CS6375: Machine Learning

Gautam Kunapuli

Reinforcement Learning

ujD

THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Reinforcement Learning

Reinforcement Learning

Supervised learning: Given labeled data (x;, y;),i =
1,...,n,learnafuncton f : x -y

« Categorical y : classification

» Continuous y : regression

Rich feedback from the environment: the learner is told
exactly what it should have done

Reinforcement Learning is learning from Interaction:;
learner (agent) receives feedback about the appropriateness environment
of its actions while interacting with an environment, which

provides numeric reward signals

: Learn how to take actions in order to maximize reward

Unsupervised learning: Given unlabeled data x;,

i = 1,...,n, can we infer the underlying structure?
. CIusterlng

» dimensionality reduction,

* density estimation

No feedback from the environment: the learner
receives no labels or any other information

reward action
new state

agent

[THE UNIVERSITY OF TEXAS AT DALLAS
UID Erik Jonsson School of Engineering and Computer Science

CS6375: Machine Learning

Reinforcement Learning

Reinforcement Learning: Key Features

e The learner is not told what actions to take, instead it find finds out what to do

by

» e.g.. players trained by playing thousands of simulated games, with no

expert input on what are good or bad moves

 The environment is

 The , S0 the learner may need to sacrifice short-term

gains for greater long-term gains

* e.g.. a player might get reward only at the end of the game, and needs to

assign credit to moves along the way

* The learner has to balance the need to its environment and the need to

its current knowledge

* e.g.: one has to try new strategies but also to win games

Reinforcement Learning is learning from Interaction:;
learner (agent) receives feedback about the appropriateness
of its actions while interacting with an environment, which
provides numeric reward signals

: Learn how to take actions in order to maximize reward

reward
new state

environment

agent

action

gt

D

M hl Erik Joﬁssbn S(':hobll of Enéiﬁeeﬁng and Computer Science

CS6375: Machine Learning Image from Fang et al., https:/arxiv.org/abs/1802.0324&Reinforcement Learning

Exam ple: G nd WO rld Autonomous “agent” interacts with an environment

through a series of actions
Example: Learn to navigate from beginning/start state * trying to find the way through a maze
(S) to goal state (G), while avoiding obstacles » actions include turning and moving through maze
* agent earns rewards from the environment under
certain (perhaps unknown) conditions

The agent’s goal is to maximize the reward
* we say that the agent learns if, over time, it
improves its performance

effects are what actually
happens after the agent
actions are what the agent executes the chosen action;
actually wants to do note that these are stochastic
Actions Effects
= (right) = (60%), W (40%)
A (up) A (100%)
€ (left) €(100%)
*(dOWﬂ) *(70%), 6(30%)

1 THE UNIVERSITY OF TEXAS AT DALLAS H H H
ﬂr@ Erik Jonsson School of Engineering and Computer Science Adapted from slides by Nicholas Ruozzi 4

CS6375: Machine Leaming Image from Fang et al., https://arxiv.org/abs/1802.0324&Reinforcement Learning

Applications of Reinforcement Learning

Robot Locomotion (and other control problems)
Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Schulman et al (2016)

Atari Games
Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

THE UNIVERSITY OF TEXAS AT DALLAS

[][]j Fiile TonseonSchoal of Engineering and Computer Science Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung 5

CS6375: Machine Leaming Image from Fang et al., https://arxiv.org/abs/1802.0324&Reinforcement Learning

Applications of Reinforcement Learning

ABCDETFGH)] KLMNOPQRST

o IS EH e Gol

£ %HJ » Objective: Win the game!

xHe " State: Position of all pieces

« Action: Where to put the next piece down

|12 . 3 : Reward: 1 if win at the end of the game, 0 otherwise
; T :

ABCDEFGH)]KLMNOPQRST

Prescribe insulin and Prescribe statin
Health Metformin
. interventions
Treatment Planning / treatments
Objective: Find the best treatment policy \ \.

State: Patient health data every 6 months '™ *"° %\)%—’ . — — h

Action: Clinical interventions and treatment T " o
Reward: negative rewards for deterioration ow tovoptlmlze't e treatment po IEY-

pOSItIVG rewards fOr ImprOVement What the o Blood pressure = 135 Blood pressure = 150
health) Temperature = 99°F WBC count = 6.8*109
system sees Temperature = 98°F

Alc=7.7%
ICD9 = Diabetes

[]m Erik Jonsson School of Engineering and Computer Science Adapted from slides by Fei-Fei Li, Justin Johnson and Serena Yeung; David Sontag 6

CS6375: Machine Learning

Reinforcement Learning

Other examples

* pole-balancing
 TD-Gammon [Gerry Tesauro]
* helicopter [Andrew Ng]

Image from Fang et al., https:/arxiv.org/abs/1802.0324&Reinforcement Learning

General challenge: no teacher who would say “good” or “bad”
*is reward “10” good or bad?
* rewards could be delayed
« similar to control theory
» more general, fewer constraints
« explore the environment and learn from experience
* not just blind search, try to be smart about it

THE UNIVERSITY OF TEXAS AT DALLAS . .
[TIT) Erik Jonsson School of Engineering and Computer Science Adapted from slides by Peter Bodik 7

CS6375: Machine Learning Reinforcement Learning

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UpP

-1 80% move UP
10% move LEFT
10% move RIGHT

START
reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step
e states
* actions
* rewards

What is the solution? What does the agent learn?

1 THE UNIVERSITY OF TEXAS AT DALLAS . H
ﬂm Erik Jonsson School of Engineering and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning

Reinforcement Learning

Is This A Solution?

-

-

-

*

1)

« only if actions are deterministic

« this pathis a plan

* not guaranteed to work as actions are stochastic (actions have probabilistic effects)

 we need a policy

 mapping from each state to an action

« agent tries to learn an optimal policy; but optimal in terms of what?

[THE UNIVERSITY OF TEXAS AT DALLAS
UID Erik Jonsson School of Engineering and Computer Science

Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Optimal Policy

> | = =
1)

The optimal policy will change with the kind of
rewards the agent receives at each episode!

1 THE UNIVERSITY OF TEXAS AT DALLAS H H
ﬂr@ Erik Jonsson School of Engineering and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Reward for Each Step: -2.0

- = =
* - | -

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Reward for Each Step: -0.1

> | = =
1)

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Reward for Each Step: -0.04

> | = =
1)

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Reward for Each Step: -0.01

- | = =
t | -

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Reward for Each Step: +0.01

V¥ &= =
4 -

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from slides by Peter Bodik

CS6375: Machine Learning Reinforcement Learning

Formalizing RL: The Agent-Environment Interface

-]
»[Agent |
state ;eward action
S; & a,
:< Yol [
s, | Environment |<—

Agent and environment interact at discrete time steps: ¢ =0, 1, 2,K
Agent observes state at stepz: s, €85
produces action at step ¢ : a, € A(s,)
gets resulting reward: 7, €R

and resulting next state: s, ,

' THE UNIVERSITY OF TEXAS AT DALLAS))
l.m Erik Jonsson School of Engineering and Computer Science Adapted from slides by Peter Bodik 16

CS6375: Machine Learning

Reinforcement Learning

Formalizing RL: Markov Decision Processes

*set of states S, set of actions A4, initial state S,

« for grid world, can be cell coordinates

« transition model P(s, a, s") [04]) [14] [24]] [34]
*P([1,1],M,[1,2]) = 0.8

« reward function r(s) 03] [1,3] 1| [3,3]
r([3,4]) = +1

» goal: maximize cumulative reward in the long run [0,2] [1,2] [2,2] 13,2]

* policy: mapping from S to A
» (s) or n(s, a) (deterministic vs. stochastic)

Reinforcement Learning
» transitions and rewards usually not available

* how to change the policy based on experience Actions Transition Probabilities
« how to explore the environment > (right) > (60%), NV(40%)
A (up) AN(100%)
€ (left) €(100%)
@(down) ¢(70%), 6(30%)

[THE UNIVERSITY OF TEXAS AT DALLAS
UID Erik Jonsson School of Engineering and Computer Science 17

CS6375: Machine Learning Reinforcement Learning

Formalizing RL: The Markov Property

* “the state” at step t, means whatever information is
available to the agent at step t about its environment —
snapshot of the world

« the state can include immediate “sensations”, highly
processed observations, and structures built up over
time from sequences of observations

«ideally, a state should summarize past sensations so as 12,2]
to retain all “essential” information, i.e., it should
have the Markov Property:

« conditional probability distribution of future states
depends only upon the present state, not on the
sequence of events that preceded it

— ! —_ —
Pr{s =s',r —r‘sars a K,rI,SO,aO}—

t+1 > t+1 t2 Tt T d =10 —12
_ / -
PI’ {SHI =S Drt+1 T 7’" Stﬂat}

, L
for all s’, r, and histories s,,a,,r,s,_,a,_,,K ,n,s,,a,.

H&HE& Erik Joﬁssbn S(-:hobll;)f Enéi;le;fing and Computer Science 18

CS6375: Machine Learning Reinforcement Learning

Formalizing RL: Rewards and Policy

« episodic tasks: interaction breaks naturally into episodes, e.g., plays
of a game, trips through a maze
* non-episodic tasks: no episodes; infinite game. e.g. a self-driving car
- additive rewards
*R=1(sy) + r(sy) + r(sy) +
« infinite value for continuing tasks
* discounted rewards
* rewards are by a discount factor y € [0, 1)
‘R =1(sy) + y*r(s) + y?>*r(sy + ..

Learning Problem: Find a policy that
maximizes the total expected reward,

E X621)’trt]]

A policy m(s) or t(s, a) is the prescription by which the

agent selects an action to perform

» Deterministic: the agent observes the state of the
system and chooses an action

» Stochastic: the agent observes the state of the
system and then selects an action, at random, from
some probability distribution over possible actions

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from slides by Nicholas Ruozzi 19

CS6375: Machine Learning Reinforcement Learning

Example: The Recycling Robot

A mobile robot collects empty soda cans in an office. This agent has to decide whether to:
« actively search for a can for a certain period of time;

* remain stationary and wait for someone to bring it a can, or

* head back to its home base to recharge its battery.

Agent has
« three actions, and the state is primarily determined by the state of the battery;
* rewards might be zero most of the time,

* but then become positive when the robot secures an empty can,

* or large and negative if the battery runs all the way down.

, , 1, Tuaig 18, -3
s a s p(s'|s,a) | r(s,a,s) B Presrch
high search high | a Tsearch search
high search low 1 — « Plaoedh
low search high | 1 -/ -3
low search low 3 T'search recharge
high wait high | 1 Tuait : @
high wait low 0 Paait
low wait high | 0 Puadt
low wait low 1 Paait
low recharge high | 1 0 search
low recharge low 0 0.
1, I'vait
O, T'search l-a s I'search

H&HE& Elrik ;lo.nss;m.SI(-:holbil :)f Enéil;le;fing and Computer Science Adapted from Sutton and Barto 20

CS6375: Machine Learning Reinforcement Learning

The (State) Value Function

A value function assigns a real number to each a, a, a,
state called its value. The value of a state (s)is [S1/ " [Sa > =+r —— >SS —>
the expected reward starting from that state (s) and

then following the policy .

o0
p(a)=IE Z Yr(Ses1,0et1) |50 = 8 The value function helps us evaluate the quality of
t—0 a policy . Informally, the value of a state
indicates how much better it is to be in that state
than other states, when following .

“IReward field

‘‘‘‘‘‘

P 2 o = m

~\

THE UNIVERSITY OF TEXAS AT DALLAS . .
']I_D Erik Jonsson School of Engineering and Computer Science Adapted from slides by Kenji Doya 21

CS6375: Machine Learning Reinforcement Learning
The (Action) Value Function
The action value function assigns a real a, a, a,
number to each state-action pair called its g- S Uy S — S T
value. The g-value of a state is the expected
reward starting from that state (s), executing that
action (a) and then following the policy .
L] — IE t " — " —
q"(s,a) ;’Y r(St41, @41) [So =8, ap =a b
Left Gridworld Right
|
‘ i
H BEE | [| L]
| HEEN C

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

22

CS6375: Machine Learning Reinforcement Learning

Value Functions

« Which states should have a higher value? s; or s,?
« Which action should have a higher value in s;? or ¥?
« Which action should have a higher value in s,? =»or A\?

m Erik Joﬁssbn Séhobl of Enéiﬁeeﬁng and Computer Science 23

CS6375: Machine Learning

Reinforcement Learning

Value Functions

Unroll the discounted reward:;

agent: each action is chosen QA
with (policy) probability (s, a)

Re =1+ ¥Teq + Vo Tpa2 + VT3 + - r

=1+ Y(ter + Y142 + ert+3 +)

= 1; + YR;,1 (recurrence)

Recall the definition of the value function;

!

S
environment: next state is obtained
with (transition) probability P(s'| s, a)

Ve(s) = E;[R; | s¢ = sl = Ex[[Re + ¥ Vi (S¢41) | ¢ = S]]

(another recurrence relation)

Unrolling the expectation using transition probabilities:
Vi(s) =R($) +V Laeas) (s, a) Ls: P(s'[s, @) V(s") This is one of the

immediate reward

value of a state is the expected
sum of discounted rewards when
starting from that state

Bellman equations.

expected sum of discounted rewards after
the first step from s taking into account
all possible next states s’ from all
possible next actions a € A(s)

HE UNI Y OF TEXAS AT DA S
UID Erik Jonsson School of Engmeermg and Computer Science

24

CS6375: Machine Learning Reinforcement Learning

Value Functions s

agent: each action is chosen QA
with (policy) probability (s, a)
r

Recall the definition of the Q-value function:
Qn(sr Cl) — En[[Rt | St = 5,4 = Cl]]
= Ex[R; + v Vi(St41) | St = 5,0, = al s’
environment: next state is obtained
with (transition) probability P(s'| s, a)

Unrolling the expectation using transition probabilities:

Qr(s,a) =R(s) +y Ls P(s']s,a) Vr(s) This is another of the

Bellman equations.

immediate reward expected sum of discounted rewards after
' o the first step from s taking into account
value of a state-action pair is the all possible next states s’ from
expected sum of discounted executing action a

rewards when starting from that
state and executing that action

Compare with the state-value function, which considers all actions a € A(s) :
Vi(s) =R(S) +V Ygeas) (s, a) Xs P(s'[s, @) Vi (s")

D HE UNI Y OF TEXAS AT DA S 25
U Erik Jonsson School of Engmeermg and Computer Science

CS6375: Machine Learning Reinforcement Learning

Optimal Value Functions ;

agent: each action is chosen QA
with (policy) probability (s, a)
r

V'™ defines a partial ordering on policies, that is, value
functions are useful for finding the optimal policy.

environment: next state is obtained
with (transition) probability P(s'| s, a)
Learning problem: find a policy m*:S—A such that
V™ (s) = V(s)
for all s€S and all policies .
« any policy satisfying this condition is called an optimal
policy (may not be unique)
» there always exists an optimal policy
« optimal policies share the same optimal value function
V*(s) = max VT(s)

D HE UNI\ Y OF TEXAS AT DA S
U Erik Jonsson School of Engmeermg and Computer Science 26

CS6375: Machine Learning Reinforcement Learning

Bellman Optimality Equations
V*(s) = max R(s)+vy ZP(S’|S a) V*(s")

a€cA(s)

Q*(s,a) = max R(s)+vy ZP(S'|S a) maXQ (s’,a")

agA(s)

— system of n (= number of states) non-linear equations describing
a recurrence relation between current and next states

— for a finite-state MDP, we obtain a system of linear equations
— solve for V*(s)
— easy to extract the optimal policy

The optimal policy ™ that satisfies these equations is the optimal policy for all
states s. That is, it does not matter if we start in a state s or a different state s’, that
is, we can use the same policy =* no matter the initial state of our MDP.

gt

M h[l Erik Joﬁssbn S(':hobll of Enéi.;leéfing and Computer Science 27

CS6375: Machine Learning

Reinforcement Learning

Solving the MDP: Policy Iteration

Policy iteration (using iterative policy evaluation)

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € 8
» initialize to a random policy

2. Policy Evaluation

V(s) ¢ 2y 08,5, 7(s)) [r + 4V (s")]

A + max(A, |v — V(s)]) or by iterative policy evaluation

3. Policy Improvement
policy-stable + true » improve the policy based on the new values
For each s € &:
old-action < m(s)
m(s) < argmax, >, .p(s',7[s,a) [+ 4V (s)]
If old-action # m(s), then policy-stable < false

If policy-stable, then stop and return V ~ v, and 7 ~ 7,; else go to 2
» repeat until policy has converged

V™(s) = R(s) + Psn(s)V(S)

until A < 6§ (a small positive number) Vi1 (s) = Xam(s,a) - Xgr P [R(s)

Repzat » find the value function corresponding to this policy usikg iterative policy
- <0 s evaluation
or each s € o: » can be done by solving a system of equations
v < V(s)

+yVie(s')]

Policy iteration: iteratively perform policy evaluation + policy
improvement, which are repeated iteratively until policy converges

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

28

CS6375: Machine Learning Reinforcement Learning

Solving the MDP: Value Iteration

Drawback of policy iteration: each iteration involves policy evaluation, which may

itself be a computationally expensive requiring multiple sweeps through the states

Special case: policy evaluation is stopped after just one sweep (one update of each state)
This algorithm is called value iteration.

« effectively combines one sweep of policy evaluation and one sweep of policy improvement

Value iteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all s € 87) » jnitialize values to zero

Repeat
? <0 e » effectively combines, in each of its sweeps, one
o Z’aﬁ ;(i) ' sweep of policy evaluation and one sweeg of policy
V(s) ¢~ maxa S, p(s',] 5.0) [+ V()] mprovement

A <+ max(A, |v — V(s)|)

until A < 6 (a small positive number)

Output a deterministic policy, m ~ m,, such that
m(s) = argmax, y_ . p(s',r]s,a) [r + V()] » one-time policy extraction

Value iteration: directly find optimal value function and
extract the optimal policy from it

l Y OF T DALLAS
U D Erlk Jonsson School of Engmeermg and Computer Science 29

CS6375: Machine Learning Reinforcement Learning

Value Iteration in GridWorld (y = 0.9)

VALUES AFTER 1 ITERATIONS

u \LJ Erik Jonsson S(.:ho.oll of Engineéring and Computer Science Adapted from slides by Pieter Abbeel 30

CS6375: Machine Learning Reinforcement Learning

Value Iteration in GridWorld (y = 0.9)

VALUES AFTER 2 ITERATIONS

] ‘ | L Er;ik thsson Sl(':ho.orl lof Engir;leéring and Computer Science Adapted from slides by Pieter Abbeel 31

CS6375: Machine Learning Reinforcement Learning

Value Iteration in GridWorld (y = 0.9)

VALUES AFTER 3 ITERATIONS

U- m Elrik Joﬁssém Sléholblll;)f Enéi;leeliing and Computer Science Adapted from slides by Pieter Abbeel 32

CS6375: Machine Learning Reinforcement Learning

Value Iteration in GridWorld (y = 0.9)

H.

VALUES AFTER 4 ITERATIONS

ﬂr@ Er kJ S h I fE g ing and Computer Science Adapted from slides by Pieter Abbeel 33

CS6375: Machine Learning Reinforcement Learning

Value Iteration in GridWorld (y = 0.9)

VALUES AFTER 5 ITERATIONS

THE UNIVERSITY OF TEXAS AT DALLAS : .
[TIT) Erik Jonsson School of Engineering and Computer Science Adapted from slides by Pieter Abbeel 34

CS6375: Machine Learning Reinforcement Learning

Value Iteration in GridWorld (y = 0.9)

VALUES AFTER 100 ITERATIONS

THE UNIVERSITY OF TEXAS AT DALLAS : .
III_D Erik Jonsson School of Engineering and Computer Science Adapted from slides by Pieter Abbeel 35

CS6375: Machine Learning

Reinforcement Learning

Q-Learning

Full reinforcement learning
* You don’t know the transitions P(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You can choose any actions you like
» Goal: learn the optimal policy / values
» Learn the MDP first, then use value/policy iteration (requires
learning the MDP: transition and reward functions)
» Learn only the values (don’t learn the MDP or explicitly model it)

* Learner makes choices: exploration vs. exploitation
» This is not offline planning; you take actions in the world and find out
what happens!

Value iteration: find successive approximate optimal values

Vot (s) = maaxz P(s,a,s")[R(") + yVi(s)]

Q-values are more useful!

Qia(5,0) =) P(s,0,5") [R(s) + 7 max Qi(s", a" |

[THE UNIVERSITY OF TEXAS AT DALLAS
UID Erik Jonsson School of Engineering and Computer Science

Adapted from slides by Dan Klein

36

CS6375: Machine Learning Reinforcement Learning

Q-Learning

How should we pick an action to take based on Q?
» Shouldn’t always be greedy
» we won't explore much of the state space this way
» Shouldn’t always be random
» will take a long time to generate a good Q
* e-greedy strategy: with some small probability choose a random
action (exploration), otherwise select the greedy action (exploitation)
Initialize:
* Choose an initial state-value function Q(s,a)
* Let s be the initial state of the environment

Repeat until convergence:
* Choose an action a; for the current state s; based on Q
» Take action a; and observe the reward r; and the new state s; .4

 Update Q learned value
@(ona) -0 Quna)+ @ (4 7 - mxQune))
S —— S ~ ~~ _a]

lem rate reward disco -~
okd vale S estimate of optimal future value

[.m Erlk Jonsson S(;hool of Engmeermg and Computer Science Adapted from slides by Nicholas Ruozzi 37

CS6375: Machine Learning Reinforcement Learning

Q-Learning

Q-learning produces tables of g-values

Initialize:
* Choose an initial state-value function Q(s,a)
* Let s be the initial state of the environment

Repeat until convergence:
* Choose an action a; for the current state s; based on Q

» Take action a; and observe the reward r; and the new state s; .4
* Update Q learned value

Ld]

@(sna) - (1-a)- Qoua)+ @, (o +
N’ S
old value learning rate reward discount factor

THE UNIVERSITY OF TEXAS AT DALLAS) .
ITI—D Erik Jonsson School of Engineering and Computer Science Adapted from slides by Dan Klein 38

CS6375: Machine Learning Reinforcement Learning

Learning Rate («) and Discount Factor (y)

Explore vs exploit:

* learning rate («) determines to what extent newly
acquired information overrides old information

* a = 0 makes the agent learn nothing (exclusively
exploiting prior knowledge)

* « = 1 makes the agent consider only the most recent
information (ignoring prior knowledge to explore
possibilities).

« in practice, often a constant learning rate is used

Discount factor:

» discount factor (y) determines the importance of future rewards

¥ = 0 will make the agent "myopic" (or short-sighted) by only
considering current rewards

¥ = 1 will make the agent strive for a long-term high reward

«ify > 1, action values may diverge

F ‘m Erik Joﬁssbn S(':hobll 6f Enéi.r‘leelr"ing and Computer Science 39

