
CS6375: Machine Learning
Gautam Kunapuli

Reinforcement Learning

CS6375: Machine Learning Reinforcement Learning

2

Reinforcement Learning
Supervised learning: Given labeled data ௜ ௜

, learn a function
• Categorical : classification
• Continuous : regression

Rich feedback from the environment: the learner is told
exactly what it should have done

Unsupervised learning: Given unlabeled data ௜

, can we infer the underlying structure?
• Clustering
• dimensionality reduction,
• density estimation

No feedback from the environment: the learner
receives no labels or any other information

Reinforcement Learning is learning from Interaction:
learner (agent) receives feedback about the appropriateness

of its actions while interacting with an environment, which
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

environment

agent
actionreward

new state

CS6375: Machine Learning Reinforcement Learning

3

Reinforcement Learning: Key Features

Reinforcement Learning is learning from Interaction:
learner (agent) receives feedback about the appropriateness

of its actions while interacting with an environment, which
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

environment

agent
actionreward

new state

• The learner is not told what actions to take, instead it find finds out what to do
by trial-and-error search and acting in the world
• e.g.: players trained by playing thousands of simulated games, with no

expert input on what are good or bad moves
• The environment is stochastic
• The reward may be delayed, so the learner may need to sacrifice short-term

gains for greater long-term gains
• e.g.: a player might get reward only at the end of the game, and needs to

assign credit to moves along the way
• The learner has to balance the need to explore its environment and the need to

exploit its current knowledge
• e.g.: one has to try new strategies but also to win games

CS6375: Machine Learning Reinforcement Learning

4

Example: Grid World
Example: Learn to navigate from beginning/start state

(S) to goal state (G), while avoiding obstacles

Image from Fang et al., https://arxiv.org/abs/1802.03248

Actions Effects

(right) (60%), (40%)

(up) (100%)

(left) (100%)

(down) (70%), (30%)

actions are what the agent
actually wants to do

effects are what actually
happens after the agent
executes the chosen action;
note that these are stochastic

S

G

Autonomous “agent” interacts with an environment
through a series of actions
• trying to find the way through a maze
• actions include turning and moving through maze
• agent earns rewards from the environment under
certain (perhaps unknown) conditions

The agent’s goal is to maximize the reward
• we say that the agent learns if, over time, it
improves its performance

Adapted from slides by Nicholas Ruozzi

CS6375: Machine Learning Reinforcement Learning

5

Applications of Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Schulman et al (2016)

Robot Locomotion (and other control problems)

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung

Atari Games

CS6375: Machine Learning Reinforcement Learning

6

Applications of Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung; David Sontag

Go!

Treatment Planning
Objective: Find the best treatment policy

State: Patient health data every 6 months
Action: Clinical interventions and treatment
Reward: negative rewards for deterioration
positive rewards for improvement

CS6375: Machine Learning Reinforcement Learning

7

Reinforcement Learning
Image from Fang et al., https://arxiv.org/abs/1802.03248

Adapted from slides by Peter Bodik

Other examples
• pole-balancing
•TD-Gammon [Gerry Tesauro]
• helicopter [Andrew Ng]

General challenge: no teacher who would say “good” or “bad”
• is reward “10” good or bad?
• rewards could be delayed
• similar to control theory

•more general, fewer constraints
• explore the environment and learn from experience

• not just blind search, try to be smart about it

CS6375: Machine Learning Reinforcement Learning

• states

• actions

• rewards

• What is the solution? What does the agent learn?

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Adapted from slides by Peter Bodik

Robot in a room

CS6375: Machine Learning Reinforcement Learning

• only if actions are deterministic
• this path is a plan
• not guaranteed to work as actions are stochastic (actions have probabilistic effects)

• we need a policy
• mapping from each state to an action
• agent tries to learn an optimal policy; but optimal in terms of what?

+1

-1

Adapted from slides by Peter Bodik

Is This A Solution?

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Optimal Policy

The optimal policy will change with the kind of
rewards the agent receives at each episode!

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -2.0

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -0.1

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -0.04

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: -0.01

CS6375: Machine Learning Reinforcement Learning

+1

-1

Adapted from slides by Peter Bodik

Reward for Each Step: +0.01

CS6375: Machine Learning Reinforcement Learning

16

Formalizing RL: The Agent-Environment Interface



Agent and environment interact at discrete time steps: t  0, 1, 2,K

 Agent observes state at step t: st S

 produces action at step t : at A(st)

 gets resulting reward: rt1 
 and resulting next state: st1

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

17

Formalizing RL: Markov Decision Processes
• set of states , set of actions , initial state 0

• for grid world, can be cell coordinates
• transition model

• 
• reward function

•
•goal: maximize cumulative reward in the long run
•policy: mapping from to

•  or  (deterministic vs. stochastic)
•discount factor

Reinforcement Learning
• transitions and rewards usually not available
• how to change the policy based on experience
• how to explore the environment

𝟎

[0,0] [1,0] [2,0] [3,0]

[0,1] [1,1] [2,1] [3,1]

[0,2] [1,2] [2,2] [3,2]

[0,3] [1,3] [2,3] [3,3]

[0,4] [1,4] [2,4] [3,4]

Actions Transition Probabilities

(right) (60%), (40%)

(up) (100%)

(left) (100%)

(down) (70%), (30%)

CS6375: Machine Learning Reinforcement Learning

18

Formalizing RL: The Markov Property
•“the state” at step t, means whatever information is

available to the agent at step t about its environment –
snapshot of the world
• the state can include immediate “sensations”, highly

processed observations, and structures built up over
time from sequences of observations
• ideally, a state should summarize past sensations so as

to retain all “essential” information, i.e., it should
have the Markov Property:

• conditional probability distribution of future states
depends only upon the present state, not on the
sequence of events that preceded it

𝟎

[2,1]

[2,2]



Pr st 1  s ,rt 1  r st ,at ,rt , st1,at1,K ,r1, s0 ,a0 
 Pr st 1  s ,rt 1  r st ,at 
for all s , r, and histories st ,at ,rt , st1,at1,K ,r1, s0 ,a0 .



CS6375: Machine Learning Reinforcement Learning

19

Formalizing RL: Rewards and Policy

A policy  or  is the prescription by which the
agent selects an action to perform
• Deterministic: the agent observes the state of the

system and chooses an action
• Stochastic: the agent observes the state of the

system and then selects an action, at random, from
some probability distribution over possible actions

Adapted from slides by Nicholas Ruozzi

Learning Problem: Find a policy that
maximizes the total expected reward,

గ
௧

௧
ஶ
௧ୀଵ

• episodic tasks: interaction breaks naturally into episodes, e.g., plays
of a game, trips through a maze
•non-episodic tasks: no episodes; infinite game. e.g. a self-driving car
• additive rewards
• 0 1 2

• infinite value for continuing tasks
•discounted rewards
• rewards are discounted by a discount factor
• 0 1

2
2

CS6375: Machine Learning Reinforcement Learning

20

Example: The Recycling Robot

Adapted from Sutton and Barto

A mobile robot collects empty soda cans in an office. This agent has to decide whether to:
• actively search for a can for a certain period of time;
• remain stationary and wait for someone to bring it a can, or
• head back to its home base to recharge its battery.

Agent has
• three actions, and the state is primarily determined by the state of the battery;
• rewards might be zero most of the time,

• but then become positive when the robot secures an empty can,
• or large and negative if the battery runs all the way down.

CS6375: Machine Learning Reinforcement Learning

21

The (State) Value Function

Adapted from slides by Kenji Doya

A value function assigns a real number to each
state called its value. The value of a state () is
the expected reward starting from that state () and
then following the policy .

The value function helps us evaluate the quality of
a policy 𝜋. Informally, the value of a state
indicates how much better it is to be in that state
than other states, when following 𝜋.

CS6375: Machine Learning Reinforcement Learning

22

The (Action) Value Function
The action value function assigns a real
number to each state-action pair called its q-
value. The q-value of a state is the expected
reward starting from that state (), executing that
action () and then following the policy .

CS6375: Machine Learning Reinforcement Learning

23

Value Functions

•Which states should have a higher value? ଵ or ଶ?
•Which action should have a higher value in ଵ? or ?
•Which action should have a higher value in ଶ? or ?

S

G

CS6375: Machine Learning Reinforcement Learning

24

Value Functions
Unroll the discounted reward:

௧ ௧ ௧ାଵ
ଶ

௧ାଶ
ଷ

௧ାଷ

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ

௧ ௧ାଵ (recurrence)

Recall the definition of the value function:
 గ గ ௧ ௧ గ ௧ గ ௧ାଵ ௧

(another recurrence relation)

Unrolling the expectation using transition probabilities:
 గ

ᇱ
௦ᇱ௔∈஺(௦) గ

immediate reward

value of a state is the expected
sum of discounted rewards when

starting from that state

expected sum of discounted rewards after
the first step from 𝑠 taking into account

all possible next states 𝑠′ from all
possible next actions 𝑎 ∈ 𝐴(𝑠)

a

r

agent: each action is chosen
with (policy) probability 𝜋(𝑠, 𝑎)

environment: next state is obtained
with (transition) probability 𝑃 𝑠ᇱ 𝑠, 𝑎)

This is one of the
Bellman equations.

CS6375: Machine Learning Reinforcement Learning

25

Value Functions

Recall the definition of the Q-value function:
 గ గ ௧ ௧ ௧

గ ௧ గ ௧ାଵ ௧ ௧

Unrolling the expectation using transition probabilities:
 గ

ᇱ
௦ᇱ గ

immediate reward

value of a state-action pair is the
expected sum of discounted

rewards when starting from that
state and executing that action

expected sum of discounted rewards after
the first step from 𝑠 taking into account

all possible next states 𝑠′ from
executing action 𝑎

a

r

agent: each action is chosen
with (policy) probability 𝜋(𝑠, 𝑎)

environment: next state is obtained
with (transition) probability 𝑃 𝑠ᇱ 𝑠, 𝑎)

Compare with the state-value function, which considers all actions :
 గ

ᇱ
௦ᇱ௔∈஺(௦) గ

This is another of the
Bellman equations.

CS6375: Machine Learning Reinforcement Learning

26

Optimal Value Functions

గ defines a partial ordering on policies, that is, value
functions are useful for finding the optimal policy.

Learning problem: find a policy : → such that
గ∗ గ

for all and all policies .
• any policy satisfying this condition is called an optimal

policy (may not be unique)
• there always exists an optimal policy
• optimal policies share the same optimal value function

∗

గ

గ

a

r

agent: each action is chosen
with (policy) probability 𝜋(𝑠, 𝑎)

environment: next state is obtained
with (transition) probability 𝑃 𝑠ᇱ 𝑠, 𝑎)

CS6375: Machine Learning Reinforcement Learning

27

Bellman Optimality Equations

– system of n (= number of states) non-linear equations describing
a recurrence relation between current and next states

– for a finite-state MDP, we obtain a system of linear equations

– solve for ∗

– easy to extract the optimal policy

ᇲ

ᇲ

The optimal policy ∗ that satisfies these equations is the optimal policy for all
states . That is, it does not matter if we start in a state or a different state , that

is, we can use the same policy ∗ no matter the initial state of our MDP.

CS6375: Machine Learning Reinforcement Learning

28

Solving the MDP: Policy Iteration

Policy iteration: iteratively perform policy evaluation + policy
improvement, which are repeated iteratively until policy converges

initialize to a random policy

find the value function corresponding to this policy using iterative policy
evaluation
can be done by solving a system of equations

𝑉గ(𝑠) = 𝑅(𝑠) + 𝑃௦గ ௦ 𝑉(𝑠)

or by iterative policy evaluation
𝑉௞ାଵ

గ 𝑠 = ∑ 𝜋 𝑠, 𝑎௔ ⋅ ∑ 𝑃௦௔
௦ᇲ

௦ᇲ [𝑅 𝑠′ + 𝛾𝑉௞ 𝑠′]

improve the policy based on the new values

repeat until policy has converged

CS6375: Machine Learning Reinforcement Learning

29

Value iteration: directly find optimal value function and
extract the optimal policy from it

initialize values to zero

effectively combines, in each of its sweeps, one
sweep of policy evaluation and one sweep of policy
improvement

one-time policy extraction

Solving the MDP: Value Iteration
Drawback of policy iteration: each iteration involves policy evaluation, which may
itself be a computationally expensive requiring multiple sweeps through the states
Special case: policy evaluation is stopped after just one sweep (one update of each state)
This algorithm is called value iteration.
• effectively combines one sweep of policy evaluation and one sweep of policy improvement

CS6375: Machine Learning Reinforcement Learning

30

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

31

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

32

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

33

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

34

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

35

Value Iteration in GridWorld ()

Adapted from slides by Pieter Abbeel

CS6375: Machine Learning Reinforcement Learning

36

Q-Learning Full reinforcement learning
• You don’t know the transitions ᇱ

• You don’t know the rewards ᇱ

• You can choose any actions you like
• Goal: learn the optimal policy / values

• Learn the MDP first, then use value/policy iteration (requires
learning the MDP: transition and reward functions)

• Learn only the values (don’t learn the MDP or explicitly model it)

• Learner makes choices: exploration vs. exploitation
• This is not offline planning; you take actions in the world and find out

what happens!

Adapted from slides by Dan Klein

Value iteration: find successive approximate optimal values

௜ାଵ
௔

ᇱ ᇱ
௜

௦ᇲ

Q-values are more useful!

௜ାଵ
ᇱ

௔ᇲ ௜
ᇱ ᇱ

௦ᇲ

CS6375: Machine Learning Reinforcement Learning

37

Q-Learning

Adapted from slides by Nicholas Ruozzi

Initialize:
• Choose an initial state-value function (,)
• Let be the initial state of the environment

Repeat until convergence:
• Choose an action ௧ for the current state ௧ based on
• Take action ௧ and observe the reward ௧ and the new state ௧ାଵ

• Update

How should we pick an action to take based on ?
• Shouldn’t always be greedy

• we won’t explore much of the state space this way
• Shouldn’t always be random

• will take a long time to generate a good
• -greedy strategy: with some small probability choose a random

action (exploration), otherwise select the greedy action (exploitation)

CS6375: Machine Learning Reinforcement Learning

38

Q-Learning

Adapted from slides by Dan Klein

Initialize:
• Choose an initial state-value function (,)
• Let be the initial state of the environment

Repeat until convergence:
• Choose an action ௧ for the current state ௧ based on
• Take action ௧ and observe the reward ௧ and the new state ௧ାଵ

• Update

Q-learning produces tables of q-values

CS6375: Machine Learning Reinforcement Learning

39

Learning Rate () and Discount Factor ()
Explore vs exploit:
• learning rate () determines to what extent newly

acquired information overrides old information
• makes the agent learn nothing (exclusively

exploiting prior knowledge)
• makes the agent consider only the most recent

information (ignoring prior knowledge to explore
possibilities).

• in practice, often a constant learning rate is used

Discount factor:
• discount factor () determines the importance of future rewards
• will make the agent "myopic" (or short-sighted) by only

considering current rewards
• will make the agent strive for a long-term high reward
• if , action values may diverge

