CS6375: Machine Learning Gautam Kunapuli

Mid-Term Review

How To Study?

For classifiers and regressors:

- Linear/ridge regression
- SVMs
- Decision trees
- k-Nearest Neighbors
- Naïve Bayes
- Logistic Regression

For model selection:

- Training set
- Validation set
- Test set
- Cross validation

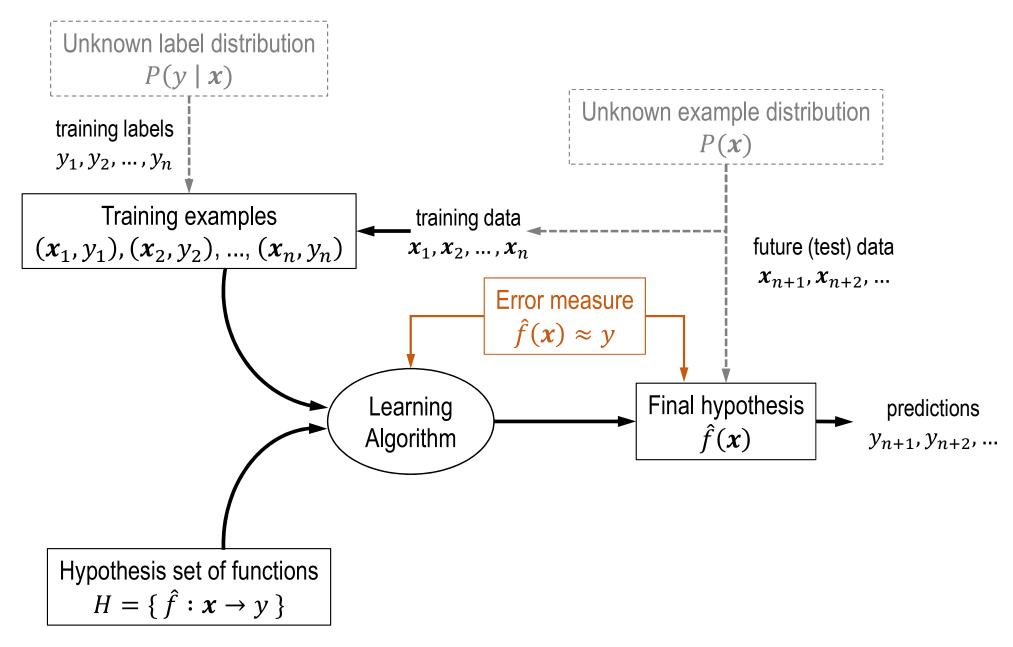
For evaluation metrics:

- Accuracy
- ROC curves / AUC-ROC
- Precision
- Recall

- What is the hypothesis space of the classifier/regressor?
 - Can you draw the **decision boundary** of these classifiers given a simple example?
 - Can you learn/construct a classifier given a simple example?
- What is the general learning/optimization procedure?
- What hyper-parameters does the model depend on? Hyperparameters trade-off between or control the influence of
 - the loss function
 - the regularization function (or mechanisms to control model complexity)
- How do we **select** these models?
- How does the **bias-variance** behavior change with these hyper-parameters?
 - When will these models overfit?
 - How can we avoid overfitting?
- What are they, and what are they for?
 - Can you perform cross validation given a simple example?

- What are they, and how are they computed?
- When should you use them?
 - Can you compute them given a simple example?

Supervised Learning: General Setup



Discriminative vs. Generative Learning

- Generative: Create something that generates ex's
- Can create complete input feature vectors
 - Describes probability distributions for <u>all</u> features
 - Stochastically create a plausible feature vector
 - Example: Naïve Bayes
- Make a model that *generates* positives, negatives
- Classify a test example based on which is more likely to generate it

Assume some **functional form for P(X|Y), P(Y)** –Estimate parameters of P(X|Y), P(Y) directly from training data

- –Use Bayes rule to calculate P(Y|X= x)
- -This is a 'generative' model
- •Indirect computation of P(Y|X) through Bayes rule •As a result, can also generate a sample of the data, $P(X) = \sum y P(y) P(X|y)$

- **Discriminative**: What <u>differentiates</u> class A from class B?
- Don't try to model all the features, instead focus on the task of categorizing
 - Captures <u>differences</u> between categories
 - May not use all features in models
 - Examples: decision trees, SVMs, neural nets, logistic regression
- Typically more efficient and simpler

Discriminative classifiers, e.g., Logistic Regression:
Assume some functional form for P(Y|X)
Estimate parameters of P(Y|X) directly from training data
This is the 'discriminative' model
Directly learn P(Y|X)
But cannot obtain a sample of the data, because P(X) is not available

Linear Regression

Problem Setup: Given data (x_i) and real-valued labels (y_i) , find the best model that fits current data and predicts future data

Problem: Given *n* training examples (x_i, y_i) , i = 1, ..., n, find the best model *w* by solving

minimize $\frac{1}{n}(\mathbf{y}^T\mathbf{y} - 2\mathbf{y}^T X\mathbf{w} + \mathbf{w}^T X^T X\mathbf{w})$

The solution to this problem is the ordinary least squares estimator

 $w = (X^T X)^{-1} X^T y$

solution depends on the inverse of the covariance matrix $C = X^T X$, which can be ill-conditioned

unique closed-form solution, provided that number of data points (n) exceeds data dimension (d)

 $(X^T X)^{-1} X^T = X^+$ is called the **pseudo-inverse**

The solution to this problem is the regularized least squares estimator

$$w = (X^T X + \lambda I_d)^{-1} X \mathbf{y}$$

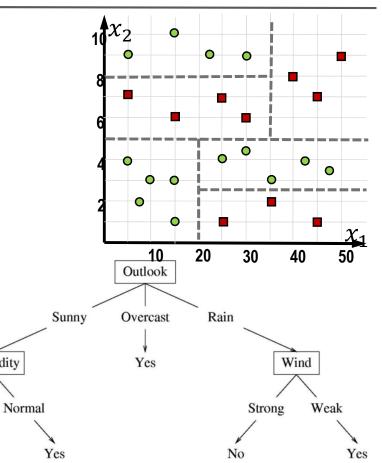
for $\lambda > 0$, inverse is can always be computed, algorithm more **robust**

Ridge regression adds L₂ regularization minimize $\frac{1}{n}(\mathbf{y} - X\mathbf{w})^T(\mathbf{y} - X\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$

 $w^T w$ is a regularization term that is used to overcome illconditioning, $\lambda > 0$ is the regularization parameter, which is tunable

Decision Trees

- Recursively split the features based on some statistical measure information gain, Mutual Information
- Splits are binary in general can you make multi-way split? What will information gain favor? Binary or multi-way?
- What is a decision stump?
- How does the decision boundary look like?
- Pruning will allow decision trees to have a reduced depth
- When will decision trees **overfit**? What will you prefer small depths or a very large depth? How can you avoid overfitting?
- Expressiveness Can they represent an arbitrary Boolean function? How about a disjunction of conjunctions, negations etc? Nor
- When do they have bias? When do they exhibit variance? $\frac{1}{N_0}$

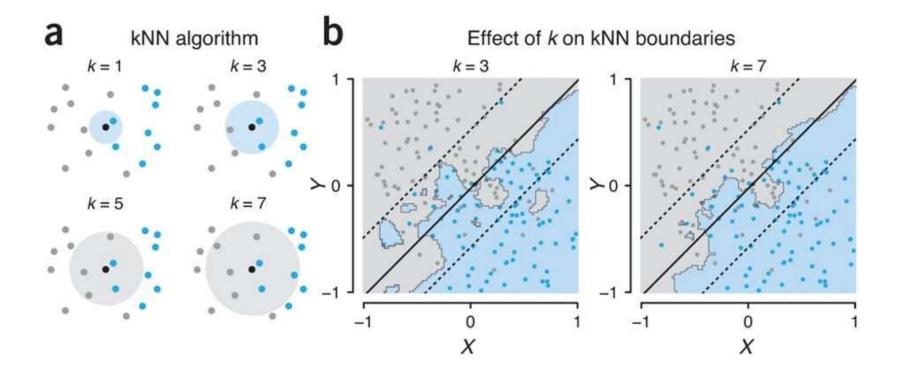


Mutual information/information gain is used to select next attribute

$$H(Y) = -\sum_{y} P(Y = y) \log_2 P(Y = y)$$
$$H(Y|X) = -\sum_{x} P(X = x) \sum_{y} P(Y = y \mid X = x) \log_2 (Y = y \mid X = x)$$
$$I(X, Y) = H(Y) - H(Y|X)$$

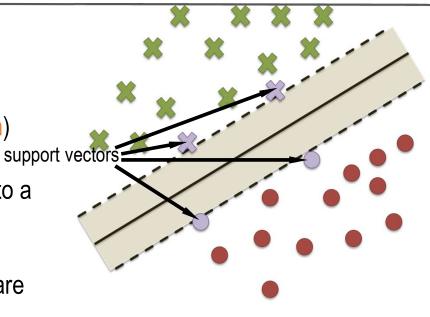
K-Nearest Neighbor

- Lazy algorithm: does not build a classifier from all data. Instead builds as every example comes in
- Decision boundaries are drawn between examples of **opposite** classes. What are distance measures?
- Complex decision boundaries Voronoi diagram. Small k leads to more complex decision boundaries
- Choosing k: increasing k reduces variance, increases bias
- How does noise affect NN? How can their effect be reduced?
- For high-dimensional space, problem that the nearest neighbor may not be very close at all!



Support Vector Machines

- In the simplest case, SVMs search for the hyperplane that maximizes the separation between the two classes (margin)
- The minimization problem is a quadratic optimization with supplication inequality constraints. The key idea is to convert this to a dual problem with smaller number of constraints
- Hypothesis is a linear combination of training examples
 - only some training examples have non-zero weights, are called support vectors
- Can replace the inner product in the dual formulation with a **kernel**; called the **kernel trick**
 - Understand kernels, how to get kernels from explicit transformations
- What can be represented? When can SVMs overfit? How can you prevent that? (Hint: Think linear SVMs vs non-linear SVMs.)
- When do they have bias? When do they exhibit variance?



soft-margin support vector machine min $\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{n} \xi_i$ s.t. $y_i(\mathbf{w}'\mathbf{x}_i - b) \ge 1 - \xi_i \quad \forall i = 1 \dots n$ $\xi_i \ge 0$

$$\begin{array}{ll} \text{soft-margin svm dual} \\ \max & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}'_i \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i \\ \text{s.t.} & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & 0 \leq \alpha_i \leq C, \quad \forall i = 1 \dots n \end{array}$$

Naïve Bayes

- Generative model Learns the joint distribution of the labels and features $P(y, \mathbf{x})$
- Naïve Bayes assumption: features are conditionally independent given y that is, d

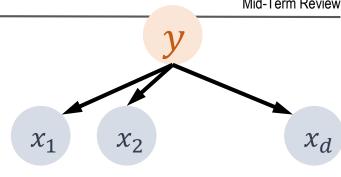
$$P(x_1, x_2, ..., x_d | y) = \prod_{j=1}^{n} P(x_j | y)$$

- When is that a good one? When is it a bad assumption?
- Learning is very simple with maximum likelihood estimation (MLE).

$$y = \underset{y}{\operatorname{argmax}} P(y|\boldsymbol{x}) = \underset{y}{\operatorname{argmax}} P(y) \cdot \prod_{j=1}^{u} P(x_j|y)$$

What is the issue with a simple MLE? How can you fix this?

- Can handle a variety of data types. Why?
- First thing to try in most problems simple yet very efficient
- When do they have bias? When do they exhibit variance?



remember these expressions!

Logistic Regression

Logistic Loss Function: (probabilities from hard classification) Learn or p(y|x) directly from the data

- Assume a functional form, (e.g., a linear classifier f(x) = $w^T x + b$) such that
- $p(y = -1 | x) = \frac{1}{1 + \exp(w^T x + b)}$ on one side and • $p(y = 1 | \mathbf{x}) = \frac{\exp(\mathbf{w}^T \mathbf{x} + b)}{1 + \exp(\mathbf{w}^T \mathbf{x} + b)}$ on the other side that is p(y = -1 | x) = 1 - p(y = 1 | x)
- Differentiable, easy to learn, handles noisy labels naturally

Logistic regression implements a linear classifier as it maximizes the **log-odds of a training example** belonging to class y = 1 are:

$$\log \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} = \mathbf{w}^T \mathbf{x} + b$$

Consider a prior distribution on the weights to prevent overfitting

• assume weights from a normal distribution with zero mean, identity covariance:

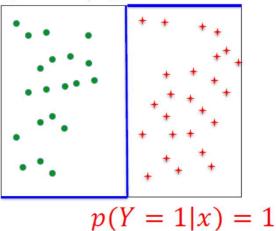
$$P(\boldsymbol{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\|\boldsymbol{w}\|^2}{2\sigma^2}\right)$$

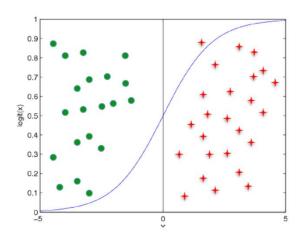
• maximizing P(w) pushes weights to zero, which minimizes the complexity of classifier; also helps avoid large weights and overfitting taking the logarithm gives us $\log P(w) = -||w||^2 + \text{const}$

$$\max_{\mathbf{x}_i \in \mathbf{y}_i} \frac{y_i(\mathbf{w}^T \mathbf{x}_i + b) - \log(1 + \exp(\mathbf{w}^T \mathbf{x}_i + b))}{2} - \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Erik Jonsson School of Engineering and Computer Science

p(Y = 1|x) = 0

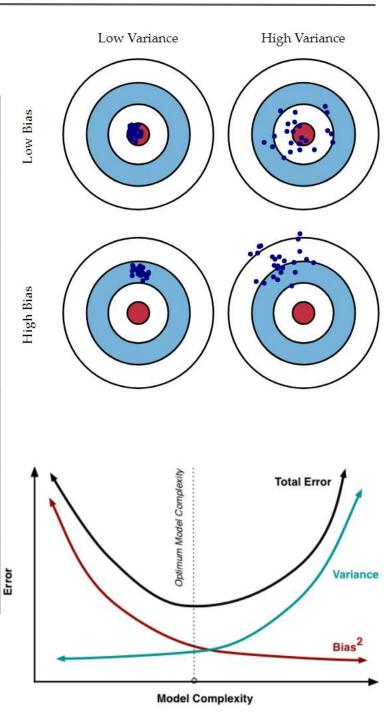




Mid-Term Review

The Bias-Variance Tradeoff

Logistic regression, linear regression, SVM, neural networks with an $\lambda \ w\ _2^2$ (L2) penalty in the objective	Higher λ means more/less variance more/less bias
Logistic regression, linear regression, SVM, neural networks with an $\lambda \ w\ _1$ (L2) penalty in the objective	Higher λ means more/less variance more/less bias
Decision tree: <i>n</i> , an upper limit on the number of nodes in the tree	Higher <i>n</i> means more/less variance more/less bias
Feature selection with mutual information scoring: include a feature in the model only if its MI(feat, class) is higher than a threshold <i>t</i>	Higher <i>t</i> means more/less variance more/less bias
Increasing <i>k</i> in k-nearest neighbor models	Higher k means more/less variance more/less bias
Removing all the non-support vectors in an SVM	This means more/less variance more/less bias
Dimension reduction as preprocessing: instead of using all features, reduce the training data down to <i>k</i> dimensions	Higher k means more/less variance more/less bias



val₁

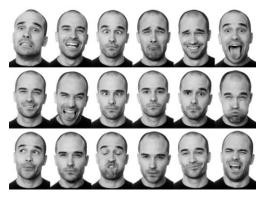
trn₂

val₂

Fold 1

Fold 2

Cross Validation



trn₁

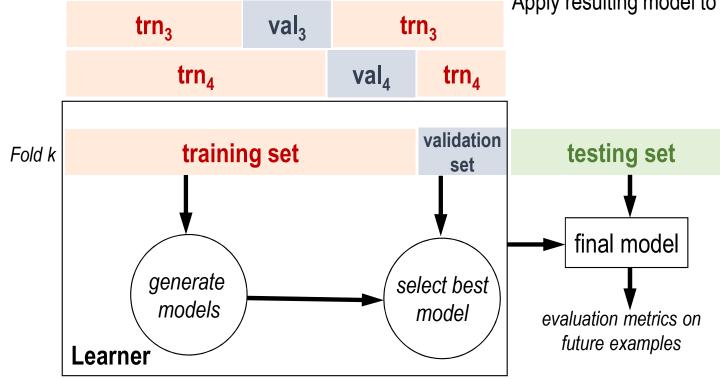
trn₂

Using a **single** tuning set can be **unreliable** predictor, plus some data "**wasted**"; cross validation can help with **model selection**:

For each possible set of parameters, θ_p

- Divide $\underline{\text{training}}$ data into k folds
- train k models using trn_k with θ_p
- score k models using val_k

• average **tuning set score** over the k models Use **best** set of parameters θ_* and <u>all</u> (train + tune) examples to train the best model Apply resulting model to **test set**



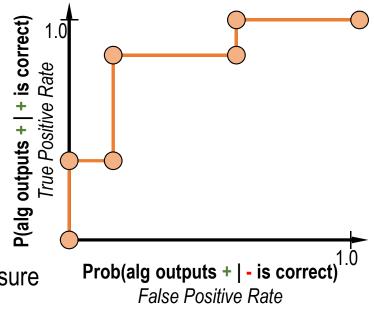
Receiver-Operator Characteristic Curves

An **ROC curve** (receiver operating characteristic curve) is a graph showing the performance of a classification model at **all classification thresholds**.

- judging algorithms on accuracy alone may not be good enough when getting a positive example wrong **costs more** than getting a negative example wrong (**or vice versa**)
- lowering the classification threshold classifies more items as positive, thus increasing both False Positives and True Positives

Procedure to construct an ROC curve:

- sort predictions on test set
- locate a threshold between examples with opposite categories
- compute TPR & FPR for each threshold
- connect the dots



Area under the ROC Curve (AUC) provides an aggregate measure of performance across all possible classification thresholds

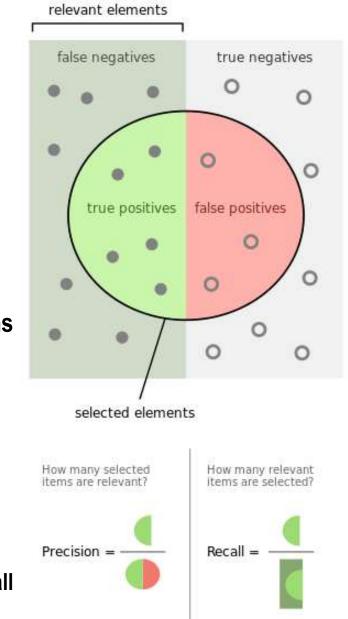
- One way of interpreting AUC is as the **probability** that the model ranks a random **positive example** more **highly** than a random **negative example**
- can compare performance of different algorithms using AUC
- can use AUC/ROC to select a good threshold for classification in order to weight false positives and false negatives differently

Evaluation: **Precision and Recall**

 $\frac{\# of \ relevant \ items \ retrieved}{total \ \# \ of \ items \ retrieved} = \frac{TP}{TP+}$ interpretation: Prob(is positive | called positive)

recall = $\frac{\# of \ relevant \ items \ retrieved}{total \ \# \ of \ items \ that \ exist} = \frac{TP}{TP+FN}$ interpretation: Prob(called positive | is positive)

Notice that the count of true negatives (TN) is not used in either formula; therefore you get **no credit for filtering out irrelevant items**



Case Study 1: For applications such as medical diagnosis, require high recall to reduce false negatives

Case Study 2: For applications such as spam-filtering and recommendations systems, require high precision to reduce false positives