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How To Study?

For classifiers and regressors:

Linear/ridge regression
SVMs

Decision trees
k-Nearest Neighbors
Naive Bayes

Logistic Regression

For model selection:

Training set
Validation set
Test set

Cross validation

For evaluation metrics:

Accuracy

ROC curves / AUC-ROC
Precision

Recall

 What is the hypothesis space of the classifier/regressor?
* Can you draw the decision boundary of these classifiers given a simple
example?
» Can you learn/construct a classifier given a simple example?

 What is the general learning/optimization procedure?
 What hyper-parameters does the model depend on? Hyper-

parameters trade-off between or control the influence of
* the loss function
» the regularization function (or mechanisms to control model complexity)

* How do we select these models?
 How does the bias-variance behavior change with these

hyper-parameters?
* When will these models overfit?
 How can we avoid overfitting?

« What are they, and what are they for?
» Can you perform cross validation given a simple example?

« What are they, and how are they computed?

* When should you use them?
»  Can you compute them given a simple example?
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Supervised Learning: General Setup
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Discriminative vs. Generative Learning

Generative: Create something that generates ex’s  « Discriminative: What differentiates class A from

« Can create complete input feature vectors class B?
* Describes probability distributions for all « Don't try to model all the features, instead focus
features .
_ . on the task of categorizing
. Stoi;hastlcally create a plausible feature  Captures differences between categories
vector e » May not use all features in models
* Example: Naive Bayes « Examples: decision trees, SVMs, neural
« Make a model that generates positives, negatives nets, logistic regression

Classify a test example based on which is more

iikely to generate it * Typically more efficient and simpler

Assume some functional form for P(X|Y), P(Y) Discriminative classifiers, e.g., Logistic Regression:
—Estimate parameters of P(X|Y), P(Y) directly from training  —Assume some functional form for P(Y|X)

data —Estimate parameters of P(Y|X) directly from training data
—Use Bayes rule to calculate P(Y|X= x) —This is the ‘discriminative’ model

—This is a ‘generative’ model *Directly learn P(Y|X)

*Indirect computation of P(Y|X) through Bayes rule *But cannot obtain a sample of the data, because P(X) is
*As a result, can also generate a sample of the data, not available

P(X) = Xy P(y) P(Xly)
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Linear Regression

Problem Setup: Given data (x;) and real-valued labels (y;), find the best model that fits
current data and predicts future data

Problem: Given n training examples (x;,y;),i = 1, ..., n, find the
best model w by solving

minimize - (yl'y — 2y Xw + wiXTXw)
w

Ridge regression adds L, regularization
.. 1
minimize ~(y — W)l (y — Xw) + iw'w
w
wlw is a regularization term that is used to overcome ill-

conditioning, A > 0 is the regularization parameter, which
is tunable

The solution to this problem is the ordinary least
squares estimator

w = (XTX)"1xT

solution depends on the inverse of the covariance
matrix C = XT X, which can be ill-conditioned

unique closed-form solution, provided that number of data
points (n) exceeds data dimension (d)

(XTX)~1XT = X*is called the pseudo-inverse

The solution to this problem is the reqularized
least squares estimator

w=(XTX + Al;)"1Xy

for A > 0, inverse is can always be computed,
algorithm more robust
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] [ ] X o 1

Decision Trees | EamEnDw
* Recursively split the features based on some statistical measure — Ta o i T

information gain, Mutual Information q T N
« Splits are binary in general — can you make multi-way split? What 4 o E- °©® o

will information gain favor? Binary or multi-way? J g0 F-mmm I itk
« What is a decision stump? o | = o
* How does the decision boundary look like? 0 20 30 40 53‘1
* Pruning will allow decision trees to have a reduced depth
* When will decision trees overfit? \What will you prefer — small Sumy ~ Overcast  Rain

depths or a very large depth? How can you ayoid overfitting? ch
* Expressiveness — Can they represent an arbitrary Boolean

function? How about a disjunction of conjunctions, negations &tg? Normal Strong  Weak
*When do they have bias? When do they exhibit variance? N'O/ \Y* N'O/ \Y

Mutual information/information gain is used to select next attribute

H(Y) = —Z P(Y = y)logz P(Y = )

H(Y|X) = — ZP(X—x)ZP(Y y|X =x) logy (¥ =y | X = x)

(X, Y) = H(Y) — H(Y|X)
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K-Nearest Neighbor

» Lazy algorithm: does not build a classifier from all data. Instead builds as every example comes in
» Decision boundaries are drawn between examples of opposite classes. What are distance measures?
 Complex decision boundaries — Voronoi diagram. Small k leads to more complex decision boundaries
- increasing k reduces variance, increases bias
 How does noise affect NN? How can their effect be reduced?
* For high-dimensional space, problem that the nearest neighbor may not be very close at all!

d kNN algorithm b Effect of k on KNN boundaries
k: 1 k — 3 k - 3 k _ ?
® s : *, _4' 1
'S " o* )
}' 0 = _l'-:'ll '_: . "-.‘ .;.',_. : '. :";. . & }- O i
o & < X
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.
Support Vector Machines % -
* In the simplest case, SVMs search for the hyperplane that b -
maximizes the separation between the two classes ( )

» The minimization problem is a quadratic optimization with ~ support VeCS '
linear inequality constraints. The key idea is to convert this to a ,
dual problem with smaller number of constraints \ ®

* Hypothesis is a linear combination of training examples - @ ©

« only some training examples have non-zero weights, are
called

* Can replace the inner product in the dual formulation with a
- called the

» Understand kernels, how to get kernels from explicit soft-margin support vector machine
transformations

n
« What can be represented? When can SVMs overfit? How can ~ min  5[wl|* + (Z\
you prevent that? (Hint: Think linear SVMs vs non-linear S b)zl =& Wi—=1..m
 When do they have bias? When do they exhibit variance?
soft-margin svm dual

1 n n | P n |
max —3 ) ;4 Zj:l OGO Y Y XX+ D il Qi

st. Do,y =0
0<; <C, Vi=1...n

[ T THE UNIVERSITY OF TEXAS AT DALLAS
M I D Erik Jonsson School of Engineering and Computer Science



CS6375: Machine Learning

Mid-Term Review

Naive Bayes

— Learns the joint distribution of the labels and

features P(y,x)
. features are conditionally independent

given y that s,

d
P(xq,%5, ..., x4|y) = 1_[ P(xj|y)
j=1

* When is that a good one? When is it a bad assumption?
* Learning is very simple with (MLE).
d
y = argmax P(y|x) = argmax P(y) - P(xj|y)
y y =1
What is the issue with a simple MLE? How can you fix this?

* Can handle a variety of data types. Why?
* First thing to try in most problems — simple yet very efficient
* When do they have bias? When do they exhibit variance?

remember these expressions!
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Logistic Regression ee . [ o

Logistic Loss Function: (probabilities from hard classification) e o @5 " e W
Learn or p(y|x) directly from the data . .ot

» Assume a functional form, (e.g., a linear classifier f(x) = ‘

w’ x + b) such that ¢ *, NARTEE

1 .
p(y =-1|x) = Troxp (WTxiD) on one side and oY = 1]x) = 1

. _ _ exp(wl x+b)
p(y=1|x) = 1+exp (wl'x+b) - -
thatisp(y = =1[x) =1 —p(y = 1| x) S HR e

» Differentiable, easy to learn, handles noisy labels naturally 1 % @ - . ot

0.6 / +

on the other side

Logistic regression as it maximizes Tof g g
the log-odds of a training example belonging to class y = 1 are: i g ¥
p(y =1]x) wf ® e S -
log =wlix+b |
p(y = —1| x) ) “
Consider a on the weights to prevent overfitting
* assume weights from a normal distribution with zero mean, identity covariance:

_ 1 lIwl|?
P(w) = V2mo? eXp (_ 202 )
» maximizing P(w) pushes weights to zero, which minimizes the complexity of
classifier; also helps avoid large weights and overfitting

taking the Iogarithm gives us log P(w) = —||lw||* + const

max? V,(W x; + b) —log(1 + exp(w'x; + b))
£ N e
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The Bias-Variance Tradeoff

Low Variance

High Variance

Logistic regression, linear regression, SVM, neural Higher / means... A
networks with an / ||w||3 (L2) penalty in the objective more/less variance s
more/less bias =
Logistic regression, linear regression, SVM, neural Higher / means...
networks with an /1 ||w||; (L2) penalty in the objective more/less variance
more/less bias
Decision tree: 17, an upper limit on the number of nodes in Higher n means... :
the tree more/less variance . '
more/less bias | =
Feature selection with mutual information scoring: include Higher ¢ means... =
a feature in the model only if its MI(feat, class) is higher more/less variance
than a threshold more/less bias
Increasing / in k-nearest neighbor models Higher / means...
more/less variance
more/less bias
. . . A 2
Removing all the non-support vectors in an SVM This means... § Total Error
more/less variance 5
more/less bias g
s !
Dimension reduction as preprocessing: instead of using all Higher / means... 5
features, reduce the training data down to © dimensions more/less variance |$ 8 Variance
more/less bias | '
Bias?
Model Complexity
[ D THE UNIVERSITY OF TEXAS AT DALLAS
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Cross Validation

Using a single tuning set can be unreliable predictor, plus
some data “wasted”; cross validation can help with model
selection:

For each possible set of parameters, 6,

» Divide training data into k folds
* train k models using trnwith 6,,

* score k models using val,,

Fold 1 val, trn, « average tuning set score over the k models
Use best set of parameters 8,and all (train + tune)
Fold 2 trn, val, trn, examples to train the best model
Apply resulting model to test set
trn, val, trn,
trn, val, trn,
Fold k training set Va"::tt'on testing set

| Y

—p- final model

generate
models

select best
model

evaluation metrics on
future examples

Learner
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Receiver-Operator Characteristic Curves

An ROC curve (receiver operating characteristic curve) is ~ Frocedure to constructan ROC curve:
» sort predictions on test set

a graph showing the performance of a classification model locate a threshold between examples with
at all classification thresholds. Spposile catogores

* judging algorithms on accuracy alone may not be good enough - compute TPR & FPR for each threshold
when getting a positive example wrong costs more than getting  , .onnect the dots

a negative example wrong (or vice versa)

» lowering the classification threshold classifies more items as — + ® ®
positive, thus increasing both False Positives and True Positives g 10
se| @ ¢
@2 &
.
n o
3300
e
=
S
= O —

. 1.0
Area under the ROC Curve (AUC) provides an aggregate measure ~ Prob(alg outputs + | - is correct)

of performance across all possible classification thresholds False Positve Rate
* One way of interpreting AUC is as the probability that the model ranks a
random positive example more highly than a random negative example
» can compare performance of different algorithms using AUC
» can use AUC/ROC to select a good threshold for classification in order to
weight false positives and false negatives differently
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Evaluation: Precision and Recall vt dements
. # of relevant items retrieved TP false negatives true negatives
precision = - : —
total # of items retrieved TP+

interpretation: Prob(is positive | called positive)

# of relevant items retrieved _ TP

recall = : — =
total # of items that exist TP+FN true positives  false positives

interpretation: Prob(called positive | is positive)

Notice that the count of true negatives (T'N) is not used in either
formula; therefore you get no credit for filtering out irrelevant items

celected elements

How many selected How many relevant

items are relevant? items are selectedy

Becall = ———

Precision = -

,
Case Study 1: For applications such as medical diagnosis, require high recall £ H:
to reduce false negatives

Case Study 2: For applications such as spam-filtering and recommendations
systems, require high precision to reduce false positives
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