probabilistic	independence	propositions	encoded	by	a	graph	that	
connects	these	variables

©	Eric	Xing	@	CMU,	2005-2015

A

C

F

G H

ED

BA

C

F

G H

ED

B A

C

F

G H

ED

BA

C

F

G H

ED

BA

C

F

G H

ED

B

)( 87654321 ,X,X,X,X,X,X,XX P
),()(),(  

)|()|()|()()()(  :

65867436

25242132181

XXXPXXPXXXP
XXPXXPXXXPXPXPXP =

23



l Directed	edges give	causality relationships	(Bayesian	Network	or	
Directed	Graphical	Model):

l Undirected	edges simply	give	correlations between	variables	
(Markov	Random	Field	or	Undirected	Graphical	model):

Two	types	of	GMs

©	Eric	Xing	@	CMU,	2005-2015
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}

24



Structure:	DAG

• Meaning:	a	node	is	conditionally	
independent of	every	other	
node	in	the	network	outside	its	
Markov	blanket

• Local	conditional	distributions	
(CPD)	and	the	DAG completely	
determine	the	joint dist.	

• Give	causality relationships,	and	
facilitate	a	generative process

X

Y1 Y2

Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent
Child

Bayesian	Networks

©	Eric	Xing	@	CMU,	2005-2015 25



Structure:	undirected	graph

• Meaning:	a	node	is	conditionally	
independent of	every	other	node	in	
the	network	given	its	Directed	
neighbors

• Local	contingency	functions	
(potentials)	and	the	cliques	in	the	
graph completely	determine	the	
joint dist.	

• Give	correlations between	variables,	
but	no	explicit	way	to	generate	
samples

X

Y1 Y2

Markov	Random	Fields

©	Eric	Xing	@	CMU,	2005-2015 26



(Picture by Zoubin 
Ghahramani and 
Sam Roweis)

©	Eric	Xing	@	CMU,	2005-2015

An	
(incomplete)	
genealogy	of	

graphical	
models

29



Fancier	GMs:	
reinforcement	learning
• Partially	observed	Markov	decision	processes	(POMDP)

©	Eric	Xing	@	CMU,	2005-2015 32



Fancier	GMs:	
machine	translation

©	Eric	Xing	@	CMU,	2005-2015

SMT

The	HM-BiTAM	model	
(B.	Zhao	and	E.P	Xing,		
ACL	2006) 33



Fancier	GMs:	
genetic	pedigree

©	Eric	Xing	@	CMU,	2005-2015
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An	allele	network
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Fancier	GMs:	
solid	state	physics

©	Eric	Xing	@	CMU,	2005-2015

Ising/Potts	model

35



Application	of	GMs
• Machine	Learning
• Computational	statistics

• Computer	vision	and	graphics
• Natural	language	processing	
• Informational	retrieval
• Robotic	control	
• Decision	making	under	uncertainty
• Error-control	codes
• Computational	biology
• Genetics	and	medical	diagnosis/prognosis
• Finance	and	economics
• Etc.

©	Eric	Xing	@	CMU,	2005-2015 36



Why	graphical	models

• A	language	for	communication
• A	language	for	computation
• A	language	for	development

• Origins:	
• Wright	1920’s
• Independently	developed	by	Spiegelhalter	and	Lauritzen	in	statistics	and	Pearl	
in	computer	science	in	the	late	1980’s

©	Eric	Xing	@	CMU,	2005-2015 37



l Probability	theory provides	the	glue whereby	the	parts	are	combined,	ensuring	that	
the	system	as	a	whole	is	consistent,	and	providing	ways	to	interface	models	to	data.	

l The	graph	theoretic side	of	graphical	models	provides	both	an	intuitively	appealing	
interface	by	which	humans	can	model	highly-interacting	sets	of	variables	as	well	as	a	
data	structure	that	lends	itself	naturally	to	the	design	of	efficient	general-purpose	
algorithms.	

l Many	of	the	classical	multivariate	probabilistic	systems studied	in	fields	such	as	
statistics,	systems	engineering,	information	theory,	pattern	recognition	and	
statistical	mechanics	are	special	cases	of	the	general	graphical	model	formalism

l The	graphical	model	framework	provides	a	way	to	view	all	of	these	systems	as	
instances	of	a	common	underlying	formalism.	

--- M.	Jordan

Why	graphical	models

©	Eric	Xing	@	CMU,	2005-2015 38



Representation Learning 
on Networks

Jure Leskovec, William L. Hamilton, Rex Ying, Rok Sosic
Stanford University

1Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Why networks?
Networks are a general 
language for describing 
and modeling complex 

systems

2Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Network!
4Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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Economic networksSocial networks

Networks of neuronsInformation networks: 
Web & citations

Biomedical networks

Internet

Many Data are Networks

A B

C

Figure 3: Higher-order cluster in the C. elegans neuronal network (28). A: The 4-node
“bi-fan” motif, which is over-expressed in the neuronal networks (1). Intuitively, this motif
describes a cooperative propagation of information from the nodes on the left to the nodes on
the right. B: The best higher-order cluster in the C. elegans frontal neuronal network based on
the motif in (A). The cluster contains three ring motor neurons (RMEL/V/R; cyan) with many
outgoing connections, serving as the source of information; six inner labial sensory neurons
(IL2DL/VR/R/DR/VL; orange) with many incoming connections, serving as the destination of
information; and four URA neurons (purple) acting as intermediaries. These RME neurons have
been proposed as pioneers for the nerve ring (20), while the IL2 neurons are known regulators of
nictation (21), and the higher-order cluster exposes their organization. The cluster also reveals
that RIH serves as a critical intermediary of information processing. This neuron has incoming
links from all three RME neurons, outgoing connections to five of the six IL2 neurons, and the
largest total number of connections of any neuron in the cluster. C: Illustration of the higher-
order cluster in the context of the entire network. Node locations are the true two-dimensional
spatial embedding of the neurons. Most information flows from left to right, and we see that
RME/V/R/L and RIH serve as sources of information to the neurons on the right.

9

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Why Networks? Why Now?
§ Universal language for describing complex 

data
§ Networks from science, nature, and technology 

are more similar than one would expect 
§ Shared vocabulary between fields

§ Computer Science, Social science, Physics, 
Economics, Statistics, Biology

§ Data availability (+computational challenges)
§ Web/mobile, bio, health, and medical

§ Impact!
§ Social networking, Social media, Drug design

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 6



Machine Learning with Networks
Classical ML tasks in networks:
§ Node classification

§ Predict a type of a given node
§ Link prediction

§ Predict whether two nodes are linked
§ Community detection

§ Identify densely linked clusters of nodes
§ Network similarity

§ How similar are two (sub)networks
Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 7



Example: Node Classification

? ?

?
?

?
Machine 
Learning

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 8



Example: Node Classification

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 9

Classifying the 
function of 

proteins in the 
interactome!

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel 
protein–protein interactions. Nature.



Example: Link Prediction

Machine 
Learning

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 10
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Example: Link Prediction

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 11

Content 
recommendation 
is link prediction! ?



Feature Learning in Graphs
Goal: Efficient task-independent 

feature learning for machine learning 
in networks!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 13

vecnode 2

𝑓: 𝑢 → ℝ&

ℝ&
Feature representation, 

embedding

u



Example

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 14

OutputInput

A B

§ Zachary’s Karate Club Network:

Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social 
Representations. KDD.



Why Is It Hard?
§ Modern deep learning toolbox is 

designed for simple sequences or grids.
§ CNNs for fixed-size images/grids….

§ RNNs or word2vec for text/sequences…

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 15



Why Is It Hard?
§ But networks are far more complex!

§ Complex topographical structure               
(i.e., no spatial locality like grids)

§ No fixed node ordering or reference point  
(i.e., the isomorphism problem)

§ Often dynamic and have multimodal features.
Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 16



Application: Pinterest

Representation Learning on Networks, 
snap.stanford.edu/proj/embeddings-www, WWW 

2018
7

Human curated collection of pins
Pins: Visual bookmarks someone 
has saved from the internet to a 
board they’ve created.
Pin features: Image, text, link

Boards
Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 7



Application: Pinterest

§ Challenges: 
§ Massive size: 3 billion pins and boards,16 billion interactions
§ Heterogeneous data: Rich image and text features

Task: Recommend related pins to users.

Source pin

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 8



Zhiwei (Tony)	QIN Jian	TANG Jieping	YE
DiDi AI	Labs

DiDi Labs

DiDi AI	Labs

Syracuse	University

DiDi AI	Labs

Univ.	of	Michigan,	Ann	Arbor



n Problem
• Agent	interacts	with	environment
• Executes	an	action	based	on	its	state	at	each	step
• Receives	a	reward	from	environment

• Want	to	find	an	optimal	policy	𝜋∗ to	achieve	
maximum	cumulative	rewards	in	the	long	run.

n Different	from	the	other	paradigms
• No	supervision	on	long-term	reward,	only	
immediate	feedback
• Feedback	is	often	delayed
• Sequential	decisions
• Agent’s	action	affects	subsequent	data	received

Reinforcement	Learning



n Success	stories
• Chess,	Board	game:	AlphaGo,	AlphaZero
• Atari	games:	DQN
• Robotics

The	Rise	of	RL

nMore	applications
• Transportation
• Recommendation	system
• Industrial	control
• Education
• …



n Planning	a	route	for	a	trip	on	map
• Distance,	traffic
• Road	network	known
• Shortest	travel	time,	avoid	congestion

Route	Planning
n Planning	a	route	for	robot	navigation
• With	or	without	map
• Perception	as	input



n Background
• Traffic	lights	control	traffic	flow	at	intersections.	
• Affects	throughput,	delay,	waiting	time,	etc

n Traditional	methods
• Fixed-time	intervals	for	red-yellow-green
• Traffic	model-based	methods

n Road	network
• Multiple	intersections:	control	at	one	
intersection	has	impact	on	neighboring	
intersections.

Traffic	Signals	Control



Improving	Traffic	Conditions	in	over	20	cities



n Framework
• Perception:	visual	&	sensory	signals
• Planning:	behavior	planning,	motion	planning
• Control:	path	tracking

n Challenges
• Complexity	of	the	environment:	color,	shape	of	
objects,	type	of	objects,	background,	viewpoint,	…
• Smooth	control	is	hard,	e.g.	smooth	turning
• Control	has	to	adapt	to	fast	changes	in	
environment
• Strict	safety	requirement

Autonomous	Vehicle	Control

Pendleton	et	al.,	2017
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Reinforcement Learning
Supervised learning: Given labeled data ௜ ௜

, learn a function 
• Categorical : classification
• Continuous : regression

Rich feedback from the environment: the learner is told 
exactly what it should have done

Unsupervised learning: Given unlabeled data ௜

, can we infer the underlying structure?
• Clustering
• dimensionality reduction, 
• density estimation

No feedback from the environment: the learner 
receives no labels or any other information

Reinforcement Learning is learning from Interaction: 
learner (agent) receives feedback about the appropriateness 

of its actions while interacting with an environment, which 
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

environment

agent
actionreward

new state
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Example: Grid World
Example: Learn to navigate from beginning/start state 

(S) to goal state (G), while avoiding obstacles

Image from Fang et al., https://arxiv.org/abs/1802.03248

Actions Effects

(right) (60%), (40%)

(up) (100%)

(left) (100%)

(down) (70%), (30%)

actions are what the agent 
actually wants to do

effects are what actually 
happens after the agent 
executes the chosen action

S

G

Autonomous “agent” interacts with an environment
through a series of actions
• trying to find the way through a maze
• actions include turning and moving through maze
• agent earns rewards from the environment under 
certain (perhaps unknown) conditions

The agent’s goal is to maximize the reward
• we say that the agent learns if, over time, it 
improves its performance

Adapted from slides by Nicholas Ruozzi
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Applications of Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Schulman et al (2016)

Robot Locomotion (and other control problems)

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung

Atari Games



CS6375: Machine Learning Reinforcement Learning

5

Applications of Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung; David Sontag

Go!

Treatment Planning
Objective: Find the best treatment policy

State: Patient health data every 6 months
Action: Clinical interventions and treatment
Reward: negative rewards for deterioration
positive rewards for improvement
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Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Adapted from slides by Peter Bodik

Other examples
• pole-balancing
•TD-Gammon [Gerry Tesauro]
• helicopter [Andrew Ng]

General challenge: no teacher who would say “good” or “bad”
• is reward “10” good or bad?
• rewards could be delayed
• similar to control theory

•more general, fewer constraints
• explore the environment and learn from experience

• not just blind search, try to be smart about it


