
CS6375: Machine Learning
Gautam Kunapuli

Reinforcement Learning

CS6375: Machine Learning Reinforcement Learning

2

Reinforcement Learning
Supervised learning: Given labeled data

, learn a function
• Categorical : classification
• Continuous : regression

Rich feedback from the environment: the learner is told
exactly what it should have done

Unsupervised learning: Given unlabeled data

, can we infer the underlying structure?
• Clustering
• dimensionality reduction,
• density estimation

No feedback from the environment: the learner
receives no labels or any other information

Reinforcement Learning is learning from Interaction:
learner (agent) receives feedback about the appropriateness

of its actions while interacting with an environment, which
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

environment

agent
actionreward

new state

CS6375: Machine Learning Reinforcement Learning

3

Reinforcement Learning: Key Features

Reinforcement Learning is learning from Interaction:
learner (agent) receives feedback about the appropriateness

of its actions while interacting with an environment, which
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

environment

agent
actionreward

new state

• The learner is not told what actions to take, instead it find finds out what to do
by trial-and-error search and acting in the world
• e.g.: players trained by playing thousands of simulated games, with no

expert input on what are good or bad moves
• The environment is stochastic
• The reward may be delayed, so the learner may need to sacrifice short-term

gains for greater long-term gains
• e.g.: a player might get reward only at the end of the game, and needs to

assign credit to moves along the way
• The learner has to balance the need to explore its environment and the need to

exploit its current knowledge
• e.g.: one has to try new strategies but also to win games

CS6375: Machine Learning Reinforcement Learning

4

Example: Grid World
Example: Learn to navigate from beginning/start state

(S) to goal state (G), while avoiding obstacles

Image from Fang et al., https://arxiv.org/abs/1802.03248

Actions Effects

(right) (60%), (40%)

(up) (100%)

(left) (100%)

(down) (70%), (30%)

actions are what the agent
actually wants to do

effects are what actually
happens after the agent
executes the chosen action;
note that these are stochastic

S

G

Autonomous “agent” interacts with an environment
through a series of actions
• trying to find the way through a maze
• actions include turning and moving through maze
• agent earns rewards from the environment under
certain (perhaps unknown) conditions

The agent’s goal is to maximize the reward
• we say that the agent learns if, over time, it
improves its performance

Adapted from slides by Nicholas Ruozzi

CS6375: Machine Learning Reinforcement Learning

5

Applications of Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Schulman et al (2016)

Robot Locomotion (and other control problems)

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung

Atari Games

CS6375: Machine Learning Reinforcement Learning

6

Applications of Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung; David Sontag

Go!

Treatment Planning
Objective: Find the best treatment policy

State: Patient health data every 6 months
Action: Clinical interventions and treatment
Reward: negative rewards for deterioration
positive rewards for improvement

CS6375: Machine Learning Reinforcement Learning

7

Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Adapted from slides by Peter Bodik

Other examples
• pole-balancing
•TD-Gammon [Gerry Tesauro]
• helicopter [Andrew Ng]

General challenge: no teacher who would say “good” or “bad”
• is reward “10” good or bad?
• rewards could be delayed
• similar to control theory

•more general, fewer constraints
• explore the environment and learn from experience

• not just blind search, try to be smart about it

CS6375: Machine Learning Reinforcement Learning

• states

• actions

• rewards

• What is the solution? What does the agent learn?

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Adapted from slides by Peter Bodik

Robot in a room

CS6375: Machine Learning Reinforcement Learning

• only if actions are deterministic
• this path is a plan
• not guaranteed to work as actions are stochastic (actions have probabilistic effects)

• we need a policy
• mapping from each state to an action
• agent tries to learn an optimal policy; but optimal in terms of what?

+1

-1

Adapted from slides by Peter Bodik

Is This A Solution?

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Optimal Policy

The optimal policy will change with the kind of
rewards the agent receives at each episode!

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -2.0

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -0.1

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -0.04

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -0.01

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: +0.01

CS6375: Machine Learning Reinforcement Learning

16

Formalizing RL: The Agent-Environment Interface

Agent and environment interact at discrete time steps: t 0, 1, 2,K

 Agent observes state at step t: st S

 produces action at step t : at A(st)

 gets resulting reward: rt1
 and resulting next state: st1

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

17

Formalizing RL: Markov Decision Processes
• set of states , set of actions , initial state 0

• for grid world, can be cell coordinates
• transition model

•
• reward function

•
•goal: maximize cumulative reward in the long run
•policy: mapping from to

• or (deterministic vs. stochastic)
•discount factor

Reinforcement Learning
• transitions and rewards usually not available
• how to change the policy based on experience
• how to explore the environment

𝟎

[0,0] [1,0] [2,0] [3,0]

[0,1] [1,1] [2,1] [3,1]

[0,2] [1,2] [2,2] [3,2]

[0,3] [1,3] [2,3] [3,3]

[0,4] [1,4] [2,4] [3,4]

Actions Transition Probabilities

(right) (60%), (40%)

(up) (100%)

(left) (100%)

(down) (70%), (30%)

CS6375: Machine Learning Reinforcement Learning

18

Formalizing RL: The Markov Property
•“the state” at step t, means whatever information is

available to the agent at step t about its environment –
snapshot of the world
• the state can include immediate “sensations”, highly

processed observations, and structures built up over
time from sequences of observations
• ideally, a state should summarize past sensations so as

to retain all “essential” information, i.e., it should
have the Markov Property:

• conditional probability distribution of future states
depends only upon the present state, not on the
sequence of events that preceded it

𝟎

[2,1]

[2,2]

Pr st 1 s ,rt 1 r st ,at ,rt , st1,at1,K ,r1, s0 ,a0
 Pr st 1 s ,rt 1 r st ,at
for all s , r, and histories st ,at ,rt , st1,at1,K ,r1, s0 ,a0 .

CS6375: Machine Learning Reinforcement Learning

19

Formalizing RL: Rewards and Policy

A policy or is the prescription by which the
agent selects an action to perform
• Deterministic: the agent observes the state of the

system and chooses an action
• Stochastic: the agent observes the state of the

system and then selects an action, at random, from
some probability distribution over possible actions

Adapted from slides by Nicholas Ruozzi

Learning Problem: Find a policy that
maximizes the total expected reward,

గ
௧

௧
ஶ
௧ୀଵ

• episodic tasks: interaction breaks naturally into episodes, e.g., plays
of a game, trips through a maze
•non-episodic tasks: no episodes; infinite game. e.g. a self-driving car
• additive rewards
• 0 1 2

• infinite value for continuing tasks
•discounted rewards
• rewards are discounted by a discount factor
• 0 1

2
2

CS6375: Machine Learning Reinforcement Learning

20

Example: The Recycling Robot

Adapted from Sutton and Barto

A mobile robot collects empty soda cans in an office. This agent has to decide whether to:
• actively search for a can for a certain period of time;
• remain stationary and wait for someone to bring it a can, or
• head back to its home base to recharge its battery.

Agent has
• three actions, and the state is primarily determined by the state of the battery;
• rewards might be zero most of the time,

• but then become positive when the robot secures an empty can,
• or large and negative if the battery runs all the way down.

CS6375: Machine Learning Reinforcement Learning

21

The (State) Value Function

Adapted from slides by Kenji Doya

A value function assigns a real number to each
state called its value. The value of a state () is
the expected reward starting from that state () and
then following the policy .

The value function helps us evaluate the quality of
a policy 𝜋. Informally, the value of a state
indicates how much better it is to be in that state
than other states, when following 𝜋.

CS6375: Machine Learning Reinforcement Learning

22

The (Action) Value Function
The action value function assigns a real
number to each state-action pair called its q-
value. The q-value of a state is the expected
reward starting from that state (), executing that
action () and then following the policy .

CS6375: Machine Learning Reinforcement Learning

23

Value Functions

•Which states should have a higher value? ଵ or ଶ?
•Which action should have a higher value in ଵ? or ?
•Which action should have a higher value in ଶ? or ?

S

G

CS6375: Machine Learning Reinforcement Learning

24

Value Functions
Unroll the discounted reward:

௧ ௧ ௧ାଵ
ଶ

௧ାଶ
ଷ

௧ାଷ

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ

௧ ௧ାଵ (recurrence)

Recall the definition of the value function:
 గ గ ௧ ௧ గ ௧ గ ௧ାଵ ௧

(another recurrence relation)

Unrolling the expectation using transition probabilities:
 గ

ᇱ
௦ᇱ∈(௦) గ

immediate reward

value of a state is the expected
sum of discounted rewards when

starting from that state

expected sum of discounted rewards after
the first step from 𝑠 taking into account

all possible next states 𝑠′ from all
possible next actions 𝑎 ∈ 𝐴(𝑠)

a

r

agent: each action is chosen
with (policy) probability 𝜋(𝑠, 𝑎)

environment: next state is obtained
with (transition) probability 𝑃 𝑠ᇱ 𝑠, 𝑎)

This is one of the
Bellman equations.

CS6375: Machine Learning Reinforcement Learning

25

Value Functions

Recall the definition of the Q-value function:
 గ గ ௧ ௧ ௧

గ ௧ గ ௧ାଵ ௧ ௧

Unrolling the expectation using transition probabilities:
 గ

ᇱ
௦ᇱ గ

immediate reward

value of a state-action pair is the
expected sum of discounted

rewards when starting from that
state and executing that action

expected sum of discounted rewards after
the first step from 𝑠 taking into account

all possible next states 𝑠′ from
executing action 𝑎

a

r

agent: each action is chosen
with (policy) probability 𝜋(𝑠, 𝑎)

environment: next state is obtained
with (transition) probability 𝑃 𝑠ᇱ 𝑠, 𝑎)

Compare with the state-value function, which considers all actions :
 గ

ᇱ
௦ᇱ∈(௦) గ

This is another of the
Bellman equations.

CS6375: Machine Learning Reinforcement Learning

26

Optimal Value Functions

గ defines a partial ordering on policies, that is, value
functions are useful for finding the optimal policy.

Learning problem: find a policy : → such that
గ∗ గ

for all and all policies .
• any policy satisfying this condition is called an optimal

policy (may not be unique)
• there always exists an optimal policy
• optimal policies share the same optimal value function

∗

గ

గ

a

r

agent: each action is chosen
with (policy) probability 𝜋(𝑠, 𝑎)

environment: next state is obtained
with (transition) probability 𝑃 𝑠ᇱ 𝑠, 𝑎)

CS6375: Machine Learning Reinforcement Learning

27

Bellman Optimality Equations

– system of n (= number of states) non-linear equations describing
a recurrence relation between current and next states

– for a finite-state MDP, we obtain a system of linear equations

– solve for ∗

– easy to extract the optimal policy

ᇲ

ᇲ

The optimal policy ∗ that satisfies these equations is the optimal policy for all
states . That is, it does not matter if we start in a state or a different state , that

is, we can use the same policy ∗ no matter the initial state of our MDP.

CS6375: Machine Learning Reinforcement Learning

28

Solving the MDP: Policy Iteration

Policy iteration: iteratively perform policy evaluation + policy
improvement, which are repeated iteratively until policy converges

initialize to a random policy

find the value function corresponding to this policy using iterative policy
evaluation
can be done by solving a system of equations

𝑉గ(𝑠) = 𝑅(𝑠) + 𝑃௦గ ௦ 𝑉(𝑠)

or by iterative policy evaluation
𝑉ାଵ

గ 𝑠 = ∑ 𝜋 𝑠, 𝑎 ⋅ ∑ 𝑃௦
௦ᇲ

௦ᇲ [𝑅 𝑠′ + 𝛾𝑉 𝑠′]

improve the policy based on the new values

repeat until policy has converged

CS6375: Machine Learning Reinforcement Learning

29

Value iteration: directly find optimal value function and
extract the optimal policy from it

initialize values to zero

effectively combines, in each of its sweeps, one
sweep of policy evaluation and one sweep of policy
improvement

one-time policy extraction

Solving the MDP: Value Iteration
Drawback of policy iteration: each iteration involves policy evaluation, which may
itself be a computationally expensive requiring multiple sweeps through the states
Special case: policy evaluation is stopped after just one sweep (one update of each state)
This algorithm is called value iteration.
• effectively combines one sweep of policy evaluation and one sweep of policy improvement

CS6375: Machine Learning Reinforcement Learning

30

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

31

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

32

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

33

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

34

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

35

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

36

Q-Learning Full reinforcement learning
• You don’t know the transitions ᇱ

• You don’t know the rewards ᇱ

• You can choose any actions you like
• Goal: learn the optimal policy / values

• Learn the MDP first, then use value/policy iteration (requires
learning the MDP: transition and reward functions)

• Learn only the values (don’t learn the MDP or explicitly model it)

• Learner makes choices: exploration vs. exploitation
• This is not offline planning; you take actions in the world and find out

what happens!

Adapted from slides by Dan Klein

Value iteration: find successive approximate optimal values

ାଵ

ᇱ ᇱ

௦ᇲ

Q-values are more useful!

ାଵ
ᇱ

ᇲ
ᇱ ᇱ

௦ᇲ

CS6375: Machine Learning Reinforcement Learning

37

Q-Learning

Adapted from slides by Nicholas Ruozzi

Initialize:
• Choose an initial state-value function (,)
• Let be the initial state of the environment

Repeat until convergence:
• Choose an action ௧ for the current state ௧ based on
• Take action ௧ and observe the reward ௧ and the new state ௧ାଵ

• Update

How should we pick an action to take based on ?
• Shouldn’t always be greedy

• we won’t explore much of the state space this way
• Shouldn’t always be random

• will take a long time to generate a good
• -greedy strategy: with some small probability choose a random

action (exploration), otherwise select the greedy action (exploitation)

CS6375: Machine Learning Reinforcement Learning

38

Q-Learning

Adapted from slides by Dan Klein

Initialize:
• Choose an initial state-value function (,)
• Let be the initial state of the environment

Repeat until convergence:
• Choose an action ௧ for the current state ௧ based on
• Take action ௧ and observe the reward ௧ and the new state ௧ାଵ

• Update

Q-learning produces tables of q-values

CS6375: Machine Learning Reinforcement Learning

39

Learning Rate () and Discount Factor ()
Explore vs exploit:
• learning rate () determines to what extent newly

acquired information overrides old information
• makes the agent learn nothing (exclusively

exploiting prior knowledge)
• makes the agent consider only the most recent

information (ignoring prior knowledge to explore
possibilities).

• in practice, often a constant learning rate is used

Discount factor:
• discount factor () determines the importance of future rewards
• will make the agent "myopic" (or short-sighted) by only

considering current rewards
• will make the agent strive for a long-term high reward
• if , action values may diverge

