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Recommender Systems

A Common Challenge:

— Assume you’re a company
selling items of some sort:
movies, songs, products,
etc.

— Company collects millions
of ratings from users of
their items

— To maximize profit / user
happiness, you want to
recommend items that
users are likely to want



Recommender Systems
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Recommender Systems

Netflix Prize

Home Rules Leaderboard Update
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Recommender Systems

* Setup:
— ltems:
movies, songs, products, etc.
(often many thousands)
— Users:
watchers, listeners, purchasers, etc.
(often many millions)
— Feedback:
5-star ratings, not-clicking ‘next’,
purchases, etc.
* Key Assumptions:

— Canrepresent ratings numerically
as a user/item matrix

— Users only rate a small number of
items (the matrix is sparse)
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Two Types of Recommender Systems

Content Filtering Collaborative Filtering

* Example: Pandora.com * Example: Netflix movie

music recommendations
(Music Genome Project)

Con: Assumes access to
about
items (e.g. properties of a
song)
Pro: Got a new item to
add? No problem, just be
sure to include the side
information

recommendations

Pro: Does not assume
access to

about items (e.g. does not
need to know about movie
genres)

Con: Does not work on
new items that have no
ratings



Collaborative Filtering

* Everyday Examples of Collaborative Filtering...
— Bestseller lists
— Top 40 music lists
— The “recent returns” shelf at the library
— Unmarked but well-used paths thru the woods
— The printer room at work
— ““Read any good books lately?”
¢ Common insight: personal tastes are correlated

— If Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y

— especially (perhaps) if Bob knows Alice

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods

Figures from Koren et al. (2009)

2. Latent Factor Methods
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Two Types of Collaborative Filtering
1. Neighborhood Methods

Figures from Koren et al. (2009)

In the figure, assume that
a green line indicates the
movie was watched

Algorithm:

1. Find neighbors based
on similarity of movie
preferences

2. Recommend movies
that those neighbors
watched



Two Types of Collaborative Filtering

2. Latent Factor Methods

* Assume that both
movies and users
live in some low-
dimensional
space describing
their properties

* Recommend a
movie based on
its proximity to
the user in the
latent space

Figures from Koren et al. (2009)
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MF for Netflix Problem

Example
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(a) Example of rank-2 matrix factorization

Figures from Aggarwal (2016)



Regression vs. Collaborative Filtering

Regression Collaborative Filtering
TRAINING
ROWS
NO
DEMARCATION
BETWEEN
TRAINING AND
TEST ROWS
TEST
ROWS

— |
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

Figures from Aggarwal (2016)



Matrix Factorization

(with matrices)
* User vectors:

(Wae)T € R

* |tem vectors:

H*@' e R"
* Rating prediction:

Figures from Koren et al. (2009)
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Probabilistic Graphical Model:
A view from moon

Kayhan Batmanghelich



Reasoning under uncertainty!
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© Eric Xing @ CMU, 2005-2015Planning



So What Is a PGM After All?

* The informal blurb:
* Itis a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with

o3
—)
[
P(X. X5, X3,X 4, X5, X6,X7.Xg) P(X1g) = P(X;)P(X,)P(X5 | X X,)P(X, | X,)P(X5 | Xy)
* A more formal description: PG X PG| X P(Xol X, Xo)

* It refers to a family of distributions on a set of random variables that are compatible
with all the probabilistic independence propositions encoded by a graph that
connects these variables

© Eric Xing @ CMU, 2005-2015



Two types of GMs

e Directed edges give causality relationships (Bayesian Network or
Directed Graphical Model):

PX}, X, X5, Xy X, X X7 Xo)

= P(X)) P(X;) P(X;| X)) PX,| X;) P(X5| X5)
P(Xﬁ‘ Xi' X4) P(X/" Xﬁ) P(X?{‘ Xf' Xé)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

PX, X, X, Xy X5, X X5, Xy)

= 1/Z exp{E(X))+E(X)+E(X;, X))TEX, X5)+EX; X;)
+EXy Xy, X)HEWX, X)tE(Xy X5, X))

© Eric Xing @ CMU, 2005-2015
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Bayesian Networks

Structure: DAG

* Meaning: a node is conditionally
independent of every other
node in the network outside its
Markov blanket

e Local conditional distributions
(CPD) and the DAG completely
determine the joint dist.

¢ Give causality relationships, and
facilitate a generative process

© Eric Xing @ CMU, 2005-2015



Markov Random Fields

Structure: undirected graph

* Meaning: a node is conditionally
independent of every other node in
the network given its Directed
neighbors

Local contingency functions
(potentials) and the cliques in the
graph completely determine the
joint dist.

Give correlations between variables,
but no explicit way to generate
samples

© Eric Xing @ CMU, 2005-2015
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Fancier GMs:
reinforcement learning

* Partially observed Markov decision processes (POMDP)

WL LY

X X,

PEEBT

© Eric Xing @ CMU, 2005-28
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Fancier GMs:
machine translation
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The HM-BIiTAM model
(B. Zhao and E.P Xing,
ACL 2006)

33



Fancier GMs:
genetic pedigree
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An allele network

© Eric Xing @ CMU, 2005-2015 34



Fancier GMs:
solid state physics

Ising/Potts model



Application of GMs

* Machine Learning
* Computational statistics

* Computer vision and graphics

* Natural language processing

« Informational retrieval

* Robotic control

« Decision making under uncertainty
 Error-control codes

« Computational biology

* Genetics and medical diagnosis/prognosis
* Finance and economics

* Etc.

© Eric Xing @ CMU, 200




Why graphical models

* A language for communication
* A language for computation
* Alanguage for development

* Origins:
* Wright 1920’s
* Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl
in computer science in the late 1980’s

© Eric Xing @ CMU, 2005-2015



Why graphical models

Probability theory provides the glue whereby the parts are combined, ensuring that
the system as a whole is consistent, and providing ways to interface models to data.

The graph theoretic side of graphical models provides both an intuitively appealing
interface by which humans can model highly-interacting sets of variables as well as a
data structure that lends itself naturally to the design of efficient general-purpose
algorithms.

Many of the classical multivariate probabilistic systems studied in fields such as
statistics, systems engineering, information theory, pattern recognition and
statistical mechanics are special cases of the general graphical model formalism

The graphical model framework provides a way to view all of these systems as
instances of a common underlying formalism.

© Eric Xing @ CMU, 2005-2015 --- M. Jordan
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Representation Learning
on Networks

Jure Leskovec, William L. Hamilton, Rex Ying, Rok Sosic
Stanford University

works, snap.stanford.edu/proj/embeddings-www, WWW 2018



Why networks?

Networks are a general

language for describing

and modeling complex
systems



Network!



Many Data are Networks
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Economic networks

Information networks:
Web & citations

Representation Leaming on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 5

Internet Networks of neurons



Why Networks? Why Now?

= Universal language for describing complex
data

= Networks from science, nature, and technology
are more similar than one would expect

= Shared vocabulary between fields

= Computer Science, Social science, Physics,
Economics, Statistics, Biology

= Data availability (+computational challenges)
= Web/mobile, bio, health, and medical

= |mpact!
= Social networking, Social media, Drug design

Representation Leaming on Networks, snap.stanford.edu/proj/embec v, WWW 2018




Machine Learning with Networks

Classical ML tasks in networks:
Node classification

» Predict a type of a given node
Link prediction

= Predict whether two nodes are linked
Community detection

= |dentify densely linked clusters of nodes

Network similarity
= How similar are two (sub)networks



Example: Node Classification




Example: Node Classification
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel
protein—protein interactions. Nature.
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Example: Link Prediction
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Example: Link Prediction

Content
recommendation
is link prediction!
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Feature Learning in Graphs

Goal: Efficient task-independent
feature learning for machine learning
in networks!

node o vec
- — NN
ffu-R N v J
]Rd
O Feature representation,

embedding

Representation Leaming on Networks, snap.stanford.edu/proj/embeddings-ww



Example
= Zachary’s Karate Club Network:
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Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social
Representations. KDD.

Representation Leaming on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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Why Is It Hard?

» Modern deep learning toolbox is
designed for simple sequences or grids.

= CNNs for fixed-size images/grids....

= RNNs or word2vec for text/sequences...

®
2 1IN
~®



Why Is It Hard?

= But networks are far more complex!

= Complex topographical structure
(i.e., no spatial locality like grids)

= No fixed node ordering or reference point
(i.e., the isomorphism problem)

= Often dynamic and have multimodal features.



Application: Pinterest

Human curated collection of pins

Pins: Visual bookmarks someone
has saved fromthe intemet to a
oard they’ve created.

Pin features: Image, text, link

Boards

Representation Leamina on Networks. snap.stanford.edu/proi/embeddinas -www. WWW 2018 7



Application: Pinterest

Task: Recommend related pins to users.

TS -
1 ) D
LI SUGCESSFUL
>. ‘ b RECOMMENDATION
Source pin

BAD RECOMMENDATION

» Challenges:
= Massive size: 3 billion pins and boards, 16 billion interactions
= Heterogeneous data: Rich image and text features

Representation Leamina on Networks. snap.stanford.edu/oroi/embeddinas-www. WWW 2018 8
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Deep Reinforcement Learning with
Applications in Transportation

Zhiwei (Tony) QIN JianTANG Jieping YE
DiDi Al Labs DiDi Al Labs DiDi Al Labs
DiDi Labs Syracuse University Univ. of Michigan, Ann Arbor
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UNIVERSITY OF
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Reinforcement Learning

® Problem

- Agent interacts with environment
- Executes an action based on its state at each step

Environment

* Receives a reward from environment

- Want to find an optimal policy ™ to achieve
maximum cumulative rewards in the long run.

State, Reward Action
m Different from the other paradigms
 No supervision on long-term reward, only \!_:',J
immediate feedback -
- Feedback is often delayed Agent

- Sequential decisions
- Agent’s action affects subsequent data received



The Rise of RL

m Success stories
+ Chess, Board game: AlphaGo, AlphaZero
- Atari games: DQN
- Robotics

diagnosis ~ recommendation traffic signal  decision
mes  control

pricing, tradin
portfolio opt.
risk mgmt

e-commerce, OR
customer mgmt

deep reinforcement leaming

maths, physics
hemistry, music
awing, animation

topics in
computer
science

Go, poker  sim-to-real  recognition  seq. gen
Dota, bridge  co-robot  detection _translation
Starcraft control  perception dialog, QA,IE,IR

Yuxi Li, Deep Reinforcement Learning, arXiv, 2018

® More applications
Transportation
Recommendation system

Industrial control
Education



Route Planning

B Planning a route for a trip on map ® Planning a route for robot navigation
- Distance, traffic = With or without map
 Road network known - Perception as input
- Shortest travel time, avoid congestion




Traffic Signals Control

® Background
- Traffic lights control traffic flow at intersections.
- Affects throughput, delay, waiting time, etc

m Traditional methods
- Fixed-time intervals for red-yellow-green
« Traffic model-based methods

m Road network

» Multipleintersections: control at one
intersection has impact on neighboring
intersections. .




Improving Traffic Conditions in over 20 cities

Jinan
Wuhan Smart Traffic Lights: 340+
Smart Traffic Lights: 170+ Variable Message Signs: 82
Variable Message Signs: 11
()
* [ ]
[ Nanjin
Chengdu O SmanJTrafgﬁc Lights: 18
Smart Traffic Lights: 120+ L} ® G5
® °
L
o
Shenzhen O ° - Suzhou
Smart Traffic Lights: 10 ° : Smart Traffic Lights: 160+
Variable Message Signs: 2 O [ ]
O [J
3 : Guangzhou

Smart Traffic Lights: 110+




Autonomous Vehicle Control

B Environmental

Framework ey i

+ Perception: visual & sensory signals 7 [P

+ Planning: behavior planning, motion planning ] z _ JE P
. £ vav Data—>  Planning Behavioral Planning

- Control: path tracking £ \ hetn g

= arget Actions

® Challenges !

< Actuators  <conmuni—  Control | _ —
+ Complexity of the environment: color, shape of P — S

objects, type of objects, background, viewpoint, ...
» Smooth control is hard, e.g. smooth turning

- Control has to adapt to fast changes in
environment

Pendleton et al., 2017

« Strict safety requirement
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CS6375: Machine Learning Reinforcement Learning

Reinforcement Learning

Supervised learning: Given labeled data (x;, ;),i = Unsupervised learning: Given unlabeled data x;,
1,...,n,leamafunctionf : x -y i = 1,...,n, can we infer the underlying structure?
+ Categorical y : classification + Clustering
+ Continuous y : regression + dimensionality reduction,

+ density estimation

Rich feedback from the environment: the learner is told
exactly what it should have done No feedback from the environment: the learner
receives no labels or any other information

Reinforcement Learning is learning from Interaction:
learner (agent) receives feedback about the appropriateness
of its actions while interacting with an environment, which
provides numeric reward signals

environmen

reward
new state

action

agent

: Learn how to take actions in order to maximize reward

HE UNIVERSITY OF TEXAS AT DALLAS
UfD Erik Jonsson Sehool of Engineering and Computer Science 2



C86375: Machine Learning

Image from Fang et al., https://arxiv.org/abs/1802.0324&Reinforcement Learning

Example: Grid World

Autonomous “agent” interacts with an environment
through a series of actions

Example: Learn to navigate from beginning/start state * trying to find the way through a maze

(S) to goal state (G), while avoiding obstacles

x

o
R

+ actions include turning and moving through maze
+ agent earns rewards from the environment under
certain (perhaps unknown) conditions

The agent’s goal is to maximize the reward
+ we say that the agent learns if, over time, it
improves its performance

actions are what the agent effects are what actually
actually wants to do happens after the agent
executes the chosen action
Actions Effects
= (right) = (60%), \(40%)
ANup) AN(100%)
€ (left) €(100%)

W (down) W(70%), €(30%)

HE UNIVERSITY OF TEXAS AT DALLAS
I]lb Erik Jonsson School of Engineering and Computer Science

Adapted from slides by Nicholas Ruozzi 3



CS6375: Machine Leaming Image from Fang et al., https:/arxiv.org/abs/1802.0324®Reinforcement Learning

Applications of Reinforcement Learning

Robot Locomotion (and other control problems)
Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Schulman et al (2016)

Atari Games
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

mf) Erik Jonsson School of Engineering and Computer Science Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung 4
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Image from Fang et al., https://arxiv.org/abs/1802.0324&Reinforcement Learning

Applications of Reinforcement Learning
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Treatment Planning
Objective: Find the best treatment policy

Go!

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

Health
interventions
/ treatments

Prescribe insulin and

Prescribe statin

Metformin

i m—
A A

State: Patient health data every 6 months ~ "°**¢ | ¢] > LM —> - —

Action: Clinical interventions and treatment — . L

Reward: negative rewards for deterioration How t°v°pt' mlze'the treatment po"sy? |

pOSitive rewards fOI' improvement What the n Blood pressure = 135 Blood pressure = 150
health : Temperature = 99°F WBC count = 6.8*10%

system sees

Temperature = 98°F
Alc=77%
ICD9 = Diabetes

D

THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering and Computer Science

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung; David Sontag 5
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Reinforcement Learning

Other examples

« pole-balancing

« TD-Gammon [Gerry Tesauro]
« helicopter [Andrew Ng]

Image from Fang et al., https://arxiv.org/abs/1802.0324&Reinforcement Learning

General challenge: no teacher who would say “good” or “bad” —l |—
«is reward “10” good or bad?
«rewards could be delayed
« similar to control theory
* more general, fewer constraints
* explore the environment and learn from experience
+not just blind search, try to be smart about it

THE UNIVERSITY OF TEXAS AT DALLAS ) '
mﬁ Erik Jonsson School of Engineering and Computer Science Adapted from slides by Peter Bodik 6



