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Topics:
*Ensemble methods
 Bagging
 Boosting
Clustering
« K-Means
 Hierarchical clustering
* Soft clustering & Gaussian Mixture
Models
Dimensionality Reduction: Principal
Component Analysis
Neural Networks
Reinforcement Learning
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Ensemble Methods

Error = Variance + Bias? + Noise?
 Intuition: When combining multiple independent decisions, random errors cancel each other out
« Two main methods - Bagging and Boosting
« Bagging: Combines several learned models that are learned independently from bootstrap
replicates of the same data set.
» What does bagging remove? Bias or variance?

« What are the best ones to bag? Trees? Linear regression? Nearest neighbors?
» Boosting: Learns a weighted combination of classifiers. Focuses on the incorrectly classified part of

the data set
» What does boosting address? Bias or variance?

» What is AdaBoost?
» How does AdaBoost weight examples?
« What are good weak learners?
» How does boosting avoid overfitting?
« Margins!
* Remember, boosting is not immune to overfitting
» How do ensemble methods work with stable algorithms? Outliers?
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Clustering: K-Means

» Euclidean distance is used as a metric and
variance is used as a measure of cluster scatter
 What are other distance measures?

* k is an input parameter: inappropriate choice of k
may Yyield poor results.

» Convergence to local minimum
* may produce counterintuitive results

 What are responsibilities? What is the loss function

of k-means clustering?

* What is the computational complexity of k-means? -

* What type of clusters does k-means generate?

k-means Clustering

Given: Unlabeled data, x;,i = 1,...,n

Initialize: Pick k random points as cluster centers

[l],] = 1, ,k

while not converged do

* Assign data points x; to closest cluster center u;

* Update the cluster centers ; to the mean (average) of
the points assigned to that cluster

« if the assignments no longer change, converged = true

] (b) (c)

{d) le) (i)
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Hierarchical Clustering _i=* i i* I I seglomerativ
* Bottom-up (agglomerative): Recursively merge two (@) Cab)
groups with the smallest between-cluster similarity ()
* Top-down (divisive): Recursively split a least-
coherent (e.g. largest diameter) cluster

< | | | | divisive
Step4 Step3 Step2 Step1 Step 0
Closest pair Farthest pair
(single-link clustering) (complete-link clustering)

Differences between different types of linkages:
Closest pair (single-link clustering) tends to yield
elongated clusters A 5 b " -
Farthest pair (complete-link clustering) tends to yield
rounder, more spherical clusters

Average of all pairs trades-off between single and
complete link
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Gaussian Mixture Models

0.5

Probabilistic clustering (generative model):
Each cluster is associated with a Gaussian distribution. To generate data,
« randomly choose a cluster j with probability P(y = j) 9 05 :

o distribution over the clusters is modeled as a multinomial distribution
» generate from the distribution of the j-th cluster:
* distribution over each cluster is modeled as a multivariate Gaussian distribution

1 1
. — Ty—1
Pspu2) = —=exp| - (x-pW' 2 (x -
\/ det(21Y)
1 0 0 011 0 v 0 O1d
0 1 - 0 0 o5, - 0 02d
L= :or . : =1, ?2 . : : 2o
T " . . . . N . M . : § : _‘
’ 0o 0 - 1 ot 0 0 O4d | Odad
- I _ T
— . diagonal matrix: arbitrary positive semi-definite matrix:
identity matrix Gaussian Naive Bayes eigenvectors specify rotation,

Eigenvalue, A, of £
us

eigenvalues specify (relative) elongation

Solved using Expectation Maximization
* soft assignment of points to clusters
* maximize log likelihood.

* Can be used for non-spherical clusters with different probabilities
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Principal Component Analysis

* Can be used to reduce the dimensionality of the
data while still maintaining a good approximation of
the sample mean and variance

* Can also be used for selecting good features that
are combinations of the input features

* Unsupervised —just finds a good representation of
the data in terms of combinations of the input features

Principal Component Analysis identifies the principal compone "

in the sample covariance matrix of the data, X7 X 3 G

(note that since our data is #examples (n) x features (d), the :

covariance matrix will be d X d) 2k G

1 2 3 4 5 & 7
« PCAfinds a set of orthogonal vectors that best explain the
variance of the sample covariance matrix * How to geometrically identify principal components,
» These are exactly the eigenvectors of the covariance matrix X7 Projections and effectiveness for classification?
» We can discard the eigenvectors corresponding to small ) ?;r‘:]v ‘l%;‘:ﬁss?e'ed an ideal number of principal
ma_gnitude eige.nvalues to yigld an approximation | . Wh art) are the oroperties of eigenvalues and
* Simple algorithm to describe, MATLAB and other programming  gigenvectors?
languages have built in support for eigenvector/eigenvalue

computations
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Neural Networks

* Universal approximators
* Representing Boolean functions and logical formulas
* Representing general mathematical functions
« Various propagation aspects of neural networks
» functional representation of outputs and inputs
* gradient expressions
» activation functions and properties (sigmoid, tanh,
RelU)

« forward propagation
* backward propagation

* Overfitting in neural networks layer L — 1: hidden layer layer L: output layer
* regularization, dropout, other strategies g 4l-1 G
- bias-variance tradeoff \ \Vk el wfl
= : —1 Z.L : L

—U—U
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Reinforcement Learning 04

Modeling RL as a Markov Decision Process
*set of states S, set of actions A, initial state S,
« for grid world, can be cell coordinates

« transition model P(s, a, s")
*P([1,1],M,[1,2]) = 0.8
e reward function r(s)
r([3,4]) = +1

[3,4]

[0,3] [3,3]

[02]| [1,2] [2,2]] [3,2]

0]
g

Actions Transition Probabilities

*learn a policy: mapping from S to A

« (s) or (s, a) (deterministic vs. stochastic) ';(Eigh)t) ')(6:101)6(;(;10"/0)
up ;
€ (left) €(100%)

W (down) V(70%), €(30%)

»Value functions

 Which states and actions are better?
« Bellman equations, Bellman optimality conditions
 What is the difference between value iteration and policy iteration?

» What is the value iteration update equation?
» What is the exploration vs. exploitation tradeoff?
* What is the Q-learning?

» Why is Q-learning called model-free learning?
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