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Abstract

A key step in many statistical learning methods used in machine learning involves solving a convex op-
timization problem containing one or more hyper-parameters that must be selected by the users. While
cross validation is a commonly employed and widely accepted method for selecting these parameters, its
implementation by a grid-search procedure in the parameter space effectively limits the desirable number
of hyper-parameters in a model, due to the combinatorial explosion of grid points in high dimensions. A
novel paradigm based on bilevel optimization approach is proposed and gives rise to a unifying framework
within which issues such as model selection can be addressed.

The machine learning problem is formulated as a bilevel program–a mathematical program that has
constraints which are functions of optimal solutions of another mathematical program called the inner-
level program. The bilevel program is transformed to an equivalent mathematical program with equilib-
rium constraints (MPEC). Two alternative bilevel optimization algorithms are developed to optimize the
MPEC and provide a systematic search of the hyper-parameters.

In the first approach, the equilibrium constraints of the MPEC are relaxed to form a nonlinear program
with linear objective and non-convex quadratic inequality constraints, which is then solved using a general
purpose nonlinear programming solver. In the second approach, the equilibrium constraints are treated
as penalty terms in the objective, and the resulting non-convex quadratic program with linear constraints
is solved using a successive linearization algorithm.

The flexibility of the bilevel approach to deal with multiple hyper-parameters, makes it powerful approach
to problems such as parameter and feature selection (model selection). In this thesis, three problems
are studied: model selection for support vector (SV) classification, model selection for SV regression
and missing value-imputation for SV regression. Extensive computational results establish that both
algorithmic approaches find solutions that generalize as well or better than conventional approaches and
are much more computationally efficient.
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1

Introduction

Machine Learning, is a truly multi-disciplinary field and draws concepts from such diverse disciplines as
artificial intelligence, computational complexity, control theory, cognitive science, philosophy, neuroscience
and statistics. Machine learning deals with automatically building a model of a process or system through
analysis of existing patterns or data such that the new model is able to predict the responses of the system
on patterns that have yet to be observed. This ability of learner to correctly predict outputs for unseen
inputs is called generalization and all machine learning methods seek to improve this performance.

Machine learning problems are known to be ill-posed in general [71] because data set sizes are
finite and sometimes small, non-uniformly sampled and high dimensional. In addition, there may be
problems such as measurement errors, noise and missing values in the data. This situation is further
exacerbated by limited parameter selection techniques and inaccurate estimates of generalization—two
model selection strategies most learning algorithms inevitably entail. The late 80s and early 90s saw the
emergence of an elegant and powerful machine learning paradigm, one that addressed many of the issues
above, called Structural Risk Minimization (SRM). The principles of SRM give rise to powerful learners
called Support Vector Machines (SVMs).

SVMs are universal feed-forward networks, or more specifically, are linear learning machines that
are able to perform different machine learning tasks. The first SVMs were introduced for binary pattern
classification [11, 19, 87]. Subsequent increased attention from the machine learning community lead
to several developments: the capability to handle nonlinear data sets via the “kernel trick” [81] and
other machine learning tasks such as regression [25, 83, 84], clustering [10], novelty detection [78] semi-
supervised learning [6] and SVM variants such as 1-norm and linear SVMs [64, 69, 90] and ν-SVMs [16].
These progresses were accompanied by the development of fast algorithms such as sequential minimal
optimization [70] (SMO)—in the late 90s—or more recently, interior-point methods for massive data sets
[29], and for linear SVMs: cutting plane algorithms [49] and decomposition based approaches [65]. These
advances mean that the current state-of-the-art SVMs are capable of efficiently handling data sets of
several thousands to millions of data points.

SVMs have been successfully applied to a wide variety of applications such as medicine, com-
putational biology, finance, robotics, computer vision, image, object and handwriting recognition and
text processing, to name just a few, and have emerged as one of the pre-eminent machine learning tech-
nique of our times. However, despite this success and popularity, several open questions, such as optimal
model selection, still remain. The need for new methodologies to address these issues forms the primary
motivation for this thesis.

Section 1.1 provides a brief background on the principles of structural risk minimization, SVMs for
classification and regression and their extension into nonlinear domains via kernels Section 1.2 introduces
the concepts of bilevel optimization and some common approaches to solving such problems. A reader
familiar with these concepts could skip the discussion in Sections 1.1 and 1.2. Section 1.3 discusses
several open questions and issues that motivate this thesis. Section 1.4 introduces a novel paradigm—



2 1 Introduction

bilevel programming for machine learning—that forms the framework for the various models discussed in
the thesis, the layout of which is detailed in Section 1.5.

1.1 Background: Support Vector Machines

Consider that we are interested in modeling a regressive system of the form y = f(x) + ε, where the data
point, x, and its label, y are drawn from some unknown distribution P (x, y). In general, the hypothesis
function, f(x) may depend on the labels y and may be parameterized by α ∈ Λ and is variously written
as f(x, y), f(x; α) or f(x, y; α) as appropriate.

1.1.1 The Statistical Nature of Learning

The target function, f , which belongs to some target space, is deterministic, and the intrinsic system
error, ε, is a random expectational error that represents our ignorance of the dependence of y on x. Thus,
E[ε] = 0 and E[y] = E[f(x)] = f(x). The goal is to choose a function, f̂ , in a hypothesis space of candidate
functions that is as close to f as possible with respect to some error measure.

Suppose that we have ` realizations of labelled data, D = {(xi, yi)}`i=1, that constitute the
training sample. Using D, we train a function, ŷ = f̂(x) that minimizes the squared error. Thus, the
expected predicted error or risk is

R[f ] = ED
[
(y − ŷ)2

]
= ED

[
(y − f̂(x))2

]
.

It is easy to show that

R[f ] = ε2 +
(
f(x)− ED

[
f̂(x)

])2

+ ED
[
(ŷ − ED[ŷ])2

]
,

where the expected predicted error decomposes into three terms (see Figure 1.2):

• the noise variance, ε2, which is the noise that is inherent in the system. This term cannot be minimized
by the learner as it is independent of the learning process. It is also referred to as the intrinsic error.

• the squared bias, (f(x)−ED[f̂(x)])2, measures the difference between the true function and the average
of the measured values at x and represents the inability of the learner to accurately approximate the
true function. This indicates that the choice of model was poor because the hypothesis space is too
small to contain the true function. The bias is also called the approximation error.

• the estimation variance, ED[(ŷ − ED[ŷ])2], measures the error in estimating the true labels and how
sensitive the model is to random fluctuations in the data set. This is also called the estimation error.

To reduce training error on the given data, the learner must minimize the estimation variance
over the training set. To reduce generalization error on the future, unseen data, the learner must minimize
the bias over the training set. Unfortunately, it is not possible to decrease one without increasing the
other as there is a natural trade-off between the bias and the variance. This leads to, what is commonly
referred to as, the bias-variance dilemma, where the learner must minimize some combination of variance
and bias.

To see this, consider Figure 1.1.1, where a data set is fit by a linear function and some high-
degree polynomial function. If we restricted the choice of target functions to just linear functions, we
would obtain linear fits for every data set and we have, consequently, introduced a bias into the learning
process. However, if we expanded the set of target functions to include higher degree polynomials, we
would obtain highly nonlinear fits that are susceptible to small fluctuations in the data and consequently,
have high variance. Related to this notion of complexity is the capacity of a class of functions that
constitute the hypothesis space. A hypothesis space with higher capacity yields overly complex models,
which overfit the data, whereas smaller capacity gives overly simple models which underfit the data.
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Fig. 1.1. The effect of complexity on gener-
alization. Fig. 1.2. Different errors that arise during the modeling of a

typical Machine Learning task.

1.1.2 Empirical Risk Minimization

This section and the next present a brief introduction to empirical and structural risk minimization since
most of the machine learning methods considered hereafter are based on these principles. A more detailed
discussion of this theory may be found in [87].

We assume that the training data, x ∈ Rn, are drawn identically and independently distributed
(i.i.d.) from a distribution, P (x). The corresponding labels, y, are assumed to be drawn from a conditional
distribution, P (y|x). The machine learning aim is to find a function, f(x,α), parameterized by α ∈ Λ,
that best approximates (predicts) y. This is achieved by minimizing the loss between the given and
predicted labels, i.e., minimizing the expected risk functional,

R[α] =
∫
L (y, f(x,α)) dP (x, y), (1.1)

with F (x, y) = F (x)F (y|x). The loss function, L (y, f(x,α)) is an error measure between the expected
and predicted labels (typically the number of misclassifications for classification tasks and mean average
deviation or mean squared error for regression tasks— there are many others). However, computing the
expected risk is not easy since the distribution, F (x, y), is typically unknown.

Instead, using inductive principles, we define the empirical risk, which is based only on the finite
data set, X, that we have for training the learner,

Remp[α] =
1
`

∑̀
i=1

L
(
yi, f(xi,α)

)
. (1.2)

and ` is the number of data points. On the surface, ERM minimizes the empirical risk, using it as an
estimate of the risk. The law of large numbers, which forms the theoretical basis for the application of
several estimation approaches, ensures that the empirical risk Remp converges to the expected risk R as
the number of data points approaches infinity:

lim
`→∞

Remp[α] = R[α]. (1.3)

However, (1.3) does not guarantee that the function femp that minimizes the empirical risk Remp converges
towards the function f that minimizes R. This is the notion of asymptotic consistency and applies equally
to the parameters αemp and α that parameterize femp and f respectively.
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Definition 1.1 (Consistency). We say that ERM is consistent if there exists a sequence of models,
α`, or functions, L (y, f(x,α`)), ` = 1, 2, . . ., such that the expected and empirical risks converge to the
minimal value of the risk, i.e, if the following two sequences converge in probability1

lim
l→∞

Prob
{
R[α`]− inf

α∈Λ
R[α] > ε

}
= 0, ∀ε > 0,

lim
l→∞

Prob
{

inf
α∈Λ

R[α]−Remp[α`] > ε

}
= 0, ∀ε > 0.

(1.4)

Consistency is essential so as to guarantee that the model α` converges to α. Thus, the concept of
consistency of the ERM principle becomes central to learning theory.

Theorem 1.2 (Key Theorem of Learning Theory, [87]). Let L (y, f(x,α)), α ∈ Λ, be a set of
functions that satisfy the condition

A ≤
∫
L (y, f(x,α)) dP (x, y) ≤ B (A ≤ R[α] ≤ B).

Then, for the ERM principle to be consistent, it is necessary and sufficient that the empirical risk Remp[α]
converge uniformly to the actual risk R[α] over the set L

(
yi, f(xi,α)

)
, α ∈ Λ, in the following sense:

lim
l→∞

Prob
{

sup
α∈Λ

(R[α]−Remp[α]) > ε

}
= 0, ∀ε > 0.

The theorem states that consistency of the ERM principle is equivalent to the existence of one-
sided uniform convergence as the number of samples grows infinite. It should be noted that the two-sided
convergence is too strong for ERM purposes since, in most machine learning problems, we are only
interested in minimizing and not maximizing the empirical risk. It is clear that consistency depends upon
the worst function from the hypothesis space that provides the largest error between the empirical and
expected risks. thus, ERM is a worst-case analysis.

The theory of uniform convergence that gives the necessary and sufficient conditions for consis-
tency also provides distribution-independent bounds on the rate of convergence. This bound typically
depends on a measure of the capacity or expressive power of the class of functions. Different bounds can
be derived using different capacity measures but the most common bound is provided by the Vapnik-
Chervonenkis dimension or simply the VC dimension. We will consider the classification task performed
upon a data set with ` points and a hypothesis space of indicator functions, F = {sign(f(α)) |α ∈ Λ}.
These ` points can be labelled in 2` possible ways as 0 or 1, i.e., a data set with ` points gives 2` distinct
learning problems.

Definition 1.3 (VC Dimension). The maximum number of points (in some configuration) that can be
shattered by F is called the VC dimension (h) of F . If there is no such maximum, the VC dimension is
said to be infinite.

The VC dimension is has nothing to do with geometric dimension; it is a combinatorial concept
that tries to represent the capacity (or complexity) of F with regard to data set size rather than the
number of hypotheses, |F|, because the latter could be infinite. Note that if the VC dimension is h, then
there exists at least one set with h points that can be shattered, but this is not necessarily true for every

1 The equations (1.4) are examples of probably approximately correct (PAC) bounds where the bound is meant

to hold in a probabilistic sense. Thus, Prob

{
inf

α∈Λ
R[α]−Remp[α`] > ε

}
refers to the probability of getting a

model αl with the property inf
α∈Λ

R[α]−Remp[α`] > ε.
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Fig. 1.3. All possible placements of three points shattered by the hypothesis space containing all two dimensional
linear functions, F = {(w, b) ∈ Rn+1 |w′x− b = 0}. The VC dimension of F is 3.

set with h points except for very simple cases. Figure 1.3, shows that the VC dimension of the set of two
dimensional linear discriminants in R2 is 3.

Intuitively, a hypothesis space with a very large or infinite VC dimension represents a very rich
class of functions which will be able to fit every labeling of the data and there will either be overfitting
or perhaps, even no learning and this class is not very useful. Thus, for learning to be effective, and
ultimately, for good generalization, the VC dimension must be finite. The following theorem summarizes
the above conclusions succinctly.

Theorem 1.4 (Fundamental Theorem of Learning, [87]). Let F be a hypothesis space having VC
dimension h. Then with probability 1− δ, the following bound holds

R[α] ≤ Remp[α] +

√
h

`
ln
(

2`
h

+ 1
)
− 1
`
ln

(
δ

4

)
. (1.5)

The second term in the right hand side is known as the VC confidence.

1.1.3 Structural Risk Minimization

Theorem 1.4 provides a distribution-independent bound on the true risk; it is a combination of the
empirical risk and a confidence interval term that is able to control the capacity of a class of functions
measured through the VC dimension, h. Thus, the best model can be obtained by minimizing the left-
hand side of the inequality (1.5), and SRM aims to do precisely this. SRM is an inductive principle like
ERM which is used to learn models from finite data sets. However, unlike ERM, which simply minimizes
the empirical risk, SRM provides a mechanism to control the capacity through a trade-off between the
empirical risk and the hypothesis space complexity. This is very similar to the bias-variance trade-off
discussed in Section 1.1.1.

SRM (see Figure 1.4) orders function classes according to their complexity such that they form a
nested structure, with more complex function classes being supersets of the less complex classes such that
it is possible to either compute the VC dimension for a subset or at least obtain a bound on it. SRM then
consists of finding the subset that minimizes the bound on the actual risk in (1.5). In other words, SRM
seeks to create a structure of nested hypothesis spaces, F1 ⊂ F2 ⊂ F3 . . .—with Fh being a hypothesis
space of VC dimension h—and solve the problems
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Fig. 1.4. SRM creates a structure in the hypothesis space: nested subsets ordered by VC dimension.

min
f[α]∈Fh

α∈Λ

Remp[α] +

√
h

`
ln
(

2`
h

+ 1
)
− 1
`
ln

(
δ

4

)
. (1.6)

While SRM principles may seem fairly straightforward, implementation is actually difficult because of
several reasons. Firstly, it is difficult to find the VC-dimension for a given hypothesis space since it is not
apparent exactly how to calculate this for all machines. Secondly, even if it were possible to calculate h
for a specific machine, it is may not be trivial to solve the subsequent optimization problem (1.6). Finally,
SRM does not explicitly specify any particular structure or indicate how the nested hypothesis spaces
can be constructed. Support Vector Machines, introduced by Boser, Guyon and Vapnik, achieve this by
relating the complexity of the function classes to the margin.

1.1.4 SVMs for Linear Classification

We consider the problem of separating the set of labeled training vectors belonging to two separate classes,
{xi, yi}`i=1 ∈ Rn+1, with yi = ±1 indicating class membership using a hyperplane, f(x) = w′x− b. The
function, f(x), is a candidate hypothesis from a set of all possible hyperplanes, F = {f : Rn → R | f(x) =
w′x − b}. It is easy to show that the VC dimension of F is h(F) = n + 1, which indicates that in a n-
dimensional input space, the maximal number of arbitrarily labeled points that can be linearly separated
is n+ 1.
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Fig. 1.5. Canonical Hyperplanes and Margins: None of the training examples produces an absolute output that
is smaller than 1 and the examples closest the hyperplane have exactly an output of one, i.e w′x− b = ±1

From SRM to SVM

SRM principles require that the VC dimension of the hypothesis space be finite and the hypothesis space
should allow for the construction of nested structure of function classes. The latter is achieved by setting

FΛ = {f : Rn → R | f(x) = w′x− b, ‖w‖2 ≤ Λ} . (1.7)

Before describing exactly how the definition above creates a nested function space, the concept of canonical
hyperplanes is introduced because the current hyperplane representation, (w, b), is not unique. It is
apparent that if a given data set is separable by a hyperplane (w, b), it is also separable by all hyperplanes
of the form (tw, tb), ∀t ≥ 0. This is a problem since there are infinitely many such hyperplanes and
every function class FΛ would contain the same functions in different representations. Consequently, all
the function classes, FΛ1 , FΛ2 , . . . would have the same VC dimension rather than the desired ”nested
structure” property that FΛ1 ⊂ FΛ2 ⊂ . . . for Λ1 ≤ Λ2 ≤ . . . with increasing VC dimensions for increasing
Λi (see Figure 1.4).

To ensure that (1.7) actually works, we need to define a unique representation for each hyperplane.
So, without loss of generality we can define the canonical hyperplane for a data set as the function,
f(x) = w′x− b, with (w, b) constrained by

min
i
|w′xi − b| = 1. (1.8)

Simply put, it is desired that the norm of the weight vector should be equal to the inverse distance of
the nearest point in the set to the hyperplane (see Figure 1.5). Since the data was assumed to be linearly
separable, any hyperplane can be set in canonical form by suitably normalizing w and adjusting b.

The margin is defined to be the minimal Euclidean distance between a training example, xi, and
the separating hyperplane. Intuitively, the margin measures how good the separation between the two
classes by a hyperplane is. This distance is computed as

γ(w, b) = min
xi:yi=1

|w′xi − b|
‖w‖

+ min
xi:yi=−1

|w′xi − b|
‖w‖

=
1
‖w‖

(
min

xi:yi=1
|w′xi − b|+ min

xi:yi=−1
|w′xi − b|

)
=

2
‖w‖

(1.9)

Thus, smaller the norm of the weight vector, larger the margin and larger the margin, smaller the
complexity of the function class (see Figure). More generally, it was shown in [87] that if the hy-
perplanes are constrained by ‖w‖ ≤ Λ, then the VC dimension of the class, FΛ, is bounded by
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Fig. 1.6. Illustration of why a large margin reduces the complexity of a linear hyperplane classifier.

h(FΛ) ≤ min(dΛ2R2e + 1, n + 1), where R is the radius of the smallest sphere enclosing the data.
We can construct nested function classes by bounding the margins of each function class by 2

Λ . Thus, for
Λ1 ≤ Λ2 ≤ . . ., we have FΛ1 ⊂ FΛ2 ⊂ . . . with h(FΛ1) ≤ h(FΛ2) ≤ . . ., realizing the structure necessary
to implement the SRM principle. Thus, the typical support vector based classifier can be trained by
solving the following problem:

minimize
w, b, ξ

1
2
‖w‖22 + C

∑̀
i=1

ξi

subject to ∀ i = 1, . . . , `,

yi(w′xi − b) ≥ 1− ξi,

ξi ≥ 0.

(1.10)

The variables ξi are called slack variables. The problem above defines a soft-margin support vector
machine, i.e., the assumption that the data are linearly separable without misclassification error (by some
function in the hypothesis space) is dropped. The slack variables are introduced to account for points
of one class that are misclassified, by a hypothesis function, as points of the other class; they measure
the distance of the misclassified points from the hyperplane. So, if a point xi is correctly classified, its
corresponding slack, ξi = 0 otherwise we will have ξi > 0. The final classifier will be f(x) = sign(w′x−b).

The regularization constant, C, gives the trade-off between bias and variance, or in terms of the
SRM principle, the confidence interval (capacity) and empirical risk. The parameter C has to be set a
priori to choose between different models with trade-offs between training error and the margin.

First Order Conditions and Dual Program

It is evident that solving (1.10) yields the optimal, canonical, maximal-margin hyperplane, which is the
ultimate goal of statistical learning theory implemented through SVMs. Problem (1.10) is an instance of
a quadratic program (QP) with inequality constraints. From classical Lagrangian theory, we know that
the solution to (1.10) is the saddle point of the Lagrangian. The latter may be constructed by introducing
Lagrange multipliers αi for the hyperplane constraints and ηi for the slack non-negativity constraints.
The Lagrangian is
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L(w, b, ξ,α,η) =
1
2
‖w‖22 + C

∑̀
i=1

ξi −
∑̀
i=1

αi
(
yi(w′xi − b)− 1 + ξi

)
−
∑̀
i=1

ηiξi (1.11)

The first-order Karush-Kunh-Tucker conditions for (1.10) consist of the following system of equalities,

∇w L = 0 =⇒ w −
∑̀
i=1

yiαixi = 0,

∇b L = 0 =⇒
∑̀
i=1

yiαi = 0,

∇ξi L = 0 =⇒ C − αi − ηi = 0,∀i = 1, . . . , `,

(1.12)

and the complementarity conditions,

0 ≤αi⊥ yi(w′xi − b)− 1 + ξi,≥ 0

0 ≤ξi ⊥ C − αi≥ 0

}
∀i = 1, . . . , `, (1.13)

where the variables ηi have been eliminated in constructing the second set of complementarity conditions.
The notation a ⊥ b implies the condition a′b = 0. The (Wolfe) dual to (1.10) can be derived by substituting
(1.12) into the Lagrangian. This yields:

maximize
α

−1
2

∑̀
i=1

∑̀
j=1

yiyjαiαj(xi)′xj +
∑̀
i=1

αi

subject to
∑̀
i=1

yiαi = 0,

0 ≤ αi ≤ C, ∀i = 1, . . . , `.

(1.14)

The dual problem, (1.14), is easier to solve than the primal as it has much fewer constraints. It is
interesting to note that, in the dual solution, only those training data that are misclassified by the
canonical hyperplanes yi(w′x − b) ≥ 1 have non-zero αi. The training data for which αi > 0 are called
support vectors.

Some very interesting points emerge from the study of the KKT conditions (1.12–1.13) and the
dual (1.14). Firstly, that the hyperplane w can be expressed as a linear combination of the training data
xi. Furthermore, it is apparent that only those points that lie on or below the margin for a given class
have αi > 0. (see Figure). This suggests that the hyperplane is a sparse linear combination of the training
data. Finally, the dual problem (which, as we have already noted, is easier to solve) does not depend on
the training data, but rather on the inner products. The importance of this last fact will become fully
apparent when SVMs are extended to handle nonlinear data sets by applying the “kernel trick” (see
Section 1.1.6).

1.1.5 Linear Regression

Though SV techniques were originally introduced for solving classification problems, they have also be
extended and successfully applied to solve regression problems [25, 83, 84]. We modify the notation
introduced so far slightly. The labels are real-valued, yi ∈ R, and are no longer restricted. As before, we
wish to train a function f(x) = w′x− b to perform regression on the given data.

Loss Functions

Recall that SRM attempts to minimize some tradeoff between the VC confidence and the empirical risk.
The latter depends on the loss function. There exist several well-known loss functions for regression, most
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notably, the L2 loss, L(yi, f(xi)) = (yi − f(xi))2, which is used for least squares and ridge regression,
and the L1 loss, L(yi, f(xi)) = |yi − f(xi)|. Yet another loss function that arises from robust regression
applications is Huber’s loss, which is a smooth combination of L1 and L2 losses.

Vapnik introduced a new loss function called the ε-insensitive loss in order to capture the notion
of sparsity that arose from the use of the margin in support vector classification. The loss is defined as

L(yi, f(xi)) = |yi − f(xi)|ε =
{

0, if |yi − f(xi)| ≤ ε,
|yi − f(xi)| − ε, if |yi − f(xi)| > ε.

(1.15)

This loss function has the effect of creating an ε-insensitivity tube around the hypothesis function f(x)
and only penalizing those points whose labels lie outside the tube. If the predicted values lie inside the
tube, the corresponding loss is zero. The empirical risk functional associated with the ε-insensitive loss is

Remp =
1
`

∑̀
i=1

max(|w′xi − b− yi| − ε, 0). (1.16)

Introducing slack variables ξi as before to measure the distance of the outlier-points above and below to
the tube, we can write down a formulation for support vector regression using the ε-insensitive loss:

minimize
w, b, ξ

1
2
‖w‖22 + C

∑̀
i=1

ξi

subject to ∀ i = 1, . . . , `,

w′xi − b− yi + ε+ ξi ≥ 0,

yi −w′xi + b+ ε+ ξi ≥ 0,

ξi ≥ 0.

(1.17)

First Order Conditions and Dual Program

Lagrange multipliers α±i are introduced for the upper and lower hyperplane constraints and ηi for the
ξ-nonnegativity constraints. As for the classification case, the KKT first order conditions can be written
down, which consist of the equality conditions,

w +
∑̀
i=1

(α+
i − α

−
i )xi = 0,

∑̀
i=1

(α+
i − α

−
i ) = 0,

(1.18)

and the complementarity conditions,

0 ≤α+
i ⊥ yi −w′xi + b+ ε+ ξi≥ 0

0 ≤α−i ⊥w′xi − b− yi + ε+ ξi≥ 0

0 ≤ ξi ⊥ C − α+
i − α

−
i ≥ 0

∀i = 1, . . . , `, (1.19)

where the variables ηi have been eliminated in constructing the second set of complementarity conditions.
The (Wolfe) dual to the support vector regression problem is

max
α
−1

2

∑̀
i=1

∑̀
j=1

(α+
i − α

−
i )(α+

j − α
−
j )(xi)′xj − ε

∑̀
i=1

(α+
i + α−i ) +

∑̀
i=1

yi(α+
i − α

−
i )

s.t.
∑̀
i=1

(α+
i − α

−
i ) = 0,

0 ≤ α±i ≤ C, ∀i = 1, . . . , `.

(1.20)
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As in the classification case, the dual problem for SV regression is similarly easier to solve compared to
the primal. The desirable properties of SV classification dual, such as sparsity, get carried over to the
regression problem. In addition, the dual variables α± are intrinsically complementary i.e., α+

i ⊥ α−i .
This is because no point can simultaneously be on both sides of the ε-tube causing at least one of the
two hyperplane constraints to be inactive always.

1.1.6 Kernel Methods

The SVM methods presented in the previous subsections can be used to learn linear functional rela-
tionships between the data and their target labels. This learned predictive function can then be used to
generalize and predict labels for new data. The methods are limited, however, as they are only able to
construct linear relationships while in many cases the relationship is nonlinear. SVMs can be extended to
handle nonlinear data sets via a procedure called the “kernel trick”. For the purposes of this discussion,
we will work with the classification model (1.10) and its dual program (1.14), though the results could
be easily extended to the regression models as well.

The most straightforward approach would be to map the input space (denoted X ) to a new feature
space such that linear relationships can be sought in the new space. Thus, we consider an embedding
map φ : Rn → RN which transforms the input data {(x1, y1), ..., (x`, y`)} to {

(
φ(x1), y1

)
, . . . ,

(
φ(x`), y`

)
}

and nonlinear relations to linear ones. The new space is called the feature space. The effect of this
transformation is that the new function to be learned is of the form w′φ(x)− b.

Direct transformation in the primal (1.10), however, is not a viable approach as the mapping
would be very expensive, especially for large N . In addition, all future data would have to be mapped to
the feature space in order to use the learned function. These issues can be circumvented if we considered
transformation within the dual (1.14). A glance at (1.14) shows it makes use of the inner products (xi)′xj

in the input space, or after the transformation, φ(xi)′φ(xj), in the feature space.
Usually, the complexity of computing the inner products is proportional to the dimension of the

feature space, N . However, for certain appropriate choices of φ, the inner products φ(xi)′φ(xj) can be
computed far more efficiently as a direct function of the input features and without explicitly computing
the mapping φ. A function that performs this is called a kernel function.

Definition 1.5 (Kernel function). A kernel, κ, is a function that satisfies for all x, z ∈ X , κ(x, z) =
φ(x)′φ(z), where φ is a mapping from the input space X to the feature space Fκ.

Consider a two-dimensional input space X ⊆ R2 together with a feature map φ : x = (x1, x2)→ φ(x) =
(x2

1, x
2
2,
√

2x1x2) ∈ Fκ = R3. The hypothesis space of linear functions in Fκ would be

g(x) = w11x
2
1 + w22x

2
2 + w12

√
2x1x2.

The feature map takes data from a two dimensional space to a three-dimensional space such that quadratic
functional relationships in X correspond to linear functional relationships in Fκ. We have

〈φ(x)′φ(z)〉=〈(x2
1, x

2
2,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2)〉
=x2

1z
2
1 + x2

2z
2
2 + 2x1x2z1z2)

=(x1z1 + x2z2)2

=〈x, z〉2.

Hence the function κ(x, z) = 〈x, z〉2 is a kernel function with Fκ as its corresponding feature space
(see Figure 1.7). It is important to note that the feature space is not uniquely determined by the kernel
function. For example, the same kernel above computes the inner product corresponding to the four-
dimensional mapping φ : x = (x1, x2)→ φ(x) = (x2

1, x
2
2, x1x2, x2x1) ∈ Fκ = R4.

Now, any linear model which depends solely on the inner products information of the data (such
as the SVM dual) can be extended to handle nonlinear data sets by performing the kernel trick, i.e.,
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Fig. 1.7. Transformation φ : x = (x1, x2)→ φ(x) = (x2
1, x

2
2,
√

2x1x2) ∈ Fκ mapping a quadratic relationship in
R2 to a linear relationship in R3

replacing x′z with a suitable kernel function, κ(x, z). Care must be taken in picking kernel functions:
they are required to be finite, symmetric and positive semi-definite i.e., satisfy Mercer’s Theorem which
is fundamental to interpreting kernels as inner products in a feature space [1]. For more on the theory
and characterization of kernels see [81]. Some commonly used and well-known kernels are

• Linear kernel: κ(x, z) = 〈x, z〉
• Polynomial kernel: κ(x, z) = (〈x, z〉+ c)d, c, d ≥ 0

• Gaussian kernel: κ(x, z) = e−
‖x−z‖2

σ , σ > 0
• Sigmoid kernel: κ(x, z) = tanh−1 η〈x, z〉+ θ

Kernels can also be constructed from other kernels:

• Conical combinations, κ(x, z) = a1κ1(x, z) + a2κ2(x, z), a1, a2 ≥ 0
• Products of kernels, κ(x, z) = κ1(x, z)κ2(x, z)
• Products of functions, κ(x, z) = f1(x)f2(z), f1, f2 are real valued functions.

Given training data {x1, · · · ,x`} and a kernel function κ(·, ·), we can construct a symmetric positive
semi-definite kernel matrix, K, with entries

Kij = κ(xi,xj),∀ i, j = 1, · · · , `.

The kernel matrix contains all the information available in order to perform the learning step, with the
exception of the training labels. One other way of looking at a kernel matrix is as a pairwise similarity
measure between the inputs. These are all key concerns when training in order to improve generalization
performance. More specifically, since most kernels are parameterized, the choice of kernel parameter
becomes very important with a poor choice leading to either under- or over-fitting and consequently poor
generalization (see Figure 1.8).

1.2 Background: Bilevel Optimization

In this subsection, we introduce the bilevel methodology by means of a brief historical perspective.
Succinctly, bilevel programs are a class of hierarchical optimization problems in variables x and y, with
the optimal x being chosen by solving a constrained optimization problem whose constraints themselves
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Fig. 1.8. A Gaussian kernel used to train a classifier on a highly nonlinear data set (left). The effects of over-fitting
are clearly visible (right)

are optimization problems in y, or possibly both x and y. In operations research literature, the class
of bilevel optimization problems was introduced by Bracken and McGill [12], and applied to defense
problems like minimum-cost weapon mix and economic problems like optimal production and marketing
decision making models. Their work is closely related to the extensively studied economic problem of the
Stackelberg game [85], whose origin predates the work of Bracken and McGill.

1.2.1 Stackelberg Games and Bilevel Programming

Stackelberg used a hierarchical model to describe the market situation where different decision makers
try to optimize their decisions based on individually different objectives according to some hierarchy.
The Stackelberg game can be considered an extension of the well-known Nash game. In the Nash game,
there are T players, each of whom has a strategy set, Yt, and the objective of player t is chose a strategy,
yt ∈ Yt, given that the other players have already chosen theirs, to minimize some utility function. Thus,
each player chooses a strategy based on the choices of the other players and there is no hierarchy.

In contrast, in the Stackelberg game, there is a hierarchy where a distinctive player, called the
leader is aware of the choices of the other players, called the followers. Thus, the leader, being in a
superior position with regard to everyone else can achieve the best objective while forcing the followers
to respond to this choice of strategy by solving the Stackelberg game. Consider the case of a single leader
and follower. Let X and Y denote the strategy sets for the leader and follower; let F (x, y) and f(x, y)
be their utility functions respectively. Based on the selection, x, of the leader, the follower can select the
best strategy y(x) ∈ Y such that f(x, y) is maximized i.e.,

y(x) ∈ Ψ(x) = arg max
y∈Y

f(x, y). (1.21)

The leader then computes the best strategy x ∈ X as (see Figure 1),

x ≡ max
x∈X
{F (x, y) | y ∈ Ψ(x)} . (1.22)

Equations (1.21) and (1.22) can be combined to express the Stackelberg game compactly as
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Fig. 1.9. The Stackelberg game (left), showing the hierarchy between the leader and the follower; Cross validation
modelled as a bilevel program (right), showing the interaction between the parameters, which are optimized in
the outer level and the models which are trained in the inner level.

max
x∈X, y

F (x, y)

s.t. y ∈ arg max
η∈Y

f(x, η). (1.23)

Bilevel programs are more general than Stackelberg games in the sense that the strategy sets, also known
as admissible sets, can depend on both x and y. This leads us to the general bilevel program formulated
by Bracken and McGill:

max
x∈X, y

F (x, y) outerlevel

s.t. G(x, y) ≤ 0,

y ∈

{
arg max
y∈Y

f(x, y)

s.t. g(x, y) ≤ 0

}
. innerlevel

(1.24)

The bilevel program, (1.24), is a generalization of several well-known optimization problems as noted
in [22]. If F (x, y) = −f(x, y), we have the classical minimax problem; if F (x, y) = f(x, y), we have a
realization of the decomposition approach to optimization problems; if the dependence of both problems
on y is dropped, we have bicriteria optimization.

1.2.2 Bilevel Programs and MPECs

We consider bilevel programs of the type shown below, which is slightly different from the Bracken and
McGill formulation, (1.24),

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

y ∈

{
arg min

y
f(x, y)

s.t gi(x, y) ≥ 0, ∀i = 1 . . .m

}
.

(1.25)
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Introducing Lagrange multipliers, λi ≥ 0, for the inner-level constraints, (1.25) can be rewritten using
either the first-order KKT conditions or a variational inequality as follows:

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

∇f(x, y)−
m∑
i=1

λi∇gi(x, y) = 0,

0 ≤ λi ⊥ gi(x, y) ≥ 0, ∀i = 1 . . .m.

⇐⇒

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

(u− y) ′∇f(x, y) ≥ 0, for some y,

u ∈ { y | gi(x, y) ≥ 0, ∀i = 1 . . .m} .

(1.26)

The two formulations above are equivalent nonlinear programs; we shall use the one with the inner-level
KKT conditions. The constraints of the form 0 ≤ λi ⊥ gi(x, y) ≥ 0 are called equilibrium constraints
with λi ⊥ gi(x, y) meaning that λi′ gi(x, y) = 0. The presence of these equilibrium constraints makes the
program an instance of a Mathematical Program with Equilibrium Constraints (MPEC). If the objective,
F (x, y), and the constraints, gi(x, y), are linear then the program becomes an instance of a Linear Program
with Equilibrium Constraints (LPEC).

LPECs (or MPECs) are difficult to solve since they contain linear (or nonlinear) complementarity
constraints; it is known that linear complementarity problems belong to the class of NP-complete prob-
lems [18]. Furthermore, the complementarity constraints cause the feasible region of a bilevel program
to lack closedness and convexity or, even possibly, be disjoint [60]. Aside from these obvious sources of
intractability, stationary points for MPECs always fail to satisfy linear independence constraint qualifica-
tion (LICQ) or Mangasarian-Fromovitz constraint qualification (MFCQ) in the nonlinear programming
sense. There is yet another consideration, that of local optimal points, which is particularly important in
the machine learning context. Machine learning problems lead to well-posed complementarity problems,
in general, that have multiple local minima [61] which can be useful, especially if it is hard to construct
globally optimal solutions

1.2.3 Stationarity Concepts for MPECs/LPECs

As noted above, LICQ or MFCQ, which are necessary to guarantee the existence of the multipliers, λi, at
stationarity, fail to hold for (1.26) because the gradients of the complementarity constraints, λigi(x, y) = 0,
are never linearly independent. Denoting the feasible region of the LPEC/MPEC (including the comple-
mentarities) is S0, and the set of multipliers that satisfies the first-order KKT conditions of the inner-level
problem is Λ(x, y), we can define a key regularity assumption called the sequentially bounded constraint
qualification (SBCQ).

Definition 1.6 (SBCQ). For any convergent subsequence {(xk, yk)} ⊆ S0, there exists, for each k, a
multiplier vector, λk ∈ Λ(xk, yk), and {λk}∞k=1 is bounded.

If SBCQ is satisfied, then it guarantees the non-emptiness of the set of multipliers, Λ(x, y), and the exis-
tence of bounds on the multipliers on bounded sets. More importantly, it also guarantees the equivalence
of (1.25) and (1.26) with regard to global optima; equivalence with regard to local optima can also be
guaranteed if the functions gi(x, y) are convex in y. The SBCQ condition is weak and is easily satisfied
under (implied by) other stronger constraint qualifications for the inner-level problem such as MFCQ.

In order to derive stationarity conditions for the MPEC, (1.26), we can relate it to the tight-
ened and relaxed non-linear programs, where the first-order equality constraints have been collected into
H(x, y, λ),
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min
x,y

F (x, y) (tightened)

s. t. G(x, y) ≥ 0, H(x, y, λ) = 0,

λi = 0, ∀i ∈ Iα,
gi(x, y) = 0, ∀i ∈ Iγ ,
λi = 0, gi(x, y) = 0, ∀i ∈ Iβ .

min
x,y

F (x, y) (relaxed)

s. t. G(x, y) ≥ 0, H(x, y, λ) = 0,

λi = 0, ∀i ∈ Iα,
gi(x, y) = 0, ∀i ∈ Iγ ,
λi ≥ 0, gi(x, y) ≥ 0, ∀i ∈ Iβ .

(1.27)

and with the Lagrangian function,

L(x, y, λi, µ, ν, u, v) =

F (x, y)− µG(x, y)− νH(x, y, λ)−
m∑
i=1

uiλi −
m∑
i=1

vigi(x, y),
(1.28)

where
Iα := {i | λi = 0, gi(x, y) > 0},
Iβ := {i | λi = 0, gi(x, y) = 0},
Iγ := {i | λi > 0, gi(x, y) = 0}.

(1.29)

If the index set, Iβ , is empty, then strict complementarity is said to hold and if not, the complementarity
constraints in Iβ are said to be degenerate. We can now define some stationarity concepts.

Definition 1.7 (B-stationarity). A feasible point (x∗, y∗, λ∗) is said to be Bouligand or B-stationary
if it is a local minimizer of an LPEC obtained by linearizing all the MPEC functions about the point
(x∗, y∗, λ∗) i.e., ∇F (x, y) ′z ≥ 0, ∀z ∈ Tlin(x∗, y∗, λ∗), where Tlin denotes the tangent cone.

This is a primal stationarity condition and is very general. However, as a certificate, it is not very
useful as verifying it is combinatorially expensive due to the difficulty in characterizing the tangent cone.
Alternately, we can look at various dual stationarity conditions.

Definition 1.8 (W-stationarity). A feasible point (x∗, y∗, λ∗) is said to be weakly or W-stationary if
there exist multipliers µ, ν, u and v ≥ 0 such that

∇L(x, y, λi, µ, ν, u, v) = 0,

µ ≥ 0, ui = 0, ∀i ∈ Iγ , vi = 0, ∀i ∈ Iα.
(1.30)

The conditions above are simply the non-trivial first-order KKT conditions of the tightened nonlinear
program. W-stationarity is a very important concept for computational purposes as it can help identify
points that are feasible but not stationary2.

Definition 1.9 (S-stationarity). A feasible point (x∗, y∗, λ∗) is said to be strongly or S-stationary if
the W-stationarity conditions, (1.30), and the condition: ∀i ∈ Iβ, ui, vi ≥ 0, hold.

As in the weak case, the conditions for S-stationarity are simply the first-order KKT conditions for the
relaxed nonlinear program. Finally, it can be shown that if “LICQ for MPECs” holds, then B-stationarity
is equivalent to S-stationarity [77]. This discussion can be easily extended to the case where the outer-level
problem may have equality constraints.

2 W-stationarity concepts can be strengthened by enforcing additional constraints on the multipliers in (1.28). For
example, replacing λigi(x, y) = 0 with min(λi, gi(x, y)) = 0 in (1.26) yields a non-smooth nonlinear program.
The first-order KKT conditions for the latter can be written using the Clarke generalized gradient, and are
precisely the conditions for Clarke or C-stationarity. See [89] for more details.
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1.2.4 Optimization Methods for Bilevel Models

The bilevel and mutlilevel model selection models proposed here require the solutions of LPECs/MPECs.
There exist several approaches that can deal with the complementarity constraints that arise in and
LPECs/MPECs. Some of these are: penalty methods, which allow for the violation of the complementarity
constraints, but penalize them through a penalty term in the outer-level objective; smoothing methods,
that construct smooth approximations of the complementarity constraints; and relaxation methods, that
relax the complementarity constraints while retaining the relaxations in the constraints. We now discuss
some approaches to solving MPECs.

Nonlinear Programming Approaches

In machine learning, since the inner level problems are typically linear or quadratic, the reformulated
bilevel program, yields an LPEC of the following general form

min
x,y

c ′x+ d ′y

s. t. 0 ≤ y ⊥ w = Nx+My + q ≥ 0,

Ax+By + p ≥ 0,

Gx+Hy + f = 0.

(1.31)

where some subset of variables of y are the multipliers λi. The complementarity condition can also
be expressed using min(y, w) = 0. This equality condition is equivalent to y − (y − w)+ = 0. Here,
r+ = max(r, 0), the componentwise plus function applied to some vector r ≥ 0.

Inexact Solutions

This solution approach can be thought of as similar to the well-known machine learning technique of early
stopping. As mentioned before, inexact and approximate solutions as well as local minima yield fairly good
optimal points in the machine learning context. We take advantage of this fact and use the relaxation
approach to solve MPECs. This method simply involves replacing all instances of “hard” complementarity
constraints of the form

0 ≤ y ⊥ w ≥ 0 ≡ y ≥ 0, w ≥ 0, y ′w = 0

with relaxed, “soft” complementarity constraints of the form

0 ≤ y ⊥tol w ≥ 0 ≡ y ≥ 0, w ≥ 0, y ′w ≤ tol

where tol > 0 is some prescribed tolerance of the complementarity conditions. If the machine learning
problem yields an LPEC, the resulting inexact formulation will be a quadratically constrained quadratic
program. For general MPECs, the relaxation will be a nonlinearly constrained optimization problem
which can be solved using off-the-shelf NLP solvers such as filter [31] or snopt [39], which are freely
available on the neos server [20]. Both these solvers implement the sequential quadratic programming
(SQP) method; filter uses trust-region based SQP while snopt uses line search based SQP.

Inexact cross validation is one of the methods used to solve bilevel models presented here (see
Chapters 2 and 3, and also [7, 54]). In spite of the fact that filter provides no guarantee of global
optimality and generally converges to locally optimal solutions, this method performed well with regard
to generalization error, indicating that local optimal solutions can be practically satisfactory. The reported
results also compared favorably with grid search techniques with regard to parameter and feature selection
and objective values. However, they were more efficient than grid search, especially with regard to feature
selection.
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Smooth Approximations

The condition, min(y, Nx+My+q) = 0, can be replaced by a function φ(y, w), possibly non-smooth, such
that φ(y, w) = 0 ≡ 0 ≤ y ⊥ w ≥ 0. The Fischer-Burmeister function [30], φ(y, w) = y + w −

√
y2 + w2,

is a non-smooth example of such a function. This function is smoothed using a parameter ε to give
the smoothed Fischer-Burmeister function, φ(y, w) = y + w −

√
y2 + w2 + ε2. The smoothed function is

everywhere differentiable and yields the following approximation of (1.31):

min
x,y

c ′x+ d ′y

s. t. w = Nx+My + q ≥ 0, y ≥ 0,

Ax+By + p ≥ 0,

Gx+Hy + f = 0

yi + wi −
√
y2
i + w2

i + ε2k = 0, ∀i = 1 . . .m.

(1.32)

Pang and Fukushima [36] showed that for decreasing values of εk, the sequence of stationary points to
the nonlinear program (1.32), (xk, yk, wk), converges to a B-stationary point, (x∗, y∗, w∗), if weak second
order necessary conditions hold at each (xk, yk, wk), and LICQ for MPECs holds at (x∗, y∗, w∗). Various
methods can be used to solve the sequence of problems (1.32); for example, the sequential quadratic
programming (SQP) algorithm [48].

Another approach that was proposed for nonlinear and mixed complementarity problems involves
solving the non-smooth equation, y = (y−w)+; the right hand side of the equation, max(y−w, 0), is not
differentiable at zero, and can be replaced by an everywhere differentiable smooth approximation. Chen
and Mangasarian [15] propose several different smooth approximations to the max function generated
from different parameterized probability density functions that satisfy certain consistency properties.
One approximation generated from the smoothed Dirac delta function that is commonly used in neural
network literature is

p(z, α) = z +
1
α

log (1 + e−αz), α > 0, (1.33)

where α is some smoothing parameter. Now, the smoothed non-linear equation representing the comple-
mentarity system is φ(y, w) = y − p(y − w,α) = 0.

Exact Penalty Methods

Penalty and augmented Lagrangian methods have been widely applied to solving LPECs and MPECs
[47]. These methods typically require solving an unconstrained optimization problem. In contrast, exact
penalty methods penalize only the complementarity constraints in the objective:

min
x,y

c ′x+ d ′y + µφ(y, w)

s. t. w = Nx+My + q ≥ 0, y ≥ 0,

Ax+By + p ≥ 0,

Gx+Hy + f = 0.

(1.34)

One approach to solving exact penalty formulations like (1.34) is the successive linearization algorithm,
where a sequence of problems with a linearized objective,

c ′(x− xk) + d ′(y − yk) + µ (∂xφ(yk, wk)(x− xk) + ∂yφ(yk, wk)(y − yk)) (1.35)

is solved to generate the next iterate. The algorithm requires concavity of the objective (to guarantee the
existence of vertex solutions at each iteration) and lower-boundedness of the objective. An example of
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a differentiable penalty function is φ(y, w) = y ′w. The resulting quadratic program can be solved using
the Frank-Wolfe method [61].

Alternately, the concave penalty function, φ = (y, w) = min(y, w), has also been proposed. Various
approaches can be used to handle the non-smoothness of the penalized objective function arising from
this choice of φ(y, w). The most straight-forward approach is to use successive linearization with the
gradients in the linearized objective being replaced by the supergradients [63],

∂xφ =
m∑
j=1


0, if yj < wj ,

(1− λj) 0 + λjNj , if yj = wj ,

Nj , if yj > wj .

∂yφ =
m∑
j=1


Ij , if yj < wj ,

(1− λj) Ij + λjMj , if yj = wj ,

Mj , if yj > wj .

(1.36)

and 0 ≤ λ ≤ 1. A second approach makes use of the fact that min(r, s), for any two scalars, r and s, can
be computed as

min(r, s) = arg min
ρ,σ

{ρr + σs | ρ, σ ≥ 0, ρ+ σ = 1}. (1.37)

Incorporating this into (1.34) gives a separable bilinear program [62],

min
x,y

c ′x+ d ′y + ρ ′r + σ ′s

s. t. w = Nx+My + q ≥ 0, y ≥ 0,

Ax+By + p ≥ 0,

Gx+Hy + f = 0.

(1.38)

which can be solved using a finite Frank-Wolfe method. A third approach requires replacing the non-
smooth min with its smooth approximation, which can be defined analogous to the approximation for
the max function shown in the previous subsection,

m(z, α) = − 1
α

log (1 + e−αz), α > 0. (1.39)

The application of these methods to the bilevel machine learning applications is presently under investi-
gation.

Integer Programming Approaches

The connections between bilevel programs, MPECs and mixed integer programs (MIPs) are well known.
It was shown in [5] that there exists a polynomial time reformulation to convert a mixed integer program
to a bilevel program. Also demonstrated in [5] was an implicit reformulation of a bilevel program as a
mixed integer program via MPECs. Specifically, a program with equilibrium constraints, such as (1.31),
can be converted to a MIP by splitting the complementarity constraints through the introduction of
integer variables, z, and a large finite constant θ.

min
x,y

c ′x+ d ′y

s. t. 0 ≤ Nx+My + q ≤ θ(1− z),
0 ≤ y ≤ θz, z ∈ {0, 1}m,
Ax+By + p ≥ 0,

Gx+Hy + f = 0.

(1.40)
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Care must be taken to compute the value of θ large enough so as not to cut off parts of the feasible region.
This is done by solving several LPs to obtain bounds on all the variables and constraints of (1.40) and
setting θ to be equal to the largest bound. Once θ is fixed, the MIP can now be solved by using standard
techniques such as branch and bound.

The biggest drawback of this approach is that the computation of the bound, θ, requires solving
a very large number of LPs. Other drawbacks are that the approach can only be applied to LPECs with
bounded feasible regions (thus ensuring that the feasible region of the MIP is also bounded) and does not
necessarily always converge to a global optimum. These latter limitations tend to be less of a concern for
bilevel programs arising from machine learning applications. However, all of the drawbacks mentioned
here are all satisfactorily dealt with in the method of [46], wherein a parameter-free dual program of (1.40)
is derived, reformulated as a minimax problem, and solved using Bender’s approach. The application of
this method to the bilevel machine learning applications is presently under investigation.

Other Approaches

The discussion of the solution approaches above is not meant to be exhaustive. There are several other
approaches to solving MPECs and LPECs such as active set identification methods [56], interior point
methods [59, 60], implicit programming [17, 60] and non-smooth methods [67].

1.3 The Need for New Methodologies

We are now ready to discuss the factors that motivated the research presented here for the various machine
learning models and the paradigm, based on bilevel optimization, that was used to approach them.

Two issues that have been around as long as SVMs are parameter and kernel selection, collec-
tively called model selection. Support vector machines and kernels are parameterized; these parameters
have to be set a priori and the choice of parameters (and consequently the model) dramatically affects
generalization behavior. There have been many interesting attempts to pick these parameters; notable
among these are approaches are approaches that use bounds [14], or trace the complete regularization
path for either one parameter—as in the case of SV classification [44]—or two parameters—as in the
case of SV regression [88]. However, the most systematic and commonly used method for selecting these
hyper-parameters is T -fold cross validation [52] (CV). T -fold cross validation attempts to estimate gen-
eralization error by simulating out-of-sample testing on various subsets of the training data. CV leaves
out subsets of the training data, trains models on the reduced sets of data, and then tests the resulting
models on the left-out data. Cross validation can be applied to arbitrary machine learning problems and
gives a good estimate of generalization error (even for small data sets) which shows a strong correlation
with the test error [26].

Current model selection methods have several limitations. The main disadvantage of bound- or
regularization-path-based methods is that they are restricted to being able to perform model selection
for problems with only one, or at most two parameters. This limitation severely restricts the applicability
of these methods to more difficult machine learning tasks that yield multi-parametric models such as
feature and kernel selection, tasks that are very germane to effective many applications. CV itself suffers
from a significant drawback as it involves implementing a grid search: training T models (for T -fold
CV) at each point of a discretized parameter space in order to determine the best model. This process
becomes prohibitively expensive as the training set size, dimensionality of the data set or the number
of parameters grows, severely limiting the applicability of CV to smaller data sets. In addition, the dis-
cretization of the parameter space effectively limits the search for optimal parameters to a finite set of
points and the overall quality of the “solution” cannot be guaranteed. Specifically for high-dimensional
problems, other heuristic methods exist, such as stepwise regression, backward elimination, filter methods
and genetic algorithms, to name a few. However, these methods suffer the same limitations of grid search:
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practical inefficiency with regard to implementation and inability to guarantee the quality of the solution.

One of the key motivations for this work is to address the urgent need to develop improved method-
ologies that can combine model selection methods for different machine learning problems—such as the
widely-accepted CV method—with the the sound theoretical foundations and robust efficiency of extant
and emerging mathematical programming approaches.

In addition to model selection, some of the other issues that have been pervasive in machine
learning or emerged recently include newer regularization techniques, feature selection for dimensionality
reduction [9, 43], kernel construction [55, 66], complexity minimization, semi-supervised learning, pre-
dicting missing values in data, incorporating prior knowledge and multi-task learning [13, 28].

Another key motivation is to develop a general unified framework that facilitates easy incorpora-
tion of the various tasks mentioned above into model selection approaches such as CV.

The work presented here proposes and explores one such methodology that attempts to address
the deficiencies of the current state-of-the-art: bilevel programming. Bilevel model selection offers several
advantages over prior approaches. The most obvious advantage is the ability to deal with multi-parametric
models and deal with them in continuous rather than discrete space. This is possible because of recent
advances in bilevel programming in the optimization community, which permit the systematic treatment
of models based on different loss and regularization functions and kernels. In addition to being able
to incorporate existing methods, the bilevel approach offers a broad framework in which novel regular-
ization methods and generalization measures can be developed. Most significantly, the bilevel approach
provides a framework in which to combine model selection with feature selection, multi-task learning
etc. As we will see, these advantages allow for the formulation of different machine learning tasks such as
model, feature and kernel selection for classification and regression as well as for semi-supervised learning.

Yet another key motivation is to construct algorithms that can solve mathematical programs that
arise from the model selection problems efficiently such that they are capable of handling large-scale data
sets.

As mentioned above, the other main motivation was the development of efficient algorithms that
do not suffer the combinatorial drawbacks of heuristic methods such as grid-search-based CV. From the
optimization point of view, bilevel programs resulting from these applications belong to the general class
of mathematical programs with equilibrium constraints (MPECs), [60], for which there are extensive
advances in theory, algorithms, and software in recent years [3, 4, 22, 23, 33, 34, 37, 38, 48, 77, 79, 80].
These advances include efficient techniques such as filter-based sequential quadratic programming (SQP)
methods and successive linearization algorithms which, as will been shown, can be successfully applied
to solve the MPECs arising from the bilevel machine learning formulations efficiently and provide “good
solutions”.

1.4 A New Paradigm

The general predictive learning task is to construct a function using present data that performs well on
future data. A loss function specific to the learning tasks is used to measure how well the function is
performing. Cross validation (CV) is a method of estimating the out-of-sample generalization error of the
model for given hyper-parameters. Cross validation leaves out subsets of the training data, trains models
on the reduced sets of data, and then tests the resulting models on the left-out data. Cross validation can
be applied to arbitrary machine learning problems, gives a very good estimate of generalization error (even
for small data sets) which shows a strong correlation with the test error [26]. The CV step is typically
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Fig. 1.10. T -fold cross validation at a particular grid point, (Ck, εk), on a base-10 logarithmic grid.

followed by a post processing step in which the final model is trained on all the available data, using the
“optimal” hyper-parameters given by CV, to build the final model (see Figure 1.10). The efficacy is this
model may further be examined by observing its performance on a hold-out test set.

To perform model selection, CV must be embedded within an optimization algorithm. In the
most common approach, Grid Search, CV is performed over a grid that discretizes the hyper-parameter
space of interest and involves, for T folds, training T models at each grid point. As the number of hyper-
parameters grows, so does the number of problems to be solved and cross validation becomes prohibitively
expensive. Efficiency can only be achieved at the expense of grid refinement and coarser grids inevitably
yield poor models. In fact, even for a small number of parameters, cross validation can still be expensive
for high-dimensional data sets. For example, feature selection for high-dimensional data sets leads to a
combinatorial explosion of grid points. Such problems are ubiquitous in machine learning e.g., in feature
selection [9, 43], kernel construction [55, 66], and multi-task learning [13, 28].

Another drawback in grid search is that the discretization is restricted to examining only a
finite set of points. Recent work on determining the full regularization path of support vector machines
underscores the fact that regularization parameter is continuous. In particular, the paper [44] argues that
the choice of the single regularization parameter, C, is critical and shows that it is quite tractable to
compute the SVM solution for all possible values of the regularization parameter C. But as it is well
known in optimization, this parametric programming approach for a single parameter is not extendable
to models with multiple parameters and certainly is not possible for models with a large number of
parameters. Bayesian methods can treat model parameters as random variables but then the challenge
becomes the choice of appropriate priors. In the end, out-of-sample testing is still the gold standard for
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selecting parameters values. The bilevel optimization methodology attempts to address this issues by
formulating CV for SVMs as a bilevel program.

T -fold cross validation for some general machine learning problem depends on partitions of the
data—the training sets, Ωt, and validation sets, Ωt, within the t-th fold—and can be written as

minimize
ft,λ

Θ(f1|Ω1 , . . . , f
T |ΩT ; λ) (outer level)

subject to λ ∈ Λ,
and for t = 1, . . . , T,

f t ∈ arg min
f∈F

P(f, λ) +
∑

(xi,yi)∈Ωt

L
(
yi, f(xi), λ

) . (inner level)

(1.41)

Here, f t : (Rn × R) ∩ F → R is the learning function trained within the t-th fold, λ ∈ Λ is the set of
model selection parameters for the machine learning problem, P is the regularization operator and L is
the inner-level loss function. This definition admits many variations and well-known machine learning
problems. In fact, the number of machine learning tasks that can be cast into the bilevel cross-validation
framework is virtually limitless. These learning tasks determine the objective and constraints used in
the inner-level problems and the outer-level objective i.e., the overall testing/generalization objective is
minimized in the “outer” (or upper) level subject to the learning functions which are optimized in the
“inner” (or lower) level. The resulting cross-validation problem can be re-formed as a bilevel optimization
problem as long as the inner-level problems can be replaced by their corresponding KKT conditions, and
the outer-level objective and constraints can be replaced by differentiable counterparts.

Equation (1.41) is the generalized template model that defines the underlying paradigm of this
thesis i.e., cross-validation based model selection formulated as a bilevel program. Various problems such
as model selection for support vector classification and regression, semi-supervised learning, missing-
value imputation, kernel selection, multi-task learning and complexity minimization are described and
explored in the following sections. Each of these problems can be cast in the bilevel framework (1.41)
by appropriately choosing the regularization and loss functions. Then, the appropriate “parameters”, λ,
can be found by optimizing them in the outer level to minimize some estimate of generalization error, Θ
while simultaneously learning f t on the training sets in the inner level. This interaction is exactly cross
validation (see Figure 1.10) except that the parameters λ now vary smoothly and continuously rather
than being restricted to (possibly coarse) discretization.

Bilevel model selection offers several advantages over prior approaches. The most obvious ad-
vantage is the ability to deal with multi-parametric model selection and deal with them in continuous
rather than discrete space. This is possible because of recent advances in bilevel programming in the
optimization community, which permit the systematic treatment of models based on different loss and
regularization functions and kernels. In addition to being able to incorporate existing methods, the bilevel
approach offers a broad framework in which novel regularization methods and generalization measures can
be developed. Most significantly, these advantages allow for improved model selection which ultimately
leads to better generalization.

1.5 Organization of the Thesis

The thesis is organized into the following sections. Chapter 2 introduces bilevel model selection by apply-
ing it to cross-validation-based simultaneous model and feature selection for support vector classification.
The resulting LPECs are solved using FILTER, an freely available, off-the-shelf, NLP solver. This es-
sentially serves as a proof of concept. Chapter 3 extends this approach to support vector regression. In
addition to solving the resultant LPECs using FILTER, this chapter also introduces SLAMS, a succes-
sive linearization approach to solving LPECs that is particularly effective for solving machine learning
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problems to local optimality. Chapter 4 presents a novel approach to learning with missing data (fea-
tures) through bilevel programming. Finally, Chapter 5 presents more machine learning models that can
be solved using the bilevel approach as challenges that merit attention in the future and the concludes
the thesis.



2

SV Classification and Inexact Cross Validation

2.1 Introduction

Support Vector Machines (SVM) [19, 87] are one of the most widely used methods for classification. The
underlying quadratic programming problem is convex (thus, is generally not difficult to deal with, both
theoretically and computationally), but typically it contains hyper-parameters that must be selected by
the users.

The models presented in this chapter nontrivially extend previous work [7]. In essence, unlike
many traditional grid search methods used in machine learning that are severely restricted by the num-
ber of hyper-parameters to be searched, the bilevel approach enables the identification of many such
parameters all at once by way of the state-of-the-art optimization methods and their softwares (such as
those publicly available on the neos servers). Another important advantage of the bilevel approach is
its modeling versatility in handling multiple machine learning goals simultaneously and efficiently; these
include optimal choice of model parameters [14, 41], feature selection for dimension reduction [9], inexact
cross validation, kernelization to handle nonlinear data sets [81], and variance control for fold consistency
through multi-tasking.

The focus is on the bilevel binary classification problem where the main task is to classify data
into two groups according to a linear model using a classical support-vector (SV) classifier [19]. The
hyper-parameters are selected to minimize the T -fold cross validated estimate of the out-of-sample mis-
classification error. Each fold of training defines an inner-level convex quadratic program (QP) with
parameters constrained by some bounds that are part of the overall variables to be optimized; such
bounds provide a mechanism for feature selection whereby those features corresponding to small bounds
in the solution of the bilevel problem will be deemed insignificant. The outer-level problem minimizes the
T -fold average classification error based on the optimal solutions of the inner-level QPs for all possible
hyper-parameters. Using the approach in [61], we add inner-level linear programs to compute the number
of misclassified test points for each fold. In principle, the objective functions in the inner-level classifi-
cation optimization problems could be rather general; the only restriction we impose is their convexity
so that the only non-convexity generated by the inner-level problems in the MPEC is essentially the
complementarity slackness in the optimality conditions of the inner-level problems.

The organization of the chapter is as follows. The mathematical formulation of the bilevel cross
validation classification model and its transformation to an instance of an MPEC is described in Sec-
tion 2.2. Additional variations of the classification problems are described in Section 2.3. Section 2.4
contrasts grid search and with the bilevel approach, or more specifically, a relaxed nonlinear program-
ming reformulation of the MPEC called inexact cross validation. Section 2.5, describes the experimental
setup, the data sets used and computational results comparing the grid search and bilevel cross validation
methods. Finally, conclusions are presented in Section 2.6.
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2.2 Model Formulation

Let Ω denote a given finite set of ` = |Ω| labeled data points, {(xi, yi)}`i=1 ⊂ Rn+1. Since we are
interested in the binary classification case, the labels yi are ±1. Let the set of indices for the points in Ω
be N = {1, . . . , `}. For T -fold cross validation, Ω is partitioned into T pairwise disjoint subsets, Ωt, called
the validation sets. The sets Ωt = Ω \Ωt are the training sets within each fold. The corresponding index
sets for the validation and training sets are Nt and N t respectively. The hyperplane trained within the
t-th fold using the training set Ωt is identified by the pair (wt, bt) ∈ Rn+1. For compactness of notation,
the vectors wt are collected, column-wise, into the matrix W ∈ Rn×T , and the scalars bt into the vector
b ∈ RT . A vector of ones of arbitrary dimension is denoted by 1. Given two vectors, r and s ∈ Rn, the
complementarity condition r ⊥ s means r ′s = 0, where the prime ′ denotes the transpose; and r? denotes
the step function applied to each component of the vector r as defined in (2.7).

The well-known SV classification problem depends on a nonnegative regularization parameter,
λ, which is selected through cross validation based on the average misclassification error measured on
the out-of-sample data, i.e, the validation sets. Specifically, the basic bilevel model for support vector
classification, is formulated as follows:

minimize
W,b,λ,w

Θ(W,b)

subject to λ lb ≤ λ ≤ λ ub, w lb ≤ w ≤ w ub ,

and for t = 1, . . . , T,

(2.1)

(wt, bt) ∈ arg min
−w≤w≤w

b∈R

λ2 ‖w ‖22 +
∑
j∈N t

max
(
1− yj(x ′jw − b), 0

) . (2.2)

We can see that the program above is a specific case of the template (1.41), with L2 norm regularization
and the hinge-loss function. It is clear that, with regard to the general model, the parameters λ and w
are outer level hyper-parameters in this model. The outer-level objective, Θ(W,b), is some measure of
validation accuracy over all the folds, typically the average number of misclassifications. There are T
inner-level subproblems, one for each fold in T -fold cross validation. The arg min is the last constraint
in (2.1) and denotes the set of all optimal solutions to the T convex optimization problems (2.2). Each
t-th subproblem is simply a classical support vector classification problem applied to the corresponding
training set, Ωt, along with the additional box constraint of the form −w ≤ w ≤ w, where w is a variable
in the overall bilevel optimization; in turn, w is restricted to given bounds wub ≥ wlb ≥ 0.

The symmetric box constraint is included for the purposes of wrapper-type feature selection and
regularization. In addition, the box constraint was selected to illustrate that the bilevel approach can
successfully optimize many hyper-parameters. Note that there is one box constraint parameter for every
descriptor. Consider a particular feature that is expected to be redundant or irrelevant i.e., that feature
does not contribute much to the final classifier. Then, the corresponding weight in w would be small
or zero, which, in turn, constrains the corresponding weights in each wt, thereby effectively controlling
their capacity and potentially increasing generalization performance. The bilevel program will effectively
be a wrapper feature selection method. Wrapper methods search for subsets of feature that optimize
estimates of the testing generalization error for models trained with those features [53]. Sparse 1-norm
regularization can also be used for feature selection but the subset features in each of the CV folds
illustrates great variability [9]. The box constraints will ensure that a consistent subset of the features
will be used across all the folds. If w can be picked effectively, the box constrained SVM, (2.2), could
represent a fundamentally new way to perform feature selection. Thus, the box constraints are embedded
in the bilevel cross validation scheme and w becomes a vector of hyper-parameters in the problem.

Note that we use λ
2 ‖w‖

2
2 for regularization rather than the typical term C

∑
j∈N t max(1 −

yj(x ′jw− b), 0), where C is the parameter to be chosen. This is due to our empirical observation that the
former is more numerically robust than the latter within the bilevel setting. Clearly, the two modes of
regularization are equivalent for each inner-level problem with C = 1

λ , provided that both parameters are
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positive. Note that the bilevel program selects the hyperparameters. The final classifier can be constructed
by optimizing a single instance of the lower-level problem using the optimal hyper-parameters and all of
the training data. In this case, the final λ should be scaled by T

T−1 to account for the larger training set
size.

Similar to w, the parameter λ is subject to given bounds λub ≥ λlb > 0. This is done for three
reasons: first, to facilitate direct comparison with grid search based cross validation (see Section 2.4.2);
second, to improve the stability and speed up convergence of a general purpose NLP solver; and third,
to ensure the positivity of the parameters λ and w: so that the bilevel approach yields, in case of the
former, a nonzero regularization parameter, in case of the latter, a nontrivial box constraint for feature
selection.

2.2.1 The inner-level problems

As mentioned above, there are T inner-level problems that model the training of classifiers within each
fold. Consider the inner-level problem corresponding to the t-th fold i.e., the t-th training set, Ωt, indexed
by N t, is used. With λ and w fixed in this subproblem, we introduce slack variables, ξt, in (2.2) to
reformulate the max function using standard linear programming techniques. This gives the the box-
constrained SV classifier (BoxSVC) which is nearly identical to the classical SVM for classification,
except that it has the additional box constraint for regularization and feature selection:

minimize
wt, bt, ξt

λ

2
‖wt‖22 +

∑
j∈N t

ξtj

subject to −w ≤ wt ≤ w,

yj(x ′jw
t − bt) ≥ 1− ξtj

ξtj ≥ 0

}
∀ j ∈ N t.

(2.3)

The BoxSVC is a convex quadratic program in the variables wt, bt and {ξtj}j∈N t . Let γt,− and γt,+ be the
multipliers of the lower and upper bound constraints −w ≤ wt ≤ w respectively and αtj be the multiplier
for the hyperplane constraint, yj(x ′jw

t − bt) ≥ 1 − ξtj . Using these multipliers, we can write down the
primal and dual feasibility and complementarity slackness conditions of (2.3) compactly as follows:

0 ≤ αtj ⊥ yj(x ′jwt − bt)− 1 + ξtj ≥ 0

0 ≤ ξtj ⊥ 1− αtj ≥ 0

∀ j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

(2.4)

which together with the following first-order conditions,

λwt −
∑
j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑
j∈N t

yjα
t
j = 0,

(2.5)

constitute the Karush-Kuhn-Tucker (KKT) optimality conditions to (2.3). The KKT conditions are neces-
sary and sufficient conditions for the optimal solution of (2.3). Thus the inner-level optimization problems
(2.2) can be replaced with the system of equations (2.4) and (2.5).
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2.2.2 The outer-level optimization

The inner-level problems solve T box-constrained SV classification problems on the training sets to yield
T hyperplanes, (wt, bt), one for each fold. The outer-level objective function is a measure of generalization
error based on the T out-of-sample validation sets, which we minimize. The measure used here is the
classical cross-validation error for classification, the average number of points misclassified. The outer-level
objective that achieves this can be written using the step function, ()?, as

Θ(W,b) =
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

[
−yi(x ′iwt − bt)

]
?
. (2.6)

Note that in the inner summation, Ωt, the t-th validation set, indexed byNt, is used. The inner summation
averages the number of misclassifications within each fold while the outer summation averages the aver-
aged misclassification error over the folds. The step function used in (2.6) can be defined, componentwise,
for a vector, r, as

(r?)i =
{

1, if ri > 0,
0, if ri ≤ 0. (2.7)

It is clear that ()? is discontinuous and that (2.6) cannot be used directly in the bilevel setting. The step
function, however, can be characterized as the solution to a linear program as demonstrated in [61], i.e.,

r? = arg min
ζ

{−ζ ′r : 0 ≤ ζ ≤ 1}. (2.8)

Thus, we have to solve T linear programs of the form (2.9) to determine which validation points, xi ∈ Nt,
are misclassified within the t-th fold, i.e., when the sign of yi(x ′iw

t−bt) is negative. These LPs are inserted
as inner-level problems into the bilevel setting in order to recast the discontinuous outer-level objective
into a continuous one. They yield ζt = [−yi(x ′iwt − bt)]?, with ζti = 1 if the point xi is misclassified
and 0 otherwise. Finally, it should be noted that if xi lies on the hyperplane, (wt, bt), then we will have
0 < ζti < 1.

ζt ∈ arg min
0≤ζ≤1

{∑
i∈Nt

ζiyi
(
x ′iw

t − bt
)}

. (2.9)

Returning to the general case, we introduce additional multipliers, z, for the constraint ζ ≤ 1. Conse-
quently, any solution to (2.8) should satisfy the following linear complementarity conditions:

0 ≤ ζ⊥−r + z ≥ 0,

0 ≤ z⊥ 1− ζ ≥ 0.
(2.10)

We noted in Section 2.2.1 that the inner-level problems, (2.2), can be replaced with the first-order KKT
conditions, (2.4–2.5). Furthermore, the inner-level step function LPs, (2.9), can be rewritten using the
linear complementarity conditions, (2.10). The overall two-level classification problem becomes
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min
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

ζti

s. t. λ lb ≤ λ ≤ λ ub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T,

0 ≤ ζti ⊥ yi (x ′iw
t − bt) + zti ≥ 0

0 ≤ zti ⊥ 1− ζti ≥ 0

∀ i ∈ Nt,
0 ≤ αtj ⊥ yj(x ′jwt − bt)− 1 + ξtj ≥ 0

0 ≤ ξtj ⊥ 1− αtj ≥ 0

∀ j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

λwt −
∑
j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,∑

j∈N t

yjα
t
j = 0,

(2.11)

which is an instance of an MPEC. It is a nonconvex optimization problem because of the complementarity
constraints. We refer to this problem as the Bilevel Misclassification Minimization (BilevelMM) problem.

2.3 Bilevel Classification Variations

There are many possible variations of the bilevel classification problem. To illustrate the versatility of the
bilevel approach, we discuss the outer-level objective and feature selection strategies.

2.3.1 Outer-level objective

The outer-level objective, (2.6), is not the only criterion that can be used to estimate generalization error
within the cross validation scheme. An intuitively appealing alternative is to use the same misclassifica-
tion measure for both the outer- and inner-level problems. Thus, we can also use the hinge loss, which
minimizes the distance of each misclassified validation point from the classifier margin trained within
each fold. The hinge loss is an upper bound on the misclassification objective:

Θ(W,b) =
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

max
(
1− yi(x ′iwt − bt), 0

)
. (2.12)

The resulting MPEC is simpler because the lower level problems, (2.9), introduced to calculate the average
number of points misclassified are not required. One might expect that this would lead to faster solutions
by the filter solver on neos. But as we see later, this is not the case. When the hinge-loss is used in
the outer-level, the MPEC becomes
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min
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

zti

s. t. λ lb ≤ λ ≤ λ ub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T,

zti ≥ 1− yi (x ′iw
t − bt)

zti ≥ 0

∀ i ∈ Nt,
0 ≤ αtj ⊥ yj(x ′jwt − bt)− 1 + ξtj ≥ 0

0 ≤ ξtj ⊥ 1− αtj ≥ 0

∀ j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

λwt −
∑
j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,∑

j∈N t

yjα
t
j = 0.

(2.13)

We refer to this problem as Bilevel Hinge Loss (BilevelHL) problem. ampl models (constraints and
objectives) for both approaches are given in Appendix A.1.

2.3.2 Enhanced feature selection

The introduction of w into the SVM represents a novel and powerful way to perform feature selection and
to force w to be sparse. A simple way to enhance this would be to use either an L1-norm regularization
or a combination of L1 and L2 norms (elastic nets [91]) in the inner level. These variations would only
require straightforward modifications to the model. However, we will focus on yet another variation, one
that attempts to incorporate prior knowledge into feature selection.

Suppose, for n-dimensional data, it was known a priori that at most nmax features are sufficient.
This can be incorporated into the model by introducing the constraint ‖w‖0 ≤ nmax into the outer-level
problem, where ‖ · ‖0 is called the zero-norm or the cardinality of a vector, i.e., it counts the number of
non-zero elements in its argument. This constraint forces the number of allowable features to be bounded
above by some user-defined maximum and causes the features with the smallest weights to be dropped
from the model. The constraint can be rewritten using the ()? function, since we have ‖w‖0 = 1

′w?. If
the conditions (2.10) are used to rewrite the constraint, the following inequality and complementarity
constraints are added to the outer-level of (2.11):

n∑
m=1

δm ≤ nmax,

0 ≤ δ ⊥ −w + d ≥ 0,

0 ≤ d ⊥ 1− δ ≥ 0.

(2.14)

In the constraints above, δ counts the selected features of w, and d is the multiplier to the constraint
1− δ ≥ 0.

2.4 Inexact and Discretized Cross Validation

The bilevel formulations described in the previous section perform model selection by searching a con-
tinuous parameter space. In contrast, classical cross validation approximately solves the bilevel problem
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by searching a discretized version of the same parameter space. In the bilevel approach also performs
inexact cross validation, by solving a relaxed version of the bilevel MPEC. Pertinent details of both these
methods are described below.

2.4.1 Inexact cross validation

There exist several approaches that can deal with the complementarity constraints in MPECs such
as (2.11). Some of these are: penalty methods, which allow for the violation of the complementarity
constraints, but penalize them through a penalty term in the outer-level objective; smoothing methods,
that construct smooth approximations of the complementarity constraints; and relaxation methods, that
relax the complementarity constraints while retaining the convex constraints. We use the relaxation
approach to solve (2.11).

This method of solving an MPEC simply involves replacing all instances of the “hard” comple-
mentarity constraints of the form

0 ≤ c ⊥ d ≥ 0 ≡ c ≥ 0, d ≥ 0, c ′d = 0,

with relaxed, “soft” complementarity constraints of the form

0 ≤ c ⊥tol d ≥ 0 ≡ c ≥ 0, d ≥ 0, c ′d ≤ tol,

where tol > 0 is some prescribed tolerance of the complementarity conditions. This leads us to the bilevel
SVC problem with inexact cross validation, which is the same as (2.11) except that all the ⊥ conditions
are replaced by ⊥tol. Even though this is still a non-convex optimization problem, it represents a novel
approach in the context of machine learning. The tolerance parameter, tol, which is set a priori, determines
the accuracy of the relaxation and performs inexact cross validation. That means: an appropriately chosen
tol can enlarge the search region of the model at the expense of a tolerable decrease in model accuracy.
This is similar to the well-known machine-learning concept of “early stopping” in that the quality of
the out-of-sample errors—measured in the outer-level objective of the bilevel program—is not affected
significantly by small perturbations to a computed solution, in turn facilitating an early termination
of cross validation. This approach also has the advantage of easing the difficulty of dealing with the
disjunctive nature of the complementarity constraints. The exact same approach can also be applied to
the hinge-loss MPEC, (2.13).

2.4.2 Grid search

Classical cross validation is performed by discretizing the parameter space into a grid and searching for
the combination of parameters that minimizes the out-of-sample error, also referred to as validation error.
This corresponds to the outer-level objective of the bilevel program (2.11). Typically, coarse logarithmic
parameter grids of base 2 or 10 are used. Once a locally optimal grid point with the smallest validation
error has been found, it may be refined or fine-tuned by a local search.

In the case of SV classification, the only hyper-parameter is the regularization constant, λ. How-
ever, the bilevel model (2.11) uses the box-constrained SVM for feature selection; Grid Search has to
determine w as well. It is this search in the w-space that causes a serious combinatorial difficulty for the
grid approach. To see this, consider the case of T -fold cross validation using grid search, where λ and w
are each allowed to take on d discrete values. Assuming the data is n-dimensional, grid search would have
to solve roughly O(Tdn+1) problems. The resulting combinatorial explosion makes grid search intractable
for all but the smallest n. In this paper, to counter this difficulty, we implement the following heuristic
scheme:

• To determine λ: Perform a one-dimensional grid search using the classical SVC problem (without the
box constraint). The range [λlb, λub] is discretized into a coarse, base-10, logarithmic grid. These grid
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Data set `train `test n T

Pima Indians Diabetes Database 240 528 8 3
Wisconsin Breast Cancer Database 240 442 9 3
Cleveland Heart Disease Database 216 81 14 3
Johns Hopkins University Ionosphere Database 240 111 33 3
Star/Galaxy Bright Database 600 1862 14 3
Star/Galaxy Dim Database 900 3292 14 3

Table 2.1. Descriptions of data sets used for classification.

points constitute the search space for this step, which we will call unconstrained grid search. At each
grid point, T SVC problems are solved on the training sets and the error is measure on the validation
sets. The grid point with the smallest average validation error, λ, is “optimal”.

• To determine w: Perform a n-dimensional grid search to determine the relevant features of w using
the box-constrained SVC problem (BoxSVC) and λ obtained from the previous step. Only two distinct
choices for each feature are considered: 0, to test feature redundancy, and some large value that would
not affect the choice of an appropriate feature weight. In this setting, 3-fold cross validation would
involve solving about O(3 ∗ 2n) BoxSVC problems. We call this step constrained grid search.

• The number of problems in constrained grid search is already impractical necessitating a further
restriction of the relevant features to a maximum of n = 10. If a data set has more features, they are
ranked using recursive feature elimination [43], and the 10 best features are chosen.

2.5 Numerical Tests

We compare unconstrained and constrained grid search approaches to the bilevel approaches (2.11) and
(2.13) relaxed through inexact cross validation. The bilevel programs were implemented in ampl and
solved using filter [31, 32, 35], which is a general-purpose nonlinear programming solver available on
the neos server (www-neos.mcs.anl.gov). Unconstrained and constrained grid were solved using mosek’s
quadratic program solver accessed through a matlab interface.

2.5.1 Experimental design

We used 6 real-world classification data sets, four of which are available via anonymous ftp from the
UCI Repository for Machine Learning and two from the Star/Galaxy database at the University of
Minnesota. The data sets were all standardized to zero norm and unit standard deviation. Twenty
instances of each data set were randomly generated and each instance was split into a training set with
`train points, which is used for cross validation and a hold-out test set, with `test points. The data
descriptions are shown in Table 2.1. The hyper-parameters in the bilevel program were restricted as
follows: λ ∈ [10−4, 104] and w ∈ [0, 1.5]. Grid search used the exact same bounds but was further
restricted to λ ∈ {10−4, 10−3, . . . , 103, 104} and w ∈ {0, 1.5}. The complementarity tolerance was set
to be tol = 10−6 in all runs except in the BilevelHL problem on the dim data set, where the value of
tol = 10−4 was used. These settings were used to perform 3-fold cross validation on each instance.

Using the cross-validated hyper-parameters λ̂ and ŵ obtained from the bilevel and the grid search
approaches, we implement a post-processing procedure to calculate the generalization error on the hold-
out data for each instance. Specifically, a constrained SVC problem is solved on all the training data
using 3

2 λ̂ and ŵ giving the final classifier (ŵ , b̂) which is used to compute the test (hold-out) error rate:

ERRORtest =
1

`test

∑
(x,y) test

1
2
| sign(ŵ ′x− b̂)− y |.
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Fig. 2.1. Effect of increasing the number of folds on learning rate of classifiers for the Pima Indians data set.

Recall that the bilevel model uses 3-fold cross-validation and that each training fold consists of two-thirds
of the total training data. Consequently, the final regularization parameter, λ̂, is rescaled by a factor of 3

2
because the final model, which is constructed in the post-processing phase, uses all of the training data.
For general T -fold cross validation, as mentioned before, this factor will be T

T−1 , T > 1, assuming that
each fold contains the same fraction of data.

In addition, we also compute the cardinality of the final w returned by the different approaches to
determine the effectiveness of feature selection. For the bilevel approaches, the features in w with weights
less than

√
tol were considered irrelevant and set to zero, after which the test error was computed. Various

criteria are used to compare the bilevel approach to the grid search approach: cross-validation error, test
error, feature selection and execution time. The results, averaged over 20 instances for each data set, are
presented in Table 2.2. Results which are significantly different (using a paired t-test at 10% confidence)
with respect to unconstrained grid are shown in bold. The computational results in Table 2.2 all used
T = 3 cross validation folds.

To study the effect of increasing the number of folds on cross validation error and test error,
we report, in Figure 2.1, the results averaged over 5 instances of the pima data set. The results clearly
demonstrate that larger number of folds can be successfully solved, but computation time does grow with
the number of folds. The range of generalization values observed for different numbers of folds is not
large, so T = 3 represents a reasonable choice. The best choice of the number of folds for a particular
data set remains an open question.

2.5.2 Discussion

We first examine the performance of the bilevel misclassification minimization (BilevelMM) program-
ming approach with respect to the grid search methods. The first conclusion that can be drawn, from
computational efficiency perspective, is that BilevelMM vastly outperforms the constrained grid search
approach; the execution times for the former are several orders of magnitude smaller than the latter. It
should be noted that the reported computation times for filter include transmission times as well as
solve times, and that the reported computation times for grid search are enhanced by the use of smart
restarting heuristics. However, despite the latter, it is clear that constrained grid search quickly becomes
impractical as the problem size grows. This effect is clearly noticeable in the computation times for the
Star/Galaxy data sets, where the execution time is affected, not only by the number of features, but also
by the data set sizes, which contain hundreds of training points. BilevelMM, on the other hand, is capable
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Data set Method CV Error Test Error ‖w‖0 Time (sec.)

pima unc. grid 23.10± 2.12 23.75± 0.94 8.0 12.3± 1.1
con. grid 21.04± 1.63 24.13± 1.13 4.5 434.9± 35.1
bilevelmm 21.87± 2.25 23.90± 0.95 6.4 51.8± 23.0
bilevelhl 44.04± 3.19 23.80± 1.14 5.4 156.5± 57.5

cancer unc. grid 3.54± 1.14 3.61± 0.64 9.0 11.7± 0.4
con. grid 2.73± 0.88 4.42± 0.85 5.8 815.5± 29.7
bilevelmm 3.13± 1.05 3.59± 0.79 8.2 19.9± 8.3
bilevelhl 6.13± 2.22 3.76± 0.74 6.8 58.3± 33.6

heart unc. grid 15.93± 2.02 16.05± 3.65 13.0 10.6± 0.8
con. grid 13.94± 1.69 16.85± 4.15 7.1 1388.7± 37.6
bilevelmm 14.49± 1.47 16.73± 3.89 11.2 64.0± 20.5
bilevelhl 28.89± 3.20 16.30± 3.29 8.8 217.1± 82.5

ionosphere unc. grid 22.27± 2.45 23.06± 2.45 33.0 7.5± 0.6
con. grid 19.25± 2.07 22.34± 2.02 6.9 751.1± 3.0
bilevelmm 19.16± 2.44 23.65± 2.99 20.2 423.0±159.5
bilevelhl 33.79± 2.79 22.79± 2.03 14.2 1248.8±618.5

bright unc. grid 0.78± 0.34 0.74± 0.13 14.0 22.7± 0.2
con. grid 0.51± 0.24 0.97± 0.33 6.7 3163.7± 11.5
bilevelmm 0.62± 0.31 0.79± 0.14 11.2 110.9± 61.2
bilevelhl 1.12± 0.58 0.75± 0.14 8.9 564.2±335.7

dim unc. grid 4.71± 0.55 4.96± 0.29 14.0 55.0± 5.1
con. grid 4.36± 0.51 5.21± 0.37 7.2 7643.5± 74.5
bilevelmm 4.77± 0.64 5.51± 0.33 7.7 641.5±344.1
bilevelhl 9.54± 1.00 5.28± 0.36 5.7 1465.2±552.9

Table 2.2. Computational Results comparing Grid Search and Bilevel Approaches.

of cross-validating the dim data set, with 900 training points, in around 10-11 minutes on average. This
suggests that the scalability of the bilevel approach could be improved significantly by exploiting the
structure and sparsity inherent in SVMs. Research is currently underway in this direction and findings
will be reported elsewhere.

With regard to generalization error, two interesting points emerge. First, the BilevelMM ap-
proach consistently produces results that are comparable to, if not slightly better than the grid search
approaches, in spite of the fact that the cross-validation error is typically higher. This can be attributed
to the fact that general-purpose NLP solvers tend to converge to acceptable solutions, with no guarantee
of global optimality. Second, the only exception is the dim data set where the slight degradation in gen-
eralization performance can be imputed to numerical difficulties experienced by the NLP solvers because
of large dimensionality and large data set size. Again, a specialized algorithm that could guarantee global
optimality could produce better generalization performance.

With regard to feature selection, it is clear that unconstrained grid performs none at all, while,
interestingly, constrained grid search uses less features than BilevelMM, albeit at the expense of excessive
computational times and poorer generalization. This can be attributed to the fact that constrained grid
is greedy, i.e., it analyzes every combination of features to find an optimal set and performs feature
selection aggressively on data sets with more than 10 features as it drops the remaining features using
RFE. BilevelMM has no such heuristic or mechanism to drive the number of selected features down.
Despite this, it is clear that it does succeed in performing a better trade-off between feature selection and
generalization. See Section 2.3.2 for ideas that might improve feature selection in the bilevel setting.

Next, we discuss the performance of the bilevel hinge-loss (BilevelHL) approach and compare
it to BilevelMM. The most striking difference is in the computation times of the two approaches,
with BilevelHL, quite unexpectedly, taking two to three times longer. We theorize that this is because
BilevelMM has many more stationary points (for an intuitive explanation of this curious property that is



2.6 Chapter Conclusions 35

endemic to misclassification minimization problems, see [61]) than BilevelHL and consequently, a general-
purpose NLP solver tends to converge to stationarity faster. However, BilevelHL is still considerably faster
than grid search; again, the only exception being the ionosphere data set. It should be noted that con-
strained grid search used only 10 features—after recursive feature elimination was used to drop 23 of the
33 features—while BilevelHL solved the full problem using all the features. If constrained grid were to
use all 33 features, it would have to solve around O(1011) BoxSVC problems.

In terms of generalization error, BilevelHL performs as well or better than BilevelMM and never
significantly worse than unconstrained grid (except for the dim data set), despite the fact that the CV
errors of BilevelHL are uniformly higher. Recall that a complementarity tolerance of 10−4 was used for
the dim data set. This was to relax the problem further for the numerical stability of the NLP solver.
This relaxation, however, leads to a slight degradation in the quality of the solution.

Finally, BilevelHL tends to pick fewer features than BilevelMM, but still more than constrained
grid. This comparison between BilevelMM and BilevelHL indicates that the best choice of outer-level
objective is still an open question in need of further research.

2.6 Chapter Conclusions

It was shown that T -fold cross-validation can be cast as a continuous bilevel program: inner-level problems
are introduced for each of the T -folds to compute classifiers on the training sets and to calculate the
misclassification errors on the training sets within each fold. Furthermore, this chapter introduced the
box-constrained SVM which has a hyper-parameter for each feature to perform feature selection. The
resulting bilevel program is converted to an MPEC, which is in turn converted to a nonlinear programming
problem through inexact cross validation. The advantage of the bilevel approach is that many hyper-
parameters can be optimized simultaneously, unlike prior grid search approaches that are practically
limited to one or two parameters. Initial computational results using filter through neos were very
promising. High quality solutions were found using few features using much less computation time than
grid search approaches over the same hyper-parameters.

This work represents a first proof of concept. It was showed that cross-validation through min-
imization of different objectives such as averaged misclassification error and hinge loss could be solved
efficiently with large numbers of hyper-parameters. The resulting classifiers demonstrated good gener-
alization ability and were dependent on only a few features. The success of these two different bilevel
approaches suggests that other changes in the objective and regularization can lead to further enhance-
ment of performance for classification problems. Furthermore, the versatility of the bilevel approach
suggests that further variations could be developed to tackle other challenges in machine learning such
as missing data, semi-supervised learning, kernel learning and multi-task learning.

A major outstanding research question is the development of efficient optimization algorithms for
the bilevel program. A step in this direction is taken in the next chapter which discusses model selection
for SV regression through bilevel cross validation and how the resulting LPEC can be solved quickly and
efficiently using the Successive Linearization Algorithm (SLA).
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SV Regression and Successive Linearization

3.1 Introduction

In this chapter, we apply the bilevel cross validation approach to model selection for support vector
regression. Two alternative methods for solving the resulting LPEC are examined. In both methods, the
convex lower level problems are replaced by their Karush-Kuhn-Tucker (KKT) optimality conditions, so
that the problem becomes a mathematical programming problem with equilibrium constraints (MPEC).
The equivalent optimization problem has a linear objective and linear constraints except for the set of
equilibrium constraints formed by the complementarity conditions. In the first approach, the equilibrium
constraints are relaxed from equalities to inequalities to form a nonlinear program (NLP) that is then
solved by a state-of-the-art general-purpose nonlinear programming solver, filter [31]. In the second
approach, the equilibrium constraints are treated as penalty terms and moved to the objective. The
resulting penalty problem is then solved using the successive linearization algorithm for model selection
(slams). Further performance enhancements are obtained by stopping slams at the first MPEC feasible
solution found, a version we term ez-slams.

The proposed bilevel programming approaches offer several fundamental advantages over prior
approaches. First, recent advances in bilevel programming in the optimization community permit the
systematic treatment of models based on popular loss functions used for SVM and kernel methods with
many hyper-parameters. In Section 3.3, we examine two algorithms for locally optimizing the models.
Computational results in Sections 3.5 and 3.6 illustrate that the bilevel methods, particularly ez-slams,
outperform traditional grid search approaches. In addition to the ability to simultaneously optimize
many hyper-parameters, the bilevel programming approach offers a broad framework in which novel
regularization methods can be developed, valid bounds on the test set errors can be obtained, and most
significantly, improved model selection can be performed.

3.2 A Bilevel Support-Vector Regression Model

The regression data are described by the ` points Ω := {(x1, y1), . . . , (x`, y`)} in the Euclidean space Rn+1

for some positive integers ` and n. Consider the regression problem of finding a function f∗ : Rn → R
among a given class that minimizes the regularized risk functional

R[f ] ≡ P [f ] +
C

`

∑̀
i=1

L(yi, f(xi)),

where L is a loss function of the observed data and model outputs, P is a regularization operator, and
C is the regularization parameter. Usually the ε-insensitive loss Lε(y, f(x)) = max{|y − f(x)| − ε, 0} is
used in SVR, where ε > 0 is the tube parameter, which could be difficult to select as one does not know
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beforehand how accurately the function will fit the data. For linear functions: f(x) = w ′x =
∑n
i=1 wixi,

where the bias term is ignored but can easily be accommodated, the regularization operator in classic
SVR is the squared `2-norm of the normal vector w ∈ Rn; i.e., P [f ] ≡ ‖w‖22 =

∑n
i=1 w

2
i .

The classic SVR approach has two hyper-parameters, the regularization constant C and the tube
width ε, that are typically selected by cross validation based on the mean square error (MSE) or mean
absolute deviation (MAD) measured on the out-of-sample data. In what follows, we focus on the latter
and introduce additional parameters for feature selection and improved regularization and control. We
partition the ` data points into T disjoint partitions, Ωt for t = 1, . . . , T , such that

⋃T
t=1Ωt = Ω. Let

Ωt ≡ Ω \Ωt be the subset of the data other than those in group Ωt. The sets Ωt are called training sets
while the sets Ωt are called the validation sets. We denote N t and Nt to be their index sets respectively.
For simplicity, we will ignore the bias term, b, but the method can easily be generalized to accommodate
it. By specifying, for the general formulation (1.41), L2 norm regularization and the ε-insensitive loss
function we get the program below; the model selection bilevel program is to find the parameters ε, C
and wt for t = 1, · · · , T , and also the bound w in order to

minimize
C,ε,wt,w

1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

|x ′iwt − yi |

subject to ε, C,≥ 0,w ≥ 0,

and for t = 1, . . . , T,

(3.1)

wt ∈ arg min
−w≤w≤w

C∑
j∈N t

max(|x ′jw − yj | − ε, 0) +
1
2
‖w ‖22

 , (3.2)

where the argmin in the last constraint denotes the set of optimal solutions to the convex optimization
problem (3.2) in the variable w for given hyper-parameters ε, C, w0 and w.

The parameter, w, is related to feature selection and regularization. The bound constraints −w ≤
w ≤ w are introduced as in the classification case. In addition to constraining the capacity of each of the
functions, they also force all the subsets to use the same descriptors, a form of variable selection. This
effect can be enhanced by adopting the one-norm, which forces w to be sparse. The box constraints will
ensure that a consistent but not necessarily identical sets will be used across the folds.

Note that the loss functions used in the first level and second level—to measure errors—need not
match. For the inner-level optimization, we adopt the ε-insensitive loss function because it produces robust
solutions that are sparse in the dual space. But typically, ε-insensitive loss functions are not employed
in the outer cross-validation objective; so here we use mean absolute deviation (as an example). Also, to
facilitate comparison with grid search, we restrict C and ε to be within prescribed upper bounds.

3.2.1 Bilevel Problems as MPECs

Just as in the last section, we can convert the bilevel program (3.1) into a LPEC. Collecting all the weight
vectors across the folds, wt, column-wise into the matrix W for compactness, the cross-validation error
measured as mean average deviation across all the folds is

Θ(W ) =
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

|x ′iwt − yi |, (3.3)

and is subject to the simple restrictions on these parameters, and most importantly, to the additional
inner-level optimality requirement of each wt for t = 1, . . . , T . To solve (3.1), we rewrite the inner-level
optimization problem (3.2) by introducing additional slack variables, ξt ≥ 0 within the t-th fold as follows:
for given ε, C and w,
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minimize
wt, ξt

C
∑
j∈N t

ξtj +
1
2
‖wt ‖22

subject to −w ≤ wt ≤ w,

ξtj ≥ x ′jw
t − yj − ε

ξtj ≥ yj − x ′jw
t − ε

ξtj ≥ 0

 j ∈ N t,

(3.4)

which is easily seen to be a convex quadratic program in the variables wt and ξt. By letting γt,± be
the multipliers of the bound constraints, −w ≤ w ≤ w, respectively, and αt,±j be the multipliers of the
constraints ξtj ≥ x ′jw

t− yj − ε and ξtj ≥ yj −x ′jw
t− ε, respectively, we obtain the Karush-Tucker-Tucker

optimality conditions of (3.4) as the following linear complementarity problem in the variables wt, γt,±,
αt,±
j , and ξtj :

0 ≤ γt,− ⊥ w + wt ≥ 0,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ αt,−j ⊥ x ′jw
t − yj + ε+ ξtj ≥ 0

0 ≤ αt,+j ⊥ yj − x ′iw
t + ε+ ξtj ≥ 0

0 ≤ ξtj ⊥ C − αt,+j − αt,−j ≥ 0

 ∀j ∈ N t,

0 = wt +
∑
j∈N t

(αt,+j − αt,−j )xj + γt,+ − γt,−,

(3.5)

where a ⊥ b means a′b = 0. The orthogonality conditions in (3.5) express the well-known complementary
slackness conditions of the inner-level (parametric) quadratic program. All the conditions (3.5) represent
the Karush-Kuhn-Tucker conditions. The overall two-level regression problem is therefore

minimize
1
T

T∑
t=1

1
| Nt |

∑
i∈Nt

zti

subject to ε, C ≥ 0, w ≥ 0,

and for all t = 1, . . . , T

−zti ≤ x ′iw
t − yi ≤ zti , ∀ i ∈ Nt,

0 ≤ αt,−j ⊥ x ′jw
t − yj + ε+ ξtj ≥ 0

0 ≤ αt,+j ⊥ yj − x ′iw
t + ε+ ξtj ≥ 0

0 ≤ ξtj ⊥ C − αt,+j − αt,−j ≥ 0

∀j ∈ N t,

0 ≤ γt,− ⊥ w + wt ≥ 0,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 = wt +
∑
j∈N t

(αt,+j − αt,−j )xj + γt,+ − γt,−.

(3.6)

The most noteworthy feature of the above optimization problem is the complementarity conditions in the
constraints, making the problem an instance of a linear program with linear complementarity constraints
(sometimes called an LPEC). The ampl model (constraints and objectives) for this approach is given in
Appendix A.2. The discussion in the remainder of this paper focuses on this case.
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3.3 Bilevel Optimization Methods

In this section, we describe two alternative methods for solving the model. We also describe the details
of the classical grid search approach. The difficulty in solving the LPEC reformulation (3.6) of the bilevel
optimization problem (3.1) stems from the linear complementarity constraints formed from the optimality
conditions of the inner problem (3.5); all of the other constraints and the objective are linear. It is well
recognized that a straightforward solution using the LPEC formulation is not appropriate because of
the complementarity constraints, which give rise to both theoretical and computational anomalies that
require special attention.

Among various proposals to deal with these constraints, two are particularly effective for finding a
local solution: one is to relax the complementarity constraints and retain the relaxations in the constraints.
The other proposal is via a penalty approach that allows the violation of these constraints but penalizes the
violation by adding a penalty term in the objective function of (3.6). There are extensive studies of both
treatments, including detailed convergence analyses and numerical experiments on realistic applications
and random problems [8, 60, 61, 67, 72]. In this work, we experiment with both approaches.

3.3.1 A Relaxed NLP Reformulation

Exploiting the LPEC structure, the first solution method that is implemented in our experiments for
solving (3.6) employs a relaxation of the complementarity constraint. In the relaxed complementarity
formulation, we let tol > 0 be a prescribed tolerance of the complementarity conditions. Just as for
the classification case we replace ⊥ with ⊥tol where a ⊥tol b means a′b ≤ tol. The latter formulation
constitutes the relaxed bilevel support-vector regression problem that we employ to determine the hyper-
parameters C, ε and w; the computed parameters are then used to define the desired support-vector
model for data analysis. The relaxed complementary slackness is a novel feature that aims at enlarging
the search region of the desired regression model; the relaxation corresponds to inexact cross validation
whose accuracy is dictated by the prescribed scalar, tol.

The above NLP remains a non-convex optimization problem; thus, finding a global optimal so-
lution is hard, but the state-of-the-art general-purpose NLP solver, filter [31] that is available on the
neos server is used. We also experimented with snopt [39] but as reported in [7], we found filter
to work better overall. filter is a sequential quadratic programming (SQP) based method, which is
a Newton-type method for solving problems with nonlinear objectives and nonlinear constraints. The
method solves a sequence of approximate convex quadratic programming subproblems. filter imple-
ments a SQP algorithm using a trust-region approach with a “filter” to enforce global convergence. It
terminates either when a Karush-Kuhn-Tucker point is found within a specified tolerance or no further
step can be processed (possibly due to the infeasibility of a subproblem).

3.3.2 Penalty Reformulation

Another approach to solving the problem (3.6) is the penalty reformulation. Penalty and augmented
Lagrangian methods have been widely applied to solving LPECs and MPECs, for instance, by [47].
These methods typically require solving an unconstrained optimization problem. In contrast, penalty
methods penalize only the complementarity constraints in the objective by means of a penalty function.

Consider the LPEC, (3.6), resulting from the reformulation of the bilevel regression problem.
Define St, for t = 1, . . . , T , to be the constraint set within the t-th fold, without the complementarity
constraints:
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St :=



zt,αt,±, ξt,
γt,±, rt, st

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−zti ≤ x ′iw
t − yi ≤ zti , ∀ i ∈ Nt,

x ′jw
t − yj + ε+ ξtj ≥ 0

yj − x ′iw
t + ε+ ξtj ≥ 0

C − αt,+j − αt,−j ≥ 0

∀j ∈ N t,

−w ≤ wt ≤ w,

0 = wt +
∑
j∈N t

(αt,+j − αt,−j )xj + γt,+ − γt,−,

wt = rt − 1 st,
zt,αt,±, ξt,γt,±, rt, st ≥ 0.



, (3.7)

where we rewrite the weight vector, wt, within each fold as wt = rt−1 st, with rt, st ≥ 0 and 1 denotes
a vector of ones of appropriate dimension. Also, let S0 be defined as

S0 :=

C, ε,w
∣∣∣∣∣∣∣

C ∈ [C, C],
ε ∈ [ε, ε],

wlb ≤ w ≤ wub

 . (3.8)

Then, the overall constraint set for the LPEC (3.6), without the complementarity constraints is defined
as SLP :=

⋂T
t=0 St. Let all the variables in (3.7) and (3.8) be collected into the vector ζ ≥ 0.

In the penalty reformulation, all the complementarity constraints of the form a ⊥ b in (3.6) are
moved into the objective via the penalty function, φ(a, b). This effectively converts the LPEC (3.6) into a
penalty problem of minimizing some, possibly non-smooth, objective function on a polyhedral set. Typical
penalty functions include the differentiable quadratic penalty term, φ(a, b) = a′b, and the non-smooth
piecewise-linear penalty term, φ(a, b) = min(a, b). Here, we consider the quadratic penalty. The penalty
term, which is a product of the complementarity terms is

φ(ζ) =
T∑
t=1



Θtp︷ ︸︸ ︷
1
2
‖wt ‖22 + C

∑
j∈N t

ξtj +
1
2

∑
i∈N t

∑
j∈N t

(αt,+i − αt,−i )(αt,+j − αt,−j )x′ixj

+ ε
∑
j∈N t

(αt,+j + αt,−j ) +
∑
j∈N t

yj (αt,+j − αt,−j )

−w′γt,+ + w′γt,−︸ ︷︷ ︸
−Θtd

 . (3.9)

The first two terms in the quadratic penalty constitute the primal objective, Θtp, while the last five terms
constitute the negative of the dual objective, Θtd, for support vector regression in the t-th fold. Conse-
quently, the penalty function is a combination of T differences between the primal and dual objectives of
the regression problem in each fold. Thus,

φ(ζ) =
T∑
t=1

(
Θtp(ζ

t
p) − Θtd(ζ

t
d)
)
,

where ζtp ≡ (wt, ξt), the vector of primal variables in the t-th primal problem and ζtd ≡ (αt,±,γt,±, ξt),
the vector of dual variables in the t-th dual problem. However, the penalty function also contains the
hyper-parameters, C, ε and w as variables, rendering φ(ζ) non-convex. Recalling that the linear cross-
validation objective was denoted by Θ, we define the penalized objective: P (ζ; µ) = Θ(ζ) + µφ(ζ), and
the penalized problem, PF (µ), is
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min
ζ

P (ζ; µ)

subject to ζ ∈ SLP.
(3.10)

This penalized problem has very nice properties that have been extensively studied. First, we know that
finite values of µ can be used, since local solutions of LPEC, as defined by strong stationarity, correspond
to stationarity points of PF (µ). The point ζ∗ is a stationary point of PF (µ) if and only if there exists a
Lagrangian multiplier vector ρ∗, such that (ζ∗, ρ∗) is a KKT point of PF (µ). In general, KKT points do
not exist for LPECs. An alternative local optimality condition, strong stationarity of the LPEC, means
that ζ∗ solves an LP formed by fixing the LPEC complementarity conditions appropriately. See [72,
Definition 2.2] for precise details on strong stationarity. Finiteness ensures that the penalty parameter
can be set to reasonable values, contrasting with other approaches in which the penalty problem only
solve the original problem in the limit.

Theorem 3.1 (Finite penalty parameter, [72], Theorem 5.2). Suppose that ζ∗ is a strongly sta-
tionary point of (3.6), then for all µ sufficiently large, there exists a Lagrangian multiplier vector ρ∗, such
that (ζ∗, ρ∗) is a KKT point of PF (µ) (3.10).

It is perhaps not surprising to note that the zero penalty corresponds to a point where the primal and
dual objectives are equal in (3.3.2). These strongly stationary solutions correspond to solutions of (3.10)
with φ(ζ) = 0, i.e., a zero penalty. The quadratic program, PF (µ), is non-convex, since the penalty term
is not positive definite. Continuous optimization algorithms will not necessarily find a global solution of
PF (µ). But we do know know that local solutions of PF (µ) that are feasible for the LPEC are also local
optimal for the LPEC.

Theorem 3.2 (Complementary PF (µ) solution solves LPEC, [72], Theorem 5.2). Suppose ζ∗

is a stationary point of PF (µ) (3.10) and φ(ζ∗) = 0. Then ζ∗ is a strongly stationary for (3.6).

One approach to solving exact penalty formulations like (3.10) is the successive linearization algorithm,
where a sequence of problems with a linearized objective,

Θ(ζ − ζk) + µ∇φ(ζk)′(ζ − ζk), (3.11)

is solved to generate the next iterate. We now describe the Successive Linearization Algorithm for Model
Selection (slams).

3.3.3 Successive Linearization Algorithm for Model Selection

The QP, (3.10), can be solved using the Frank-Wolfe method [61] which simply involves solving a sequence
of LPs until either a global minimum or some locally stationary solution of (3.6) is reached. In practice, a
sufficiently large value of µ will lead to the penalty term vanishing from the penalized objective, P (ζ∗; µ).
In such cases, the locally optimal solution to (3.10) will also be feasible and locally optimal to the LPEC
(3.6).

Algorithm 1 gives the details of slams. In Step 2, the notation arg vertex min indicates that
ζk is a vertex solution of the LP in Step 2. The step size in Step 4 has a simple closed form solution
since a quadratic objective subject to bounds constraints is minimized . The objective has the form
f(λ) = aλ2 + bλ, so the optimal solution is either 0, 1 or −b2a , depending on which value yields the
smallest objective. slams converges to a solution of the penalty problem. slams is a special case of the
Frank-Wolfe algorithm and a convergence proof of the Frank-Wolfe algorithm with no assumptions on
the convexity of P (ζj , µ) can be found in [8], thus we offer the convergence result without proof.

Theorem 3.3 (Convergence of slams [8]). Algorithm 1 terminates at ζk that satisfies the minimum
principle necessary optimality condition of PF (µ): ∇ζP (ζk;µ)′(ζ − ζk) ≥ 0 for all ζ ∈ SLP, or each
accumulation ζ̄ of the sequence {ζk} satisfies the minimum principle.



3.3 Bilevel Optimization Methods 43

Algorithm 3.1 Successive linearization algorithm for model selection
Fix µ > 0.

1. Initialization:
Start with an initial point, ζ0 ∈ SLP.

2. Solve Linearized Problem:
Generate an intermediate iterate, ζ̄k, from the previous iterate, ζk, by solving the linearized penalty problem,
ζ̄k ∈ arg vertex min

ζ∈SLP

∇ζP (ζk; µ)′ (ζ − ζk).

3. Termination Condition:
Stop if the minimum principle holds, i.e., if ∇ζP (ζk; µ)′ (ζ̄k − ζk) ≥ 0.

4. Compute Step Size:

Compute step length λ ∈ arg min
0≤λ≤1

P
(

(1− λ) ζk + λ ζ̄k; µ
)

, and get the next iterate, ζk+1 = (1−λ) ζk+λ ζ̄k.

Furthermore, for the case where slams generates a complementary solution, slams finds a strongly
stationary solution of the LPEC.

Theorem 3.4 (slams solves LPEC). If the sequence ζk generated by slams accumulates to ζ̄ such
that φ(ζ̄) = 0, then ζ is strongly stationary for LPEC (3.6).

Proof. For notational convenience let the set SLP = {ζ |Aζ ≥ b}, with an appropriate matrix, A, and
vector, b. We first show that ζ̄ is a KKT point of the problem

min
ζ
∇ζP (ζ; µ)

s.t. Aζ ≥ b.

We know that ζ̄ satisfies Aζ̄ ≥ b since ζk is feasible at the k-th iteration. By Theorem 3.3 above, ζ̄
satisfies the minimum principle; thus, we know the systems of equations

∇ζP (ζ̄; µ)′(ζ − ζ̄k) < 0, ζ ∈ SLP,

has no solution for any ζ ∈ SLP. Equivalently, if I = {i|Aiζ̄ = bi}, then

P (ζ̄; µ)′(ζ − ζ̄) < 0, Aiζ ≥ 0, i ∈ I,

has no solution. By Farkas’ Lemma, there exists ū such that

∇ζP (ζ̄;µ)−
∑
i∈I

ūiAi = 0, ū ≥ 0.

Thus (ζ̄, ū) is a KKT point of PF (µ) and ζ̄ is a stationary point of PF (µ). By Theorem 3.2, ζ̄ is also a
strongly stationary point of LPEC (3.6).

3.3.4 Early Stopping

Typically, in many machine learning applications, emphasis is placed on generalization and scalability.
Consequently, inexact solutions are preferred to globally optimal solutions as they can be obtained cheaply
and tend to perform reasonably well. Noting that, at each iteration, the algorithm is working to minimize
the LPEC objective as well as the complementarity penalty, one alternative to speeding up termination
at the expense of the objective is to stop as soon as complementarity is reached. Thus, as soon as an
iterate produces a solution that is feasible to the LPEC, (3.6), the algorithm is terminated. We call this
approach Successive Linearization Algorithm for Model Selection with Early Stopping (ez-slams). This
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is similar to the well-known machine learning concept of early stopping, except that the criterion used
for termination is based on the status of the complementarity constraints i.e., feasibility to the LPEC.
We adapt the finite termination result in [8] to prove that ez-slams terminates finitely for the case when
complementary solutions exist, which is precisely the case of interest here. Note that the proof relies upon
the fact that SLP is polyhedral with no straight lines going to infinity in both directions.

Theorem 3.5 (Finite termination of EZ-SLAMS). If the sequence ζk generated by slams accumu-
lates to ζ̄ such that φ(ζ̄) = 0, then EZ-SLAM terminates at an LPEC (3.6) feasible solution ζk in finitely
many iterations.

Proof. Let V be the finite subset of vertices of SLP that constitutes the vertices {v̄k} generated by slams.
Then,

{ζk} ∈ convex hull{ζ0 ∪ V},
ζ̄ ∈ convex hull{ζ0 ∪ V}.

If ζ̄ ∈ V, we are done. If not, then for some ζ ∈ SLP, v ∈ V and λ ∈ (0, 1),

ζ̄ = (1− λ)ζ + λv.

For notational convenience define an appropriate matrix M and vector b such that 0 = φ(ζ̄) = ζ̄′(M ζ̄+q).
We know ζ̄ ≥ 0 and M ζ̄ + q ≥ 0. Hence,

vi = 0, or Miv + qi = 0.

Thus, v is feasible for LPEC (3.6).

The results comparing slams to ez-slams are reported in Sections 3.5 and 3.6. It is interesting to note
that there is always a significant decrease in running time with no significant degradation in training or
generalization performance when early stopping is employed.

3.3.5 Grid Search

In classical cross-validation, parameter selection is performed by discretizing the parameter space into a
grid and searching for the combination of parameters that minimizes the validation error (which corre-
sponds to the upper level objective in the bilevel problem). This is typically followed by a local search
for fine-tuning the parameters. Typical discretizations are logarithmic grids of base 2 or 10 on the pa-
rameters. In the case of the classic SVR, cross validation is simply a search on a two-dimensional grid of
C and ε.

This approach, however, is not directly applicable to the current problem formulation because, in
addition to C and ε, we also have to determine w, and this poses a significant combinatorial problem. In
the case of k-fold cross validation of n-dimensional data, if each parameter takes d discrete values, cross
validation would involve solving roughly O(kdn+2) problems, a number that grows to intractability very
quickly. To counter the combinatorial difficulty, we implement the following heuristic procedures:

• Perform a two-dimensional grid search on the unconstrained (classic) SVR problem to determine C
and ε. We call this the unconstrained grid search (Unc. Grid). A coarse grid with values of 0.1, 1 and
10 for C, and 0.01, 0.1 and 1 for ε was chosen.

• Perform an n-dimensional grid search to determine the features of w using C and ε obtained from the
previous step. Only two distinct choices for each feature of w are considered: 0, to test if the feature is
redundant, and some large value that would not impede the choice of an appropriate feature weight,
otherwise. Cross validation under these settings would involve solving roughly O(3.2N ) problems; this
number is already impractical and necessitates the heuristic. We label this step the constrained grid
search (Con. Grid).

• For data sets with more than 10 features, recursive feature elimination [42] is used to rank the features
and the 10 largest features are chosen.
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# Vars. # Vars.
Data set # Obs. # Train # Test # Vars. (stdized) (postPCA)

Aquasol 197 100 97 640 149 25
B/B Barrier (BBB) 62 60 2 694 569 25
Cancer 46 40 6 769 362 25
Cholecystokinin (CCK) 66 60 6 626 350 25

Table 3.1. The Chemoinformatics (QSAR) data sets

3.4 Experimental Design

Our experiments aim to address several issues. The first series of experiments were designed to compare
the successive linearization approaches (with and without early stopping) to the classical grid search
method with regard to generalization and running time. The data sets used for these experiments consist
of randomly generated synthetic data sets and real world chemoinformatics (QSAR) data. The second
experiment was designed to perform a scalability analysis comparing grid search with the SLA methods
to evaluate their performance on large data sets. The third experiment was designed to evaluate the
effectiveness of T -fold cross validation itself with different values of T , the number of folds. We now
describe the data sets and the design of our experiments.

3.4.1 Synthetic Data

Data sets of different dimensionalities, training sizes and noise models were generated. The dimension-
alities i.e., number of features considered were n = 10, 15 and 25, among which, only nr = 7, 10 and
16 features respectively, were relevant. We trained on sets of ` = 30, 60, 90, 120 and 150 points using
3-fold cross validation and tested on a hold-out set of a further 1, 000 points. Two different noise models
were considered: Laplacian and Gaussian. For each combination of feature size, training set size and
noise model, 5 trials were conducted and the test errors were averaged. In this subsection, we assume the
following notation: U(a, b) represents the uniform distribution on [a, b], N(µ, σ) represents the normal
distribution with probability density function 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
, and L(µ, b) represents the Laplacian

distribution with the probability density function 1
2b exp

(
− |x−µ|b

)
.

For each data set, the data, wreal and labels were generated as follows. For each point, 20% of
the features were drawn from U(−1, 1), 20% were drawn from U(−2.5, 2.5), another 20% from U(−5, 5),
and the last 40% from U(−3.75, 3.75). Each feature of the regression hyperplane wreal was drawn from
U(−1, 1) and the smallest n − nr features were set to 0 and considered irrelevant. Once the training
data and wreal were generated, the noise-free regression labels were computed as yi = x′iwreal. Note
that these labels now depend only on the relevant features. Depending on the chosen noise model, noise
drawn from N(0, 0.4σy) or L(0, 0.4σy√

2
) was added to the labels, where σy is the standard deviation of the

noise-less training labels.

3.4.2 Real-world QSAR Data

We examined four real-world regression chemoinformatics data sets: Aquasol, Blood/Brain Barrier (BBB),
Cancer, and Cholecystokinin (CCK), previously studied in [21]. The goal is to create Quantitative Struc-
ture Activity Relationship (QSAR) models to predict bioactivites typically using the supplied descriptors
as part of a drug design process. The data is scaled and preprocessed to reduce the dimensionality. As was
done in [21], we standardize the data at each dimension and eliminate the uninformative variables that
have values outside of ±4 standard deviations range. Next, we perform principle components analysis
(PCA), and use the top 25 principal components as descriptors. The training and hold out set sizes and
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the dimensionalities of the final data sets are shown in Table 3.1. For each of the training sets, 5-fold
cross validation is optimized using bilevel programming. The results are averaged over 20 runs.

The LPs within each iterate in both SLA approaches were solved with CPLEX. The penalty
parameter was uniformly set to µ = 103 and never resulted in complementarity failure at termination.
The hyper-parameters were bounded as 0.1 ≤ C ≤ 10 and 0.01 ≤ ε ≤ 1 so as to be consistent with the
hyper-parameter ranges used in grid search. All computational times are reported in seconds.

3.4.3 Post-processing

The outputs from the bilevel approach and grid search yield the bound w and the parameters C and ε.
With these, we solve a constrained support vector problem on all the data points:

minimize C
∑̀
i=1

max( |x ′iw − yi | − ε, 0 ) +
1
2
‖w ‖22

subject to −w ≤ w ≤ w

to obtain the vector of model weights ŵ, which is used in computing the generalization errors on the
hold-out data:

MAD ≡ 1
1000

∑
(x,y) hold-out

|x ′ŵ − y |

and
MSE ≡ 1

1000

∑
(x,y) hold-out

( x ′ŵ − y )2.

The computation times, in seconds, for the different algorithms were also recorded.

3.5 Computational Results: Synthetic Data

In the following sections, constrained (abbreviated con.) methods refer to the bilevel models that have
the box constraint −w ≤ w ≤ w, while unconstrained (abbreviated unc.) methods refer to the bilevel
models without the box constraint. In this section, we compare the performance of several different
methods on synthetic data sets. The criteria used for comparing the various methods are training error
(cross-validation objective), test error (generalization error measured as MAD or MSE on the 1000-point
hold-out test set) and computation time (in seconds). For MAD and MSE, the results in bold refer to
those that are significantly different than those of the unconstrained grid as measured by a two-sided
t-test with significance of 0.1. The results that are significantly better and worse are tagged with a check
(3) or a cross (7) respectively. The tables are appended at the end of the chapter.

From an optimization perspective, the bilevel programming methods consistently tend to out-
perform the grid search approaches significantly. The objective values found by the bilevel methods,
especially filter, are much smaller than those found by their grid-search counterparts. The coarse grid
size and feature elimination heuristics used in the grid search cause it to find relatively poor objective
values.

The reported times provide a rough idea of the computational effort of each algorithm. As noted
above, the computation times for the neos solver, filter, includes transmission, and waiting times as
well as solve times. For grid search methods, smart restart techniques were used to gain a considerable
increase in speed. However, for Con. Grid, even these techniques cannot prevent the running time from
becoming impractical as the problem size grows. While the computation times of filter are both much
less than that of Con. Grid, it is the SLA approaches that really dominate. The efficiency of the SLA
approaches is vastly superior to both grid search and filter, especially for smaller problems. However, as
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problem size grows, Unc. slams and Con. slams become more expensive as bigger LPs have to be solved
at each iteration while the algorithm converges. However, the early stopping methods, Unc. ez-slams
and Con. ez-slams are very competitive, even as the problem size grows.

The bilevel approach is much more computationally efficient than grid search on the fully pa-
rameterized problems. The results, for filter, are relatively efficient and very acceptable; the filter
approach does have a drawback, in that is that it tends to struggle as the problem size increases. For the
synthetic data, filter failed to solve 10 problems each from the 25d data sets with 120 and 150 points
and these runs have been left out of Table 3.4.

Of course, in machine learning, an important measure of performance is generalization error.
Compared to classic SVR optimized with Unc. Grid, filter and the SLA approaches yield solutions that
are better or comparable to the test problems and never significantly worse. In contrast, the generalization
performance of Con. Grid steadily degrades as problem size and dimensionality grow.

Finally, the SLA approaches that employ early stopping tend to generalize identically to the SLA
approaches that do not stop early. This is a very important discovery because it suggests that allowing
the SLA approaches to iterate to termination is very expensive, and it is without any corresponding
improvement in the cross-validation objective or the generalization performance. The early stopping
methods, Unc. ez-slams and Con. ez-slams are clearly competitive with the classical Unc. Grid approach
with respect to training and generalization; their main advantage is their efficiency even when handling
several hyper-parameters (which Unc. Grid is unable to do).

Thus, the Unc. and Con. ez-slams are the preferred methods. We investigate the behavior of
Unc. slams and Unc. ez-slams further in the following subsections.

3.5.1 Scalability Analysis

The purpose of this section is to study the scalability of the Unc. SLA methods to large data sets. The data
set used here was a 10d synthetic data set with Laplacian noise. There were 11 different sets of problems
solved with each set corresponding to different training set sizes: ` = 90, 180, . . . , 990. Each data set was
trained on Unc. Grid, Unc. slams and Unc. ez-slams. For each method, 10 random instances of the data
set were solved using 3-fold cross validation and post-processed as described in Section 3.4.3. As before,
the 3 methods were compared on training and test errors and computation times. Unc. slams and Unc.
ez-slams were also compared with regard to the number of LPs solved. The averaged results are shown
in Figure 3.1.

It is interesting to note that the training and generalization behavior of all three algorithms are
identical, especially as the data set size grows. However, the telling statistic is the computation time.
For data set sizes up to 360 points, Unc. Grid performs competitively with Unc. ez-slams and signifi-
cantly better than Unc. slams. However, beyond this, its efficiency drops off sharply as its computation
time increases almost quadratically. Note that the computational times for all three approaches do not
monotonically increase with the size and that the SLA methods are much more robust to increases in the
data set size. Unsurprisingly, early stopping allows Unc. ez-slams to perform significantly better than
Unc. slams with no degradation in either the training or testing performance. We see that early stopping
allows Unc. ez-slams to perform significantly better than Unc. slams with no degradation in either the
training or testing performance.

This is even more evident when the two SLA algorithms are compared with regard to the average
number of LPs solved. Convergence to LPEC feasibility always occurs in less than 10 iterations after
which Unc. ez-slams terminates. Unc. slams, however, continues to solve more LPs and run for longer
as it attempts to converge to a local solution. Again, this added computational time does not yield better
generalization, suggesting that early stopping is indeed quite beneficial, especially for larger problems.

3.5.2 Folds Analysis

The purpose of this section is to determine the effect of increasing the number of folds in T -fold cross
validation. Again, we use 5 different 10d data sets, each corresponding to data set sizes ` = 30, 60, · · · , 150.
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Each data set was trained on Unc. slams and Unc. ez-slams using T = 3, 5 and 10 folds. There are 10
instances of each problem. The two methods are compared on generalization error and running time and
the results are reported in Figure 3.2.

Rather unsurprisingly, as the number of folds, T , increase, the computation time increases and
Unc. ez-slams continues to perform consistently better than Unc. slams because it stops early. In fact,
the former runs almost 4 times faster when solving 10-fold cross validation. Interestingly, there was no
significant difference in the generalization performance of either method over the folds. This suggests
that the commonly accepted norm of 10-fold cross validation is much more computationally expensive
for the same generalization performance that 3-fold or 5-fold cross validation can deliver more quickly.
This might be because classical cross-validation solves the training problems sequentially while the bilevel
approaches solve them simultaneously which is clearly beneficial as all the information is embedded in
the bilevel formulation.

3.6 Computational Results: QSAR Data

Table 3.5 shows the average results for the QSAR data. After the data is preprocessed, we randomly
partition the data into 20 different training and testing sets. For each of the training sets, 5-fold cross
validation is optimized using bilevel programming. The results are averaged over the 20 runs.

Again, as with the synthetic data, filter finds solutions with the smallest training errors. How-
ever, computation times for filter are not competitive with the SLA methods and not even with Unc.
Grid. Unsurprisingly, constrained grid search has the worst computation time. The difficulty of the under-
lying bilevel optimization problem is underscored by the fact that the greedy Con. Grid search in Section
3.3.5 sometimes fails to find a better solution than the unconstrained grid search. The constrained search
drops important variables that cause it to have bad generalization.

In terms of test set error, filter and the constrained SLA approaches outperform the uncon-
strained approaches on the cancer data and do as well on the remaining three data sets. However, on the
remaining data sets, the SLA approaches generalize very well and tend to be competitive with Unc. Grid
with regard to execution time. The best running times, however, are produced by the early stopping based
SLA approaches, which SLAM the door on all other approaches while maintaining good generalization
performance.

3.7 Chapter Conclusions

It was shown that the widely used model selection technique of cross validation (for support vector
regression) could be formulated as a bilevel programming problem which is then converted to an LPEC.
This class of problems is difficult to solve due to the non-convexity created by the complementarity
constraints introduced in the reformulation. Two approaches were proposed to solve the LPEC: a relaxed
NLP-based approach which was solved using the off-the-shelf, SQP-based, NLP solver, filter and a
exact penalty-based approach which was solved using a finite successive linearization algorithm.

Preliminary computational results indicate that general purpose SQP solvers can tractably find
high-quality solutions that generalize well and this is consistent with results reported in Chapter 2 for
classification. The computation times of the filter solver are good and generalization results on random
data show that filter yields are comparable, if not better results than current methods. The successive
linearization algorithms for model selection (slams) and their early stopping variants (ez-slams) per-
formed even better than filter and demonstrated scalability to high dimensional data sets containing
up to 1000 points. In fact, it was shown that the slams algorithms comprehensively outperform classical
grid search approaches as the size of the problem grows.

This is despite the fact that neither the NLP- or the SLA-based approaches take advantage of the
structure inherent in bilevel problems arising from machine learning applications. Machine learning prob-
lems, especially support vector machines, are highly structured, and yield elegant and sparse solutions, a
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fact that several decomposition algorithms such as sequential minimal optimization target. Despite the
non-convexity of the LPECs, bilevel programs for machine learning problems retain the structure inherent
in the original machine learning problems. In addition, the variables in these LPECs tend to decouple, for
example, in cross validation, the variables may be decoupled along the folds. This suggests that applying
decomposition methods to bilevel approaches can make them even more efficient. An avenue for future
research is developing a decomposition-based algorithm that can train on data sets containing tens of
thousands of points.

The most pressing question, however, arises from a serious limitation of the formulation presented
herein: the model can only handle linear data sets. Classical machine learning addresses this problem by
means of the kernel trick. It will be shown in Chapter 5 that the kernel trick can be incorporated into
a generic bilevel model for cross validation. In the next chapter, however, a problem that is germane to
learning from real-world data is studied i.e., the problem of learning with missing data.
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Method Objective Time MAD MSE

30 pts
Unc. Grid 1.385± 0.323 5.2± 0.5 1.376 2.973
Unc. Slams 1.379± 0.290 1.4± 0.8 1.311 2.709
Unc. ez-Slams 1.475± 0.295 0.4± 0.1 1.294 3 2.642 3

Con. Grid 1.220± 0.276 635.3±59.1 1.391 3.044
filter (SQP) 0.984± 0.206 36.1±14.8 1.298 3 2.657 3

Con. Slams 1.183± 0.217 2.4± 0.9 1.320 2.746
Con. ez-Slams 1.418± 0.291 0.6± 0.1 1.308 2.684

60 pts
Unc. Grid 1.200± 0.254 5.9± 0.5 1.208 2.324
Unc. Slams 1.235± 0.211 3.4± 2.9 1.181 2.223
Unc. ez-Slams 1.253± 0.218 1.2± 0.3 1.183 2.231
Con. Grid 1.143± 0.245 709.2±55.5 1.232 2.418
filter (SQP) 1.032± 0.197 35.2± 7.0 1.189 2.244
Con. Slams 1.191± 0.206 3.7± 2.4 1.186 2.239
Con. ez-Slams 1.232± 0.208 1.3± 0.3 1.186 2.238

90 pts
Unc. Grid 1.151± 0.195 7.2± 0.5 1.180 2.215
Unc. Slams 1.206± 0.203 5.6± 2.8 1.154 3 2.124 3

Unc. ez-Slams 1.213± 0.208 2.6± 0.5 1.154 3 2.123 3

Con. Grid 1.108± 0.192 789.8±51.7 1.163 3 2.154 3

filter (SQP) 1.072± 0.186 44.2± 6.3 1.166 2.163
Con. Slams 1.188± 0.190 5.8± 2.6 1.158 3 2.140 3

Con. ez-Slams 1.206± 0.197 2.7± 0.8 1.159 3 2.139 3

120 pts
Unc. Grid 1.124± 0.193 7.0± 0.1 1.144 2.087
Unc. Slams 1.133± 0.191 11.2± 8.6 1.141 2.085
Unc. ez-Slams 1.139± 0.190 5.0± 1.3 1.140 2.084
Con. Grid 1.095± 0.199 704.3±15.6 1.144 2.085
filter (SQP) 1.058± 0.188 50.2±10.9 1.150 2.114
Con. Slams 1.116± 0.193 15.6±15.3 1.141 2.082
Con. ez-Slams 1.137± 0.191 4.2± 1.1 1.143 2.089

150 pts
Unc. Grid 1.091± 0.161 8.2± 0.3 1.147 2.098
Unc. Slams 1.108± 0.172 11.5± 3.3 1.134 2.055
Unc. ez-Slams 1.110± 0.172 7.8± 0.5 1.133 2.054
Con. Grid 1.068± 0.154 725.1± 2.7 1.142 2.081
filter (SQP) 1.045± 0.171 72.4±29.7 1.149 2.108
Con. Slams 1.103± 0.173 20.1± 5.5 1.136 2.063
Con. ez-Slams 1.110± 0.172 7.4± 1.1 1.136 2.062

Table 3.2. 10-d synthetic data with Laplacian and Gaussian noise under 3-fold cross validation. Results that are
significantly better or worse are tagged 3 or 7 respectively.
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Method Objective Time MAD MSE

30 pts
Unc. Grid 1.995± 0.421 9.1± 9.3 1.726 4.871
Unc. Slams 2.041± 0.400 2.0± 0.5 1.697 4.722
Unc. ez-Slams 2.160± 0.453 0.7± 0.1 1.709 4.782
Con. Grid 1.659± 0.312 735.8±92.5 1.854 5.828
filter (SQP) 1.149± 0.216 23.4± 6.3 1.691 4.706
Con. Slams 1.497± 0.258 5.0± 1.3 1.675 4.596
Con. ez-Slams 1.991± 0.374 0.9± 0.2 1.697 4.716

60 pts
Unc. Grid 1.613± 0.257 7.3± 1.3 1.584 4.147
Unc. Slams 1.641± 0.218 3.9± 2.0 1.511 3.863
Unc. ez-Slams 1.661± 0.225 1.8± 0.2 1.507 3.845
Con. Grid 1.520± 0.265 793.5±83.1 1.589 4.254
filter (SQP) 1.275± 0.159 39.7± 7.4 1.495 3 3.774 3

Con. Slams 1.565± 0.203 8.3± 3.5 1.504 3.820
Con. ez-Slams 1.673± 0.224 2.3± 0.3 1.498 3.807

90 pts
Unc. Grid 1.553± 0.261 8.2± 0.5 1.445 3.553
Unc. Slams 1.528± 0.195 7.5± 5.3 1.423 3.455
Unc. ez-Slams 1.539± 0.192 3.4± 0.6 1.422 3.453
Con. Grid 1.575± 0.421 866.2±67.0 1.551 4.124
filter (SQP) 1.293± 0.183 58.4±15.4 1.434 3.511
Con. Slams 1.476± 0.182 16.3± 6.3 1.411 3 3.398 3

Con. ez-Slams 1.524± 0.197 3.8± 0.9 1.412 3.404 3

120 pts
Unc. Grid 1.481± 0.240 7.5± 0.0 1.396 3.350
Unc. Slams 1.478± 0.190 15.5± 8.0 1.374 3.273 3

Unc. ez-Slams 1.488± 0.190 6.2± 0.9 1.374 3.273 3

Con. Grid 1.432± 0.171 697.9± 2.2 1.395 3.333
filter (SQP) 1.304± 0.175 85.9±17.7 1.387 3.320
Con. Slams 1.419± 0.166 32.6±18.6 1.375 3.273 3

Con. ez-Slams 1.474± 0.181 6.2± 0.8 1.379 3.291

150 pts
Unc. Grid 1.448± 0.264 8.7± 0.1 1.362 3.221
Unc. Slams 1.457± 0.215 19.2±10.1 1.357 3.206
Unc. ez-Slams 1.460± 0.214 9.4± 1.5 1.357 3.204
Con. Grid 1.408± 0.232 723.2± 2.0 1.376 3.268
filter (SQP) 1.318± 0.205 114.2±48.6 1.367 3.229
Con. Slams 1.436± 0.217 41.8±17.5 1.360 3.214
Con. ez-Slams 1.459± 0.216 10.1± 1.8 1.359 3.206

Table 3.3. 15-d synthetic data with Laplacian and Gaussian noise under 3-fold cross validation. Results that are
significantly better or worse are tagged 3 or 7 respectively.
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Method Objective Time MAD MSE

30 pts
Unc. Grid 3.413± 0.537 5.7± 0.0 2.915 13.968
Unc. Slams 3.426± 0.780 6.2± 2.9 2.887 13.699
Unc. ez-Slams 4.503± 1.408 0.7± 0.3 3.052 15.269
Con. Grid 2.636± 0.566 628.5± 0.5 3.687 7 22.065 7

filter (SQP) 0.918± 0.242 47.9±42.4 3.274 7 17.636 7

Con. Slams 1.684± 0.716 7.9± 2.4 2.962 14.607
Con. ez-Slams 3.100± 0.818 1.5± 0.2 2.894 13.838

60 pts
Unc. Grid 2.375± 0.535 6.2± 0.0 2.321 8.976
Unc. Slams 2.412± 0.462 8.1± 4.2 2.345 9.120
Unc. ez-Slams 2.461± 0.503 2.6± 0.5 2.375 9.353
Con. Grid 2.751± 0.653 660.9± 1.6 3.212 7 16.734 7

filter (SQP) 1.443± 0.280 78.5±29.9 2.361 9.261
Con. Slams 2.065± 0.469 15.3± 7.1 2.305 8.855
Con. ez-Slams 2.362± 0.441 3.1± 0.4 2.312 8.894

90 pts
Unc. Grid 2.256± 0.363 7.0± 0.0 2.161 7.932
Unc. Slams 2.344± 0.409 17.4± 7.0 2.133 7.826
Unc. ez-Slams 2.381± 0.408 4.8± 0.8 2.134 7.836
Con. Grid 2.927± 0.663 674.7± 1.0 3.117 7 15.863 7

filter (SQP) 1.612± 0.245 146.5±54.6 2.101 7.564
Con. Slams 2.149± 0.304 29.3±12.2 2.119 7.711
Con. ez-Slams 2.328± 0.400 6.3± 1.2 2.131 7.803

120 pts
Unc. Grid 2.147± 0.343 8.4± 0.0 2.089 7.505
Unc. Slams 2.242± 0.474 25.0±13.5 2.031 3 7.133 3

Unc. ez-Slams 2.267± 0.473 8.4± 0.8 2.030 3 7.125 3

Con. Grid 2.910± 0.603 696.7± 1.5 3.124 7 15.966 7

Con. Slams 2.156± 0.433 45.6±16.4 2.028 3 7.121 3

Con. ez-Slams 2.226± 0.461 10.3± 1.5 2.034 3 7.154 3

150 pts
Unc. Grid 2.186± 0.383 9.9± 0.1 1.969 6.717
Unc. Slams 2.129± 0.378 34.7±14.6 1.952 6.645
Unc. ez-Slams 2.141± 0.378 12.3± 1.4 1.953 6.653
Con. Grid 2.759± 0.515 721.1± 1.7 2.870 7 13.771 7

Con. Slams 2.069± 0.368 63.5±30.5 1.949 6.636
Con. ez-Slams 2.134± 0.380 14.2± 2.5 1.947 3 6.619

Table 3.4. 25-d synthetic data with Laplacian and Gaussian noise under 3-fold cross validation. Results that are
significantly better or worse are tagged 3 or 7 respectively.
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Method Objective Time MAD MSE

Aquasol
Unc. Grid 0.719± 0.101 17.1± 0.4 0.644 0.912
Unc. Slams 0.743± 0.098 89.3± 77.3 0.652 0.922
Unc. ez-Slams 0.755± 0.101 13.0± 2.1 0.653 0.933
Con. Grid 0.778± 0.094 1395.9± 3.5 0.849 7 1.605 7

filter (SQP) 0.551± 0.066 678.8±194.9 0.702 7 0.979
Con. Slams 0.670± 0.092 137.8± 52.0 0.647 0.911
Con. ez-Slams 0.710± 0.088 19.1± 3.3 0.643 0.907

Blood/Brain Barrier
Unc. Grid 0.364± 0.048 13.4± 1.9 0.314 0.229
Unc. Slams 0.368± 0.042 8.8± 2.3 0.292 3 0.205
Unc. ez-Slams 0.370± 0.042 5.1± 0.6 0.292 3 0.205
Con. Grid 0.463± 0.081 1285.7±155.3 0.733 7 0.856 7

filter (SQP) 0.176± 0.013 121.3± 51.6 0.332 0.161
Con. Slams 0.363± 0.042 17.1± 9.8 0.312 0.231
Con. ez-Slams 0.370± 0.042 8.0± 1.6 0.315 0.235

Cancer
Unc. Grid 0.489± 0.032 10.3± 0.9 0.502 0.472
Unc. Slams 0.637± 0.100 7.1± 2.6 0.518 0.396
Unc. ez-Slams 0.652± 0.100 3.1± 0.6 0.525 0.403
Con. Grid 0.477± 0.065 1035.3± 1.5 0.611 7 0.653 7

filter (SQP) 0.210± 0.025 100.2± 40.3 0.395 3 0.252 3

Con. Slams 0.476± 0.086 25.5± 9.2 0.481 0.336 3

Con. ez-Slams 0.567± 0.096 5.2± 1.1 0.483 0.341 3

Cholecystokinin
Unc. Grid 0.798± 0.055 12.0± 0.4 1.006 1.625
Unc. Slams 0.988± 0.127 18.6± 7.9 1.223 7 2.644 7

Unc. ez-Slams 1.009± 0.144 6.4± 1.5 1.225 7 2.670 7

Con. Grid 0.783± 0.071 1157.6± 1.8 1.280 7 2.483 7

filter (SQP) 0.499± 0.031 189.8± 57.4 1.022 1.607
Con. Slams 0.881± 0.108 35.1± 20.4 1.235 7 2.584 7

Con. ez-Slams 0.941± 0.092 9.1± 1.3 1.217 7 2.571 7

Table 3.5. Results for QSAR data under 5-fold cross validation. Results that are significantly better or worse
are tagged 3 or 7 respectively.
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4

Missing Value Imputation via Bilevel Cross Validation

In the preceding sections, we have seen how parameter and feature selection via cross validation can be
cast into the bilevel framework. Tasks like classification and regression are supervised learning tasks where
in addition to the training labels, it is assumed that complete data features are available for learning.
There are many real-world applications where this assumption is unrealistic and there might be missing
labels (semi-supervised learning) or missing features. In this chapter, we consider the latter—which is
still a supervised learning task—and formulate an approach to learning with missing data via bilevel
programming.

4.1 Introduction

Missing data frequently occur in machine learning tasks because of various reasons. The most common
reasons for learning tasks whose data comes from physical experiments is systemic measurement error
or noise, human error or sampling errors. For example, in speech recognition tasks, the system may
make errors so that the observed text is corrupted with noise. Proper handling of missing values is very
important because, in addition to reduced sample size, it introduces the possibility that the remaining
data set is biased.

Missingness in the data is of three types. Data are said to be missing completely at random
(MCAR) if the probability that a value is missing is independent of any value, observed or missing.
This type of missingness typically arises due to measurement errors and noise. Data are said to be
missing at random (MAR) if the probability that a value is missing is related only to observed values
and is conditionally independent of the missing values. Thus, MCAR exists when missing values are
randomly distributed across all observations while MAR exists when missing values are not randomly
distributed across all observations, rather they are randomly distributed within one or more sub-samples.
These two cases of missingness are called ignorable which means that we do not have to model the
missingness property. Alternately, we can also have non-ignorable missingness at random (NMAR) where
the probability that a value is missing depends on the missing values. In this case, a learning model would
have to include a model that accounts for the missing data.

There are several general approaches to handling data with missing values. When the proportion
of the data with missing values is small, it is common to simply drop these points. This approach is
called Complete Case Analysis1 [73]. The most obvious disadvantages of this method are loss of efficiency
and biases in the estimates, as mentioned above. Another approach is imputation of missing data [58,
74, 75, 76] which involves estimating the missing values or filling them in with plausible values. Then,

1 In the Statistics community, complete case analysis is abbreviated as CCA. To avoid confusion with Canonical
Correlation Analysis, which is also abbreviated CCA in Machine Learning, complete case analysis is referred
to as the baseline.
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the the analysis is carried out as if the imputed (estimated) values were the true data. This approach
may reduce the bias of CCA or add bias of its own. A third approach is to formulate parametric models
for the missing values and find the maximum likelihood estimates via a procedure such as expectation-
maximization (EM) [24, 57]. The books by Little and Rubin [58] and Schafer [76] can be referenced for
details regarding the approaches described and related techniques.

We consider the case of support vector regression. An alternative approach is proposed here where
the missing values are imputed via bilevel support vector regression under cross-validation. In terms of
the generalized formulation (1.41) the missing features in the data, x̂, are treated as hyper-parameters
λ that are optimized in the outer-level, while solving T training problems under T -fold cross validation
in the inner level. It is assumed that the data is missing at random (MAR) and the goal of the bilevel
program is to determine the hyper-parameters C and ε as well as the missing data x̂ so as to obtain good
generalization.

In addition to being a novel approach, this method is a holistic approach to estimating missing
values which can be reformulated into an optimization problem. The approach is holistic in the sense
that unlike prior approaches, imputation here is task-specific and tries to estimate the missing values by
considering not only the available features but also the labels. Also, unlike most imputation methods,
which are usually two phase procedures (estimation, to first fill in the missing attributes and learning, to
train based on imputed data), the bilevel approach unifies these steps into one continuous optimization
problem. The details of the approach are presented below.

4.2 Notation and model

Let Ωall := {xi, yi}`i=1 ∈ Rn+1 denote a given data set that may contain missing values i.e., missing
components in xi as well as missing labels, yi. For a training vector, xi, we define the feature index
sets Fi := {j : xij is known} and F i := {j : xij is missing}. Then, |Fi| = n for training data with
full feature information, while |Fi| < n for training data with missing feature information. Denote Ψ :=
{(xi, yi) : |Fi| < n, yi is known} ⊂ Ωall to be the set of all points with missing x-values only and
Ω := {(xi, yi) : |Fi| = n, yi is known} ⊂ Ωall to be the set with complete information about features
and labels. Without loss of generality, we assume that these sets are pairwise disjoint.

To incorporate T -fold cross validation onto the model, we partition Ω into T pairwise disjoint
subsets, Ωt, called the validation sets. We also define the training sets, Ωt := Ω \Ωt. The index sets for
Ωt and Ωt are Nt and N t respectively. The set with missing data, Ψ is also partitioned into validation
and training sets, Ψt and Ψ t, similar to the sets with full information. The index sets are Mt and Mt

respectively. Let V = ∪Tt=1(Mt ∪Mt). The vector of missing x-values is denoted x̂.
As was seen in Chapter 3, with a suitable choice of regularization and loss functions in the general

formulation (1.41), we get the bilevel formulation (3.1). This model can be further modified to formulate
the bilevel model for missing-value imputation. The box constraint parameter w is dropped since we
are only interested in selection of optimal parameters C and ε in addition to missing values x̂. This is
achieved via T -fold cross validation if we

minimize
C,ε,x̂

1
T

T∑
t=1

1
|Mt ∪Nt|


∑
i∈Nt

∣∣ (xi) ′wt − bt − yi
∣∣

+
∑
i∈Mt

∣∣∣∣∣∣
∑
f∈Fi

xifw
t
f +

∑
f∈Fi

x̂ifw
t
f − bt − yi

∣∣∣∣∣∣


subject to ε, C,≥ 0,

and for t = 1, . . . , T,

(4.1)
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(wt, bt) ∈ arg min


C
∑
j∈N t

max(|(xj) ′w − b− yj | − ε, 0) +
1
2
‖w ‖22

+C
∑
j∈Mt

max

∣∣∣∣∣∣
∑
f∈Fj

xjfwf +
∑
f∈Fj

x̂jfwf − b− yj

∣∣∣∣∣∣− ε, 0



. (4.2)

where the terms containing the missing values are boxed. The features of x that are known are denoted
xjf while the missing features, which are also outer-level variables, are denoted x̂jf .

Now, in the t-th fold, the sets N t (full features) and Mt (missing features) are used to train
(wt, bt). Assuming the parameters C and ε and the missing values x̂ are fixed for the inner-level problems
we can write down the complementarity conditions for the data points in N t:

0 ≤ αt,+j ⊥ yj − (xj)′wt + bt + ε+ ξtj ≥ 0

0 ≤ αt,−j ⊥ (xj)′wt − bt − yj + ε+ ξtj ≥ 0

0 ≤ ξtj ⊥ C − αt,+j − αt,−j ≥ 0

 ∀ j ∈ N t. (4.3)

The complementarity conditions for the data points in Mt are shown below:

0 ≤ αt,+j ⊥ yj −
∑
f∈Fj

xjfw
t
f −

∑
f∈Fj

x̂jfw
t
f + bt + ε+ ξtj ≥ 0

0 ≤ αt,−j ⊥
∑
f∈Fj

xjfw
t
f +

∑
f∈Fj

x̂jfw
t
f − bt − yj + ε+ ξtj ≥ 0

0 ≤ ξtj ⊥ C − αt,+j − αt,−j ≥ 0


∀ j ∈Mt. (4.4)

We also have the first order conditions for the t-th inner-level problem:

wtf +
∑

j∈Mt∪N t : f∈Fj

(αt,+j − αt,−j )xjf +
∑

j∈Mt : f∈Fj

(αt,+j − αt,−j ) x̂jf = 0, ∀ f = 1 . . . n,

∑
j∈Mt∪N t

(αt,+j − αt,−j ) = 0.
(4.5)

The equality conditions (4.5) and the complementarities (4.3–4.4) together constitute the first-order KKT
conditions for the lower-level problem, with x̂, C and ε fixed. We can validate the hyperplane (wt, bt)
trained onMt ∪N t on the t-th validation setMt ∪Nt using the mean average deviation (MAD). This is
achieved by the outer-level objective piece (4.1), where the absolute value function is not differentiable. As
before, we introduce variables zti ≥ 0 for each validation point and measure the validation error through
the constraints below; for validation points with full information, Nt,

yi − (xi)′wt + bt + zti ≥ 0

(xi)′wt − bt − yi + zti ≥ 0

}
∀ i ∈ Nt, (4.6)

and for validation points with missing values, Mt,

yi −
∑
f∈Fi

xifw
t
f −

∑
f∈Fi

x̂ifw
t
f + bt + zti ≥ 0∑

f∈Fi

xifw
t
f +

∑
f∈Fi

x̂ifw
t
f − bt − yi + zti ≥ 0

 ∀ i ∈Mt. (4.7)

Putting the above equations together, we have the model below that is intended to perform cross validation
to determine not only the hyper-parameters in the regression model but also to identify all the missing
data and labels.
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minimize
1
T

T∑
t=1

1
|Mt ∪Nt|

∑
i∈Mt∪Nt

zti

subject to ε ∈ [ε, ε], C ∈ [C, C],

x̂jf ∈ [x, x], j ∈ V, f ∈ F j ,
for all t = 1, . . . , T,

complementarity conditions (4.3)–(4.4)

equality conditions (4.5)

validation constraints (4.6)–(4.7)



(4.8)

In the model above, the terms in the boxes represent bilinear terms which arise from the product between
the missing features x̂jf and the primal components wtf or the dual components (αt,+j −α

t,−
j ). These bilinear

terms give rise to nonlinear complementarity conditions for the training points that contain missing data.
In order to apply successive linearization, it is necessary to either linearize the constraints or move them
into the objective via additional variables and a penalty function. We will perform the latter.

First, we introduce variables rt,jf and st,jf to represent the bilinear “primal” and “dual” products.
These enter (4.8) as (bilinear) non-convex, indefinite quadratic constraints.

rt,jf = (αt,+j − αt,−j ) x̂jf , ∀t = 1, · · · , T, j ∈Mt, f ∈ F j ,

st,jf = wtf x̂
j
f , ∀t = 1, · · · , T, j ∈ (Mt ∪Mt), f ∈ F j .

(4.9)

There are more st,jf variables because the products wtf x̂
j
f exist for both training and validation points

with missing data while the rt,jf variables represent (αt,+j − αt,−j )x̂jf which exist only for training points
with missing data. Thus, we introduce variables rt,jf and st,jf and equations (4.9) to convert the first order
complementarity and equality conditions in (4.8) into a linear complementary system.

The purpose of introducing equations (4.9) is to ensure that all the constraints including com-
plementarities remain bilinear. The idea here is that the methods that have already been successful on
similar MPECs—such as filter and SLA—can be used here.

4.3 Bilevel Optimization Methods

In this section, we describe two alternative methods for solving the model. In keeping with the proof-of-
concept ideas, the off-the-shelf solver filter [31] on the online server neos [20] will be used to solve an
inexact relaxed version of (4.8). Similarly, successive linearization is used to solve a penalized version of
the problem over a linear, polyhedral set. The details of these methods are presented below.

4.3.1 Inexact Imputation

As seen in the previous chapters, this method employs a relaxation of nonlinear constraints and requires
them to be satisfied within some prescribed tolerance, tol. There are two sources of hard constraints in
the program: the linear complementarities and the bilinear equality constraints (4.9).

As in Section 3.3.1, the hard complementarities a ⊥ b are replaced with their relaxed counterparts
a ⊥tol b which requires the complementarities to hold within a tolerance i.e., a′b ≤ tol. The constraints
(4.9), however, are equality constraints that depend on unbounded variables. Thus, these constraints of
the type a− b′c = 0 are relaxed as a− b′c =tol 0, which compactly denotes |a− b′c| ≤ tol. This notation
indicates that the relaxation actually consists of two constraints, a − b′c ≤ tol and a − b′c ≥ −tol.
Incorporating these relaxations yields a nonlinear program which can inexactly determine not only the



4.3 Bilevel Optimization Methods 61

missing values but also the parameters C and ε via cross validation so as to optimize the cross-validation
error in the objective. We term this approach inexact imputation. As with other inexact models in this
thesis it is solved using filter.

minimize
1
T

T∑
t=1

1
|Mt ∪Nt|

∑
i∈Mt∪Nt

zti

subject to ε ∈ [ε, ε], C ∈ [C, C], x̂jf ∈ [x, x], j ∈ V, f ∈ F j ,
for all t = 1, . . . , T,

yi − (xi)′wt + bt + zti ≥ 0

(xi)′wt − bt − yi + zti ≥ 0

}
∀ i ∈ Nt,

yi −
∑
f∈Fi

xifw
t
f −

∑
f∈Fi

st,if + bt + zti ≥ 0∑
f∈Fi

xifw
t
f +

∑
f∈Fi

st,if − bt − yi + zti ≥ 0

 ∀ i ∈Mt,

0 ≤ αt,+j ⊥tol yj − (xj)′wt + bt + ε+ ξtj ≥ 0

0 ≤ αt,−j ⊥tol (xj)′wt − bt − yj + ε+ ξtj ≥ 0

0 ≤ ξtj ⊥tol C − αt,+j − αt,−j ≥ 0

 ∀ j ∈ N t,

0 ≤ αt,+j ⊥tol yj −
∑
f∈Fj

xjfw
t
f −

∑
f∈Fj

st,jf + bt + ε+ ξtj ≥ 0

0 ≤ αt,−j ⊥tol

∑
f∈Fj

xjfw
t
f +

∑
f∈Fj

st,jf − bt − yj + ε+ ξtj ≥ 0

0 ≤ ξtj ⊥tol C − αt,+j − αt,−j ≥ 0


∀ j ∈Mt,

rt,jf − (αt,+j − αt,−j )xjf =tol 0, ∀ t = 1, · · · , T, j ∈Mt, f ∈ F j ,

st,jf − wtj x
j
f =tol 0, ∀ t = 1, · · · , T, j ∈Mt ∪Mt, f ∈ F j ,

wtf +
∑

j∈Mt∪N t : f∈Fj

(αt,+j − αt,−j )xjf +
∑

j∈Mt : f∈Fj

rt,jf = 0, ∀ f = 1 . . . n,

∑
j∈Mt∪N t

(αt,+j − αt,−j ) = 0.

(4.10)

4.3.2 Penalty Formulation

The other approach considered is the successive linearization approach which was successfully applied to
construct local solutions to the LPEC that arose from bilevel model selection for regression in Section
3.3.3. This was done by lifting the bilinear complementarity constraints into the objective via an exact
quadratic penalty which was linearized by the Frank-Wolfe (FW) method. However, for the problem at
hand, in addition to bilinearities that arise from the linear complementarities, the equality constraints
(4.9) also pose a significant difficulty. Rather than linearize the constraints, it is preferred that they be
linearized in the objective in order to maintain a polyhedral set of constraints.

This is achieved by lifting the equality constraints (4.9) into the objective via a squared penalty
function. Now, the complexity of the penalized objective (4.12) is increased significantly as it is quartic
(degree 4).
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Qrt (α
t,±, x̂, rt) =

1
2

∑
j∈Mt : f∈Fj

(
rt,jf − (αt,+j − αt,−j ) x̂jf

)2

,

Qst (w
t, x̂, st) =

1
2

∑
j∈V : f∈Fj

(st,jf − x̂jfw
t
f )2.

(4.11)

The linear complementarities in (4.8). can be handled via the quadratic exact penalty functions (as seen
in Section 3) yielding the quadratic complementarity penalty:

Pt(ζt, ε, C) = ε
∑

j∈Mt∪N t

(αt,+j + αt,−j ) + C
∑

j∈Mt∪N t

ξtj +
∑

j∈Mt∪N t

(αt,+j − αt,−j ) yj

−
∑
j∈N t

(αt,+j − αt,−j )(xj)′wt −
∑
j∈Mt

∑
f∈Fj

(αt,+j − αt,−j )xjfw
t
f

−
∑
j∈Mt

∑
f∈Fj

(αt,+j − αt,−j )st,jf .

(4.12)

where all the inner-level variables are collected into ζt ≡ [αt,±, ξt,wt, bt, rt, st]. When all the complemen-
tarities are removed from (4.8) and the bilinear variables are replaced using (4.9), we get the following
constraints. For the t-th training set, the regression training constraints for known data are

yj − (xj)′wt + bt + ε+ ξtj ≥ 0

(xj)′wt − bt − yj + ε+ ξtj ≥ 0

C − αt,+j − αt,−j ≥ 0

 ∀ j ∈ N t, (4.13)

and for the missing data are

yj −
∑
f∈Fj

xjfw
t
f −

∑
f∈Fj

st,jf + bt + ε+ ξtj ≥ 0∑
f∈Fj

xjfw
t
f +

∑
f∈Fj

st,jf − bt − yj + ε+ ξtj ≥ 0

C − αt,+j − αt,−j ≥ 0


∀ j ∈Mt. (4.14)

Similarly, for the t-th validation set, the validation constraints for known data are

yi − (xi)′wt + bt + zti ≥ 0

(xi)′wt − bt − yi + zti ≥ 0

 ∀ i ∈ Nt, (4.15)

and for the missing data are

yi −
∑
f∈Fi

xifw
t
f −

∑
f∈Fi

st,if + bt + zti ≥ 0∑
f∈Fi

xifw
t
f +

∑
f∈Fi

st,if − bt − yi + zti ≥ 0

 ∀ i ∈Mt. (4.16)

We also have the first-order constraints:

wtf +
∑

j∈Mt∪N t : f∈Fj

(αt,+j − αt,−j )xjf +
∑

j∈Mt : f∈Fj

rt,jf = 0, ∀ f = 1 . . . n,

∑
j∈Mt∪N t

(αt,+j − αt,−j ) = 0, αt,±, ξt ≥ 0.
(4.17)
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The constraint set St can now be defined as the polyhedral set defined by (4.13)–(4.17).The constraint
set S0 is defined as:

S0 ≡

{
ε ∈ [ε, ε], C ∈ [C, C],

x̂jf ∈ [x, x], j ∈ V, f ∈ F j

}
. (4.18)

Using (4.13)–(4.17) and (4.18) we can define the set SLP =
T⋂
t=0

St as the feasible region where the linearized

penalty problem may be solved. The penalty problem, with appropriate penalty parameters µ and λ is
described below:

minimize Θ(z) + µ

T∑
t=1

Pt(ζt, ε, C) + λ

T∑
t=1

(
Qrt (α

t,±, x̂, rt) + Qst (w
t, x̂, st)

)
subject to (z, ζ, x̂, C, ε) ∈ SLP.

(4.19)

where the LPEC objective is the mean average deviation measured on the validation sets,Mt∪Nt. Thus,
the goal of the LPEC is to minimize

Θ(z) =
1
T

T∑
t=1

1
|Mt ∪Nt|

∑
i∈Mt∪Nt

zti . (4.20)

4.3.3 Bounding the Feasible Region

There are two key assumptions that successive linearization requires: that the objective is bounded below
by zero and that there be no lines going to infinity on both sides. The latter assumption does not hold for
the LPEC (4.8) or for the penalty problem (4.19) because the variables rt and st are unbounded. This
necessitates the introduction of additional bounds on rt and st such that the linearized problem is not
unbounded.

It is known that −C ≤ (αt,+j −α
t,−
j ) ≤ C and that the hyper-parameter C ∈ [C, C], where C and

C are user-defined. Using this, the definition (4.18) and introducing user-defined bounds on the variables
wt, we have the following bounds on the variables that appear in the quartic penalty terms,

−C ≤ (αt,+j − αt,−j ) ≤ C, ∀ t = 1 . . . T, j ∈Mt ∪N t,

xf ≤ x̂
j
f ≤ xf , ∀ j ∈ V, f ∈ F j ,

wf ≤ wtf ≤ wf , ∀ t = 1 . . . T, f = 1 . . . n.

(4.21)

We wish to derive a bound on a, given a bilinear constraint of the form a = bc, where (b, c) ∈ [b, b]× [c, c].
A coarse approximated bound on a can be computed based on a relaxation of the hard constraint as
a ∈ [bc, bc]; relaxations such as this have been used in branch-and-bound approaches [40]. However, a
much tighter relaxation can be derived based on the Taylor series expansion of a = bc to give the bounds
[45, 82]:

max{cb+ bc− bc, cb+ bc− bc} ≤ a ≤ min{cb+ bc− bc, cb+ bc− bc} (4.22)

In fact, it was shown in [2, 86] that the functions max and min in (4.22) are concave and involve convex
envelopes of the bilinear function a = bc. More specifically, (4.22) can be expressed as the constraint

(b, c, a) ∈ convex hull

{
(b, c, bc), (b, c, bc),

(b, c, bc), (b, c, bc)

}
. (4.23)

While (4.23) is an explicit description of (4.22), the latter is easier to implement. Using (4.9), the bounds
(4.21) and (4.22), we derive the following bounds on rt,jf ,
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rt,jf ≥ xf (αt,+j − αt,−j )− Cx̂jf + Cxf

rt,jf ≥ xf (αt,+j − αt,−j ) + Cx̂jf − Cxf
rt,jf ≤ xf (αt,+j − αt,−j )− Cx̂jf + Cxf

rt,jf ≤ xf (αt,+j − αt,−j ) + Cx̂jf − Cxf


∀ t = 1 . . . T, j ∈Mt, f ∈ F j , (4.24)

and the following bounds on st,jf ,

st,jf ≥ xfwtf + wf x̂
j
f − xfwf

st,jf ≥ xfwtf + wf x̂
j
f − xfwf

st,jf ≤ xfwtf + wf x̂
j
f − xfwf

st,jf ≤ xfwtf + wf x̂
j
f − xfwf


∀ t = 1 · · ·T, j ∈Mt ∪Mt, f ∈ F j . (4.25)

These bounds in (4.24)-(4.25) are represented by the constraint set SBds. In order to ensure that there are
no lines going to infinity on both sides when applying successive linearization, the polyhedral constraint
set can be closed using the bounds i.e., by solving on SLP ∩ SBds. The ampl model (constraints and
objectives) for this approach is given in Appendix A.3.

4.3.4 Successive Linearization

Algorithm 4.1 Successive linearization algorithm for missing-value imputation.
Fix µ, λ > 0.

1. Initialization:
Start with an initial point, ζ0 ∈ SLP ∩ SBds.

2. Solve Linearized Problem:
Generate an intermediate iterate, ζ̄k, from the previous iterate, ζk, by solving the linearized penalty problem,
ζ̄k ∈ arg vertex min

ζ∈SLP∩SBds

∇ζ P (ζk; µ, λ)′ (ζ − ζk).

3. Termination Condition:
Stop if an appropriate termination condition holds.

4. Compute Step Size:

Compute step length τ ∈ arg min
0≤τ≤1

P
(

(1− τ) ζk + τ ζ̄k; µ, λ
)

,

and get the next iterate, ζk+1 = (1− τ) ζk + τ ζ̄k.

As in Chapter 3, we employ the successive linearization algorithm to solve the penalized problem
(4.19) on the bounded feasible region constructed as explained in Section 4.3.3. The successive lineariza-
tion procedure is as shown in the Algorithm 4.1, where, with a slight abuse of notation, ζk denotes the
vector containing all the variables of the problem. The objective of the penalty formulation in (4.19) is
denoted P .

The main difference between this version of the algorithm and the one proposed in Chapter 3
is that the termination criteria employed are much more relaxed. This is because the contours of the
objective contain steep and narrow valley-like regions which causes a descent algorithm like SLA to zig-
zag as it approaches a local minima (see Figure 4.1d). Consequently, the algorithm converges very slowly.
A common loose termination criterion that is based on the relative difference between the objective values
of two successive iterations [50] is:

|P (ζk+1)− P (ζk)| ≤ tol |P (ζk)|. (4.26)
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(a) CV error and Generalization Error (b) Parameters C, ε

(c) Missing features (d) Bilinear constraint z = xy

Fig. 4.1. (a)–(c) Convergence of various variables and objectives for bilevel missing value imputation on a 5-d
synthetic data set over 200 iterations; (d) Surface plot for z = xy

Another loose criterion is based on the error between iterates [68],

|ζk+1 − ζk| ≤ tol. (4.27)

A glance at Figure 4.1 (a)–(c) shows that either of these heuristics can be used to terminate the al-
gorithm as the cross validation objective and values of the outer-level variables C, ε and x̂ stabilize
within 100 iterations. It is also interesting to note that the generalization (test) error stabilizes over rela-
tively few iterations. This suggests that, from a machine learning point of view, the termination criteria
is effective since reaching the minimizer of P (ζ) too closely is not important. A similar approach was
adopted by Keerthi et. al., [50] to terminate their BFGS-based quasi-Newton algorithm to compute SVM
hyper-parameters. In the experiments reported, the criterion (4.27) was used. Successive linearization
was implemented in ampl and the resultant linear programs were solved using cplex 9.0. The exact line
search, which involves solving a fourth-order polynomial in τ was solved using the non-linear program-
ming solver ipopt 3.3.3. This approach is called Successive Linearization AlgorithM for Missing-value
Estimation of Data, slammed.
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The methods presented above, inexact imputation and slammed are compared with two com-
monly used approaches, mean-value imputation and least-squares imputation which are described below.

4.3.5 Other Imputation Approaches

Mean-value imputation [74], as the name suggests, simply involves substituting the missing values with
the mean of all the corresponding known features. For instance, if in the data setM, the f -th feature in
the vector xi is missing i.e., x̂if is unknown, it is replaced thus:

x̂if =
1

|M| − 1

∑
j∈M,j 6=i

xjf . (4.28)

Mean substitution was once the most common method of imputation of missing values owing to its
simplicity and the fact that the mean will reduce the variance of the variable. A serious problem with
this approach is that reduced variance can bias correlation downward or, if the same cases are missing
for two variables and means are substituted, correlation can be inflated.

In order to address the problems above, a more preferred approach is least-squares imputation
[51]. We can assume, without loss of generality, that x1

1, the first feature of x1, is missing. First, the k
nearest neighbors to x1 in N are identified based on the Pearson correlation between x1 and the remaining
vectors xj , j ∈ N using all but the first feature which x1 is missing. Let these be x2, · · · ,xk. Define

[
x̂1

1 w
b A

]
≡


x̂1

1 x
1
2 . . . x

1
D

x2
1 x

2
2 . . . x

2
D

...
...

...

xk1 x
k
2 . . . x

k
D


The idea is to try to express w as a linear combination of the rows of A by solving the least squares
problem

min
u
‖Au−w‖22, (4.29)

so that the missing value x̂1
1 can be computed as

x̂1
1 = b′u = b′(A′)†w, (4.30)

where (A′)† is the pseudo-inverse of A′. The procedure above may be appropriately modified for multiple
missing values. It should be noted that this approach may over-correct the estimates by introducing
unrealistically low levels of noise in the data. The following two-step procedure is employed in order to
compare these two methods to the bilevel methods described in the previous sections:

• Imputation: Missing values x̂ are imputed using each method
• Model Selection: Estimated values are used as though they were the known values. Using this

augmented data set, bilevel cross validation (Chapter 3) is performed to compute optimal hyper-
parameters C and ε.

Note that unlike the bilevel approaches, both these methods do not use the label information to impute
data. Furthermore, they are two-step processes whereas the bilevel formulation is able to solve for x̂, C
and ε simultaneously by searching a continuous hyper-parameter space.

4.4 Numerical Experiments

In this section, we compare the performance of the bilevel approaches to mean-value and least-squares
imputation on both synthetic and real-world regression data sets. The four methods are compared on
three different criteria: cross-validation error, generalization error and imputation error.
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4.4.1 Experimental Design

Three different data sets are considered: a synthetic data set, and two real world data sets: IRIS and
Automobile MPG. In all cases, data were removed such that, for the purposes of imputation, the data
appears to be missing at random (MAR). It is also assumed that a data vector contains at most one
missing feature. This is not a necessary restriction however and was only introduced in order to control
the experimental setup better.

The synthetic data set contains 120 data points with 5 features and was generated from a uniform
distribution on [0, 1]. The weight vector, w = [1, −1, 1, −1, 1]′ and the bias, b =

√
5. The noiseless labels

were computed as y = w′x− b and Gaussian noise drawn from N(0, 0.2) was added to the labels. Fifteen
points were chosen randomly and are assumed to contain full feature information; this data subset is
called the baseline set. The other 105 points have one feature uniformly and randomly removed from each
of them such that the resultant data set is MAR. In the experimental results, missing points are added 15
at a time such that the total data set size (with known and missing values) is 30, 45, · · · , 120. A separate
hold-out test set of 1000 points was also generated in order to compute the generalization error.

The two real world data sets used were taken from the UCI Online Repository.

• Auto-MPG: The data concerns city-cycle fuel consumption in miles per gallon, to be predicted in
terms of 7 attributes. There are a total of 398 instances of which 15 are used to construct the baseline
set and 120 more had features removed as in the synthetic case giving a maximum training set size
of 135 points. The remaining 263 points make up the test set.

• Iris: The data concerns predicting petal width of an iris flower given three continuous numerical
attributes and one multi-valued discrete attribute that can take values of 1, 2 or 3 representing each
of the three Iris plant types. There are a total of 150 data points (50 of each plant type). Of these,
15 are used for the baseline set, 105 more to construct the additional training points by with data
removed so as to be MAR; the last 30 make up the test set.

In both cases, min-max scaling was applied to the data so that all the features are in [0, 1]. In all the
cases, for synthetic and real-world data sets, each data set, for each set size i.e., 15, 30, · · · was randomly
permuted five times to generate five instances. This was done so that points from the same set are in
different training and validation sets during 3-fold cross-validation. The results over these five instances
were averaged. This procedure was adopted with a view toward consistency i.e., so that a randomly lucky
or unlucky choice of data set would not bias the results.

4.4.2 Computational Results and Discussion

As mentioned before, four methods viz., inexact imputation (4.10) solved using filter, slammed, mean-
value imputation and least-squares imputation are compared. The three main points of comparison are
training error (based on cross validation), test error (based on the hold out test sets) and efficacy of missing
value imputation. The last statistic can be computed since the missing values were removed when the
data sets were constructed and are known. Under normal circumstances, this information would not be
available to the user. For each data set, complete case analysis is also performed, i.e., cross validation and
generalization are reported for the case where all the training data with missing features are dropped.
These results are reported as baseline. All the figures may be found at the end of the chapter.

With regard to cross validation error (Figures 4.2a, 4.3a, 4.4a), it is clear that the bilevel ap-
proaches perform significantly better than classical imputation approaches. In fact, they perform better
than the baseline case and the errors generally decrease as more missing points are added to the training
set, mirroring behavior that is generally observed in semi-supervised learning with missing variables.

A similar trend is observed with respect to generalization (Figures 4.2b, 4.3b, 4.4b), though the
curves are not as smooth owing to larger variances. The only exception to this trend is the Iris data set
(Figure 4.4b), where all approaches train well but generalize poorly with regard to the baseline. However,
the generalization of slammed improves steadily toward the baseline as more points are added. A possible
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reason for this might be because one of the features takes on discrete class values of 1, 2 or 3 making it
hard for the continuous-value based approaches to estimate this class information accurately. This opens
up avenues to for improving the model so that it can deal with continuous and discrete-valued data.

When it comes to imputing missing values (Figures 4.2c, 4.3c, 4.4c), again the bilevel approaches
perform well. The exception here is the Auto-MPG (Figure 4.3c) data set where they impute values
worse than the classical approaches, especially mean value deviation. However, better generalization
performance suggests that these values might be acceptable if generalization is more important than
imputation, which is usually the case. The performance may be explained by the fact that bilevel meth-
ods impute values based on the labels and minimizing cross-validation error. Again, this suggests that
the model might be improved so that missing-value estimation is based on some combination of cross
validation error and imputation error.

Finally, comparing the two bilevel approaches, the performance of filter is usually slightly better
than slammed. This is not surprising because slammed does not solve to local minima but only to within
a certain closeness to it. Both methods have their limitations. filter is unable to solve larger problems
as seen in the synthetic data set (Figure 4.2a), while slammed displays very slow convergence especially
as problem size grows. An investigation of other algorithmic approaches to problems of this type merits
further study.

4.5 Chapter Conclusions

It was demonstrated that bilevel approaches can be applied, not just to parameter and feature selection,
but also to problems like missing-value imputation within the cross validation setting. The flexibility of
the bilevel approach allows it to handle models and problems of this type by estimating several missing
values as outer-level variables. This is in addition to performing simultaneous parameter selection.

A bilevel approach to missing value imputation was formulated and relaxed in order to apply
two algorithmic approaches—a relaxed NLP approach and a successive linearization approach—were
formulated. Preliminary empirical results demonstrate that this is a viable approach that outperforms
classical approaches and serves as proof-of-concept. The MPEC resulting from the bilevel formulation is
far more complex and highly non-convex due to the nonlinear complementarities and bilinear equalities
in the constraints. While the algorithmic approaches utilized here were successful, it is apparent that
they are limited to solving small problems. The most pressing concern is for more powerful approaches
to tackling these bilevel programs.

While support vector regression was chosen as the machine learning problem to demonstrate the
potency of the bilevel approach, the methodology can be extended to several machine learning problems
including classification and semi-supervised learning. Some of these formulations have been presented
in Chapter 5 and [54], while others remain open problems. Aside from discriminative methods, bilevel
programming can also be applied to generative methods such as Bayesian techniques. Furthermore, the
ability to optimize a large number of parameters allows one to consider new forms of models, loss functions
and regularization.
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5

Conclusions and Further Applications

The work presented in this thesis was motivated by the need for methodologies to deal with several
open issues in extant support-vector-machine-based learning approaches such as parameter and feature
selection. The goal was to develop a paradigm that could provide a unified framework under which these
issues could be addressed and applied to a multitude of machine learning problem types. To this end, a
novel methodology based on bilevel optimization was proposed and investigated.

Bilevel-based machine learning offers many fundamental advantages over conventional approaches,
the most important of which is the ability to systematically treat models with multiple hyper-parameters.
In addition, the bilevel approach provides precisely the framework in which problems of various types such
as cross validation for support vector classification (Chapter 2) and regression (Chapter 3) in order to
perform parameter and feature selection, and learning from missing data (Chapter 4) could be formulated
and solved.

The computational challenge of a bilevel optimization problem is its non-convexity, which is
due to the complementarity slackness property that is part of the optimality conditions of the lower-
level optimization problem; as such, it is not easy to obtain globally optimal solutions. Combining the
understanding of the basic theory of the bilevel program that the optimization community has gained
over the last twenty years or so with significant advances in the numerical implementation of nonlinear
programming solvers allows us to apply the bilevel approach to machine learning effectively. This is most
evident in the optimization procedure employed in the bilevel models: replacing inner-level problems
with their corresponding first order conditions to obtain a MPEC/LPEC and applying various solution
techniques to solve the latter to local optimality.

A bilevel formulation for performing model and feature selection for support vector classification
via classification was proposed in Chapter 2 as an alternative to the classical grid search, a coarse and
expensive procedure. The flexibility of the bilevel approach facilitates feature selection via the box pa-
rameter w and box constraints on the feature vector: −w ≤ w ≤ w. In addition to the regularization
parameter, λ, the model is capable of simultaneously determining feature selection parameters w, thus
performing complete model selection. The resulting LPECs were relaxed and solved using the publicly
available NLP solver, filter (inexact cross validation). Numerical experiments on real-world data sets
demonstrate that the bilevel approach generalizes at least as well, if not better than grid search but at
greater efficiency.

In Chapter 3, the paradigm was extended to support vector regression where the goal was to
determine the hyper-parameters C and ε as well as the feature selection vector w. The familiar optimiza-
tion procedure was employed to derive an LPEC from the bilevel formulation which was solved using
filter. In addition, an exact penalty formulation was derived and the successive linearization approach
was employed to solve it. This gave rise to two algorithms, slams and ez-slams, the latter being based
on the machine learning principle of “early stopping” (here, stopping when complementarity is reached
rather than solving to local optimality). Again, the performance of the bilevel approaches was superior
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to the grid-based approaches. It was also demonstrated that the slams approaches were scalable to large
data sets containing hundreds of points.

The work in Chapter 4 showed that the bilevel approach is not restricted to model selection alone.
In Chapter 4, a problem that is apposite to many real-world applications, that of learning with missing
values was formulated as a bilevel program. Again, the flexibility of the bilevel approach in dealing with
multiple parameters allows us to formulate the missing values as outer-level variables and estimate them
via cross validation. The resultant MPEC is of far greater complexity than the ones arising from the model
selection problems of the previous Chapters. In addition to a relaxed approach (inexact imputation) that
was solved using filter, a SLA approach was also employed (slammed). Empirical results demonstrate
that the bilevel approaches perform far better than classical approaches like mean value imputation
and least-squares imputation as serve as an important proof-of-concept. Both approaches have serious
limitations: filter being unable to solve larger problems and slammed having very slow convergence
rates. More research is required to investigate the current algorithmic shortcomings of bilevel imputation
and future work in this direction entails devising more powerful algorithms.

We have seen how model selection for various important machine learning problems can be cast
as bilevel programs. This is certainly not an exhaustive list of machine learning problems that bilevel
programming can be applied to. In concluding this thesis, we look at some more models that provide
opportunities for future work and the challenges in implementing them.

5.1 Kernel Bilevel Cross Validation

The models considered thus far have all been linear machines and as such are unable to handle non-linear
data sets effectively; this severely limits their usefulness to real data sets. We now demonstrate how one
of the most powerful features of SVMs — their ability to deal with high-dimensional, highly nonlinear
data using the kernel trick — can be incorporated into the bilevel model. We continue this discussion
using the bilevel classification example, (2.11), though the results below can easily be generalized to other
kernel methods.

5.1.1 Applying the Kernel Trick

The classification model was formulated to perform parameter and feature selection, taking advantage of
the ability of the bilevel framework to handle multiple parameters. However, a glance at the first-order
conditions, (2.4–2.5), shows that wt depends, not only on the training data, but also on the multipliers,
γt,±, of the box constraints. In order to apply the kernel trick and construct RKHS spaces for the kernel
methods to operate in, it is essential that the hyperplane, wt, be expressed solely as a linear combination
of the training data. This is a fundamental assumption that is at the heart of all kernel methods through
the representer theorem. In order to make this so, we temporarily set aside feature selection, drop the box
constraints (effectively causing γt,± to drop out of the program) and work with the classical SV classifier
(1.10),
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min
C,bt,z

t

ζt,αt,ξt

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

ζti

s. t. C ≥ 0,

and for t = 1 . . . T,

0 ≤ ζti ⊥ yi
(
(xi)′wt − bt

)
+ zti ≥ 0

0 ≤ zti ⊥ 1− ζti ≥ 0

∀ i ∈ Nt
0 ≤ αtj ⊥ yj

(
(xi)′wt − bt

)
− 1 + ξtj ≥ 0

0 ≤ ξtj ⊥ C − αtj ≥ 0

∀ j ∈ N t∑
j∈N t

yjα
t
j = 0,

(5.1)

and also including the constraint,

wt =
∑
j∈N t

yjα
t
jx
j , ∀ t = 1, . . . , T. (5.2)

In order to handle data that is separable only by a nonlinear function, we transform each data point in
the input space Rn to a high dimensional feature space Rm via φ : Rn → Rm, where the data is now
linearly separable. This means that the first order conditions become

wt =
∑
j∈N t

yjα
t
jφ(xj), ∀ t = 1, . . . , T. (5.3)

Now, we can eliminate wt within each fold of (5.4) using (5.3) and then apply the kernel trick, i.e., the
resulting inner-product terms, φ(xi) ′φ(xj), are replaced with symmetric, positive semi-definite kernel
functions κ(xi, xj). The final bilevel cross-validation model for SV classification when the kernel is fixed
can be computed if we

minimize
C,bt,zt,ζt,αt,ξt

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

ζti

s. t. C ≥ 0,

and for t = 1 . . . T,

0 ≤ ζti ⊥ yi

∑
j∈N t

yjα
t
jκ(xi, xj)− bt

+ zti ≥ 0

0 ≤ zti ⊥ 1− ζti ≥ 0

∀ i ∈ Nt
0 ≤ αti ⊥ yi

∑
j∈N t

yjα
t
jκ(xi, xj)− bt

− 1 + ξti ≥ 0

0 ≤ ξti ⊥ C − αti ≥ 0

 ∀ i ∈ N t

∑
i∈N t

yiα
t
i = 0.

(5.4)

While it may not appear so at first glance, the optimization problem above is still an instance of an
LPEC. Unfortunately, it is usually unreasonable to expect ready-made kernels for most machine learning
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tasks; in fact, most kernel families are parameterized, and the kernel parameters are typically determined
via cross validation. Also, unlike its linear counterpart, this model is not capable of performing feature
selection.

5.1.2 Designing Unknown Kernels

The issues of parameter selection (for regularization and the kernel) and feature selection can be combined
as in the linear model if we use a parameterized kernel of the form κ(xi, xj ; p,q). The nonnegative
vector, p ∈ Rn+, is the feature selection or scaling vector, and q ≥ 0 is a vector of kernel parameters. Let
P = diag(p). The parameterized versions of some commonly used kernels are shown below.

Linear kernel κ(xi, xj ; p) = xi ′P xj

Polynomial kernel κ(xi, xj ; p, c, d) = (xi ′P xj + c)d

Gaussian kernel κ(xi, xj ; p) = exp
(
(xi − xj) ′P (xi − xj)

) (5.5)

Other kernels can be similarly extended and used in the model. Consequently, the new kernel parameters,
p and q, enter the outer level of the kernel model as variables in the problem. The introduction of the
parameterized kernel is a very powerful extension to the linear model (5.1) as it is capable of determining
the kernel parameters (model design for unknown kernels, DUNK) and also picking the regularization
parameters and features leaving only the choice of kernel family to the user. The optimization problem
(5.4) is an MPEC with non-linear complementarity constraints and in general is a very difficult problem
to solve.

5.1.3 Solving the Kernel MPEC

We can employ the same strategy used in SLAMS to solve the DUNK problem, namely to lift the
penalizations of the nonlinear constraints into the objective and then apply a Frank-Wolfe approach. To
isolate the nonlinearities we add variables that represent the product of αt trained with each fold with
each row of the kernel matrix Kt corresponding to the training data within each fold. For the training
data in the t-th fold:

Ktrn
t,i =

∑
j∈N t

yjα
t
jκ(xj , xi; p,q), ∀ i ∈ N t, (5.6)

and for the validation data

Kval
t,i =

∑
j∈N t

yjα
t
jκ(xj , xi; p,q), ∀ i ∈ Nt. (5.7)

Notice that the summation in (5.7) is still over the training points as it is only possible to compute αs for
these points within each fold. With this substitution, the constraint region for the MPEC (5.4) becomes
a polyhedral set represented by the linear complementarity system as shown below:

for t = 1 . . . T,
0 ≤ ζti ⊥ yi(Kval

t,i − bt) + zti ≥ 0
0 ≤ zti ⊥ 1− ζti ≥ 0

}
∀ i ∈ Nt

0 ≤ αti ⊥ yi(Ktrn
t,i − bt)− 1 + ξti ≥ 0

0 ≤ ξti ⊥ C − αti ≥ 0

}
∀ i ∈ N t∑

i∈N t

yiα
t
i = 0.

(5.8)
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We denote the constraints above as S0. The constraint set without the complementarities is denoted SLP.
Now, we introduce penalty functions for the nonlinear equality constraints arising from the transforma-
tions (5.6) and (5.7):

Qt =
∑
i∈Nt

∥∥∥∥∥∥Kval
t −

∑
j∈N t

yjα
t
jκ(xj , xi; p,q)

∥∥∥∥∥∥
2

2

+
∑
i∈N t

∥∥∥∥∥∥Ktrn
t −

∑
j∈N t

yjα
t
jκ(xj , xi; p,q)

∥∥∥∥∥∥
2

2

, (5.9)

Alternately, the `1-norm penalty can also be used. In addition, we can define exact penalty functions
for the complementarities in order to lift them into the objective as well. As before, we also have the
quadratic penalty,

Pt =
∑
i∈Nt

ζtiyi(K
val
t,i − bt) +

∑
i∈Nt

zti

+
∑
i∈N t

αtiyi(K
trn
t,i − bt) + C

∑
i∈N t

ξti −
∑
i∈N t

αti.
(5.10)

Thus, the overall non-linear penalty problem is given below and can be solved using successive lineariza-
tion.

minimize
C,p,q,bt,zt,ζt,αt,ξt

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

ζti + µ

T∑
t=1

Pt + λ

T∑
t=1

Qt

s. t. (C, p, q, bt, zt, ζt, αt, ξt) ∈ SLP.

(5.11)

5.2 Semi-supervised Learning

We have, thus far, focussed on model selection for supervised learning tasks such as classification and
regression, with the label information available for all training points. Frequently, however, in applications
like text classification, drug design, medical diagnosis, and graph and network search, the training set
consists of a large number of unlabeled data points and a relatively small number of labeled training
points. This necessitates semi-supervised learning, where training is performed using both the labeled and
unlabeled data. If all the training data is unlabeled, the problem becomes one of unsupervised learning,
e.g., clustering.

The concept of semi-supervised learning is closely related to that of transductive learning, which
can be contrasted with the more typically performed inductive learning. In induction, the given labeled
data is used to construct a robust decision rule that is valid everywhere. This rule is fixed after training
and can subsequently be applied to the future test data. In transduction, the labeled training data and
the unlabeled test data are both given. All available data is used to construct the decision rule in order to
avoid overfitting. The learning task here is to not only predict labels for the test data available but for all
future data as well. Performing transductive learning may result in improvement in generalization error
bounds [87], thus reducing the number of labeled data required for good generalization. This is a very
important learning task as there exist many applications where labeled data are expensive to generate
whereas unlabeled data are abundant (e.g. drug design, medical diagnosis, web search).

Some additional notation is now introduced. As before, Ω = {xi, yi}`i=1 represents the set of
labeled data, with ` = |Ω|. Let Ψ = {xi}ui=1 represent the unlabeled training data, with the corresponding
labels (to be determined) being zi, and u = |Ψ |. The sets, Ω and Ψ , are indexed by N andM respectively.

5.2.1 Semi-supervised Regression

In bilevel semi-supervised regression, the labels of the unlabeled training data are treated as control
variables, z. The general bilevel model for semi-supervised machine learning problems can be formulated
as
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minimize
f, z,λ

Θ(f, z; Ω, Ψ, λ)

subject to λ ∈ Λ,

f ∈ arg min
f∈F

P(f, λ) +
∑
j∈N
Ll (yj , f(xj), λ) +

∑
j∈M

Lu (zj , f(xj), λ)

 .

(5.12)

In the model above, the loss functions, Ll and Lu, are applied to the labeled and unlabeled data respec-
tively, while P performs regularization. All the appropriate parameters, λ, are optimized in the outer
level; these parameters can include the regularization constant, tube width (for regression) and feature
selection vectors among others. Optimizing the unknown labels, z in the outer level corresponds to induc-
tive learning, while optimizing them in the inner level corresponds to transductive learning. An interesting
variant that combines both types of learning occurs if z is optimized in both levels.

For semi-supervised support vector regression, we can choose both loss functions to be ε-insensitive
and `2-norm regularization. For the case of one labeled training set, one unlabeled training set, and one
test set, this yields the following bilevel program:

minimize
C,D,ε,w,b,z

∑
i∈N
|x ′iw − b− yi|

subject to ε, C,D ≥ 0,

(w, b) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|N |
∑
j∈N

max
(
|x ′jw − b− yj | − ε, 0

)
+

D

|M|
∑
j∈M

max
(
|x ′jw − b− zj | − ε, 0

)
 .

(5.13)

The outer-level objective is simply the mean average deviation (MAD) on all the labeled data. The inner-
level objective uses both the labeled and unlabeled data sets making this an instance of transductive
learning. The labels, z, are used in the inner-level loss function but are optimized as outer-level variables
along with the hyper-parameters ε, C, and D. Additional upper and lower bounds can be imposed on
these parameters if desired. This program can be converted to an LPEC as before. It should be noted
that in typical semi-supervised learning problems, the number of unlabeled examples, u is far greater
than the number of labeled examples, `. This means that (5.13) will have a large number of outer-level
variables (z) and complementarity constraints arising from the unlabeled data points.

The model (5.13) performs simultaneous transductive learning and parameter selection. The qual-
ity of the “optimal” parameters can potentially be improved by combining semi-supervised learning with
T -fold cross validation. This can be achieved if we

minimize
C,D,ε,wt,bt,z

1
T

T∑
t=1

1
|Nt|

∑
i∈Nt

|x ′iw − b− yi|

subject to ε, C,D ≥ 0,
and for t = 1, . . . , T,

(wt, bt) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|Nt|
∑
j∈Nt

max
(
|x ′jw − b− yj | − ε, 0

)
+

D

|M|
∑
j∈M

max
(
|x ′jw − b− zj | − ε, 0

)
 ,

(5.14)

so that the resultant program is again a novel combination of inductive and transductive learning. Here,
the unlabeled data is used to train the decision rule for each fold. As there are T inner level problems,
the complementarity conditions containing the unlabeled data will occur T times, though each time with
a different (wt, bt) in the constraints.



5.2 Semi-supervised Learning 79

5.2.2 Semi-supervised Classification

Turning our attention to classification problems, we encounter several choices for both the inner- and
outer-level loss functions. As always, we use the hinge loss for the labeled points. We look at three loss
functions that were introduced in [21] for the unlabeled points in the inner level. The first is the so-called
hard-margin loss,

Lu(w, b) =
{
∞, for − 1 < x′w − b < 1,
0, otherwise. (5.15)

This can be introduced into the inner level through the very hard constraint max(1 − |x′w − b|, 0) = 0,
resulting in the following inner-level optimization problem:

min
w,b,ξ,z+,z−

1
2
‖w‖22 + C

∑
j∈N

ξtj

s. t. yi(x ′iw − b) ≥ 1− ξi, ξi ≥ 0, ∀ i ∈ N
−(x ′jw − b) ≥ 1− z+

j , z
+
j ≥ 0,

(x ′jw − b) ≥ 1− z−j , z
−
j ≥ 0,

z+
j z
−
j = 0

 ∀ j ∈M.

(5.16)

This results in a non-convex, quadratically-constrained quadratic program (QCQP) which is hard to solve
in general. Furthermore, the hard-margin condition might be too strong to allow for feasible solutions,
leading us to consider soft-margin variants: the quadratic-margin penalty,

Lu(w, b) = max(1− (x′w − b)2, 0), (5.17)

and the non-convex hat-loss function,

Lu(w, b) = max(1− |x′w − b|, 0). (5.18)

These loss functions arise from the relaxing the hard constraint z+
j z
−
j = 0 in (5.16) by moving it into the

inner-level objective; if the product, z+
j z
−
j , is used directly, a quadratic penalty function, (5.17), results,

and if the minimum error, min(z+
j , z

−
j ) is used, the hat loss function results. Using the quadratic penalty

function for the unlabeled data is precisely the transductive idea proposed by Vapnik [87]. The “optimal”
labels on the unlabeled data can be calculated as sign(z+

j − z
−
j ).

Finally, we can use the step function to formulate loss functions that use the number of misclas-
sifications for both the labeled and unlabeled data sets if we

minimize
C,D,w, b,ζ,z

1
| N |

∑
i∈N

ζi

subject to C,D ≥ 0,

ζ ∈ arg min
0≤ζ≤1

{∑
i∈N

ζiyi (x ′iw − b)

}

z ∈ arg min
0≤z≤1

{∑
i∈M
− zi (x ′iw − b)

}

(w, b) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|N |
∑
j∈N

max
(
1− yj(x ′jw − b), 0

)
+

D

|M|
∑
j∈M

max
(
1− zj(x ′jw − b), 0

)
 .

(5.19)

The outer-level objective performs misclassification minimization on the labeled data, with the first inner-
level problem counting the number of misclassifications. The second inner-level problem computes the
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labels on the unlabeled data which are used to perform learning in the third inner-level problem. As in
the regression case, the problem (5.19) and its variants that use the various loss functions above can be
combined with cross validation to perform more effective parameter selection. Feature selection can also
be incorporated into these models by adding extra constraints on w or by changing the regularization as
discussed in the previous sections. It is also relatively straightforward to kernelize the models discussed
above as per the discussion in Section 5.1.2, as long as care is taken in dealing with the labeled and
unlabeled kernels.

5.3 Incorporating Multitask Learning

We return to the problem of cross validation to demonstrate that multitask learning concepts can easily
be incorporated in the bilevel setting. Multitask learning [13] is defined as learning multiple related
tasks simultaneously. This type of learning is an instance of inductive transfer, otherwise called transfer
learning, where the knowledge learned from some tasks may be applied to learning a related task more
efficiently.

In the T -fold bilevel cross validation setting, each of the T inner-level problems attempts to
construct a decision rule on subsets of the same training sample, which, by statistical learning theory
assumptions, are drawn i.i.d. from the same distribution. Thus, the tasks of training within each fold
are related and amenable to incorporating multitask principles. We do this by introducing new variables,
(w0, b0), into the inner-level problems. For example, consider the following SV regression inner level,
(5.20) with added multi-task terms (and including the bias term):

(wt, bt) ∈ arg min
(w,b)∈Rn+1


1
2
‖w ‖22 +

C

|N t|

∑
j∈N t

max
(
|x ′jw − yj | − ε, 0

)
+
λw

2
‖w −w0‖22 +

λb
2

(b− b0)2

 . (5.20)

The variables (w0, b0) enter the bilevel model as outer-level variables as do the parameters λw and λb. The
multitask terms provide variance control by making each of the individual hyperplanes less susceptible
to variations within their respective training sets. They also provide additional regularization. Finally,
they ensure fold consistency because of the enforced task relatedness. We can replace (5.20) with its
corresponding KKT conditions:

0 = ( 1 + λw )wt − λw w0 +
∑
i∈N t

(αt,+i − αt,−i ) xi,

0 = λb(bt − b0) +
∑
i∈N t

(αt,+i − αt,−i ),

0 ≤ ξti ⊥ C

|N t|
− αt,+i − αt,−i ≥ 0,

0 ≤ αt,+i ⊥ ξti + ε− x′iw
t + bt + yi ≥ 0,

0 ≤ αt,−i ⊥ ξti + ε+ x′iw
t − bt − yi ≥ 0,

 ∀ i ∈ N t.

(5.21)

From (5.21), we deduce

wt =
1

1 + λw

λw w0 −
∑
i∈N t

(αt,+i − αt,−i ) xi

 ,
bt = b0 −

1
λb

∑
i∈N t

(αt,+i − αt,−i ),

(5.22)



5.3 Incorporating Multitask Learning 81

where it is understood that if λb = 0, then the latter expression for bt reduces to∑
i∈N t

(αt,+i − αt,−i ) = 0, (5.23)

which does not involve bt. In the interest of kernelizing (5.21), we postulate that

w0 ≡
∑
j∈N

βj xj , (5.24)

for some scalars, βj , to be determined. We obtain

wt ≡ 1
1 + λw

λw

∑
j∈N

βj xj −
∑
j∈N t

(αt,+j − αt,−j ) xj

 . (5.25)

This last expression can be substituted into the complementarities in (5.21) to give

0 ≤ ξti ⊥ C

|N t|
− αt,+i − αt,−i ≥ 0,

0 ≤ αt,+i ⊥ ξti + ε− 1
1 + λw

λw

∑
j∈N

βjx′ixj −
∑
j∈N t

(αt,+j − αt,−j )x′ixj

+ b t + yi ≥ 0,

0 ≤ αt,−i ⊥ ξti + ε+
1

1 + λw

λw

∑
j∈N

βjx′ixj −
∑
j∈N t

(αt,+j − αt,−j )x′ixj

− b t − yi ≥ 0.

(5.26)

The “kernel trick” can now be applied to (5.26); see Section 5.1.2 for details.
All the models that have been implemented in this thesis have been discriminative i.e., they

attempt to learn a direct map from the data x to the labels, y, or model the posterior probability p(y|x)
directly. This is in contrast to generative methods which try to learn and maximize the probability
p(y|x) via the Bayes Rule so that the results are used to approximate the behavior of the learner to
the joint probability p(x, y). Noting that all the methods proposed here were nonparametric methods,
an interesting avenue of further research with regard to modeling is the incorporation of parametric
or generative methods based on probability models into the bilevel framework. Preliminary work in this
direction by Epshteyn and DeJong [27] indicates that bilevel approaches can be effective in the generative
setting as well; this, however, is out of scope for this thesis, where the focus is on discriminative approaches.

The flexibility of the bilevel approach is such that a seemingly endless number of machine learn-
ing formulations can be cast into this framework. Some of these models were investigated in this thesis;
incorporation of other models (for instance, sub-sampling methods other than cross validation, genera-
tive models and so on) into this framework is left as a viable area of research to the machine learning
community. Two algorithms were implemented to solve the LPECs/MPECs arising from the bilevel ma-
chine learning programs and were successful for moderately-sized data sets. The need of the hour is
scalability: for algorithms that can handle hundreds of thousands of data points. Development of such
scalable algorithms for bilevel machine learning remains a significant open challenge to the optimization
community.
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A

Code Fragments of AMPL Models

The AMPL code for the various models in the thesis are presented here for completeness. Certain pa-
rameters like tol, C and C have to be defined by the user.

A.1 Model Selection for SV Classification

#####################################################################
# Bilevel cross-validation for support vector classification

# Data dimensions
param N; # number of dimensions
param T; # number of folds
param Ltrain; # total number of points available for CV

# Index sets
set N{1..T}; # indexes the validation sets
set Nbar{1..T}; # indexes the training sets

# Training data
param X{1..Ltrain, 1..D};
param y{1..Ltrain};

# Parameter Bounds
param CLower;
param CUpper;
param wbarLower;
param wbarUpper;

# Tolerance for complementarity conditions
param tol;

# Outer-level variables
var C >= CLower, <= CUpper;
var wbar{1..D} >= wbarLower, <= wbarUpper;

# Inner-level primal variables
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var z{t in 1..T, i in N[t]};
var w{1..D, 1..T};
var b{1..T};
var xi{t in 1..T, i in Nbar[t]}

# Inner-level dual variables
var zeta{t in 1..T, i in N[t]};
var alpha{t in 1..T, i in Nbar[t]};
var gammaP{1..D, 1..T} >= 0;
var gammaM{1..D, 1..T} >= 0;

# Outer-level Objective
minimize GeneralizationError:
(1/T) * sum{t in 1..T, i in N[t]} (1/card(N[t])) * z[t,i];

# Misclassification minimization constraints
subject to stepLowerComplementarity{t in 1..T, i in N[t]}:
0 <= z[t,i] complements
(y[i]*(sum{f in 1..D} X[i,f]*w[f,t] - b[t])+ zeta[t,i]) >= 0;

subject to stepUpperComplementarity{t in 1..T, i in N[t]}:
0 <= zeta[t,i] complements 1 - z[t,i] >= 0;

# Distance minimization constraint
subject to distanceMinConstraint{t in 1..T, i in N[t]}:
z[t,i] >= 1 - y[i]*(sum{f in 1..D} X[i,f]*w[f,t] - b[t]);

# Hyperplane constraints and complementarity
subject to HyperplaneComplementarity{t in 1..T, i in Nbar[t]}:
0 <= alpha[t,i] complements

(y[i]*(sum{f in 1..D} X[i,f]*w[f,t] - b[t]) - 1 + xi[t,i]) >= 0;

# Error constraints and Multiplier bounds
subject to ErrorComplementarity{t in 1..T, i in Nbar[t]}:
0 <= xi[t,i] complements C - alpha[t,i]) >= 0;

# Box constraints on w[f,t]
subject to BoxNegativeComplementarity{f in 1..D, t in 1..T}:
0 <= gammaM[f,t] complements wbar[f] + w[f,t] >= 0;

subject to BoxPositiveComplementarity{f in 1..D, t in 1..T}:
0 <= gammaP[f,t] complements wbar[f] - w[f,t] >= 0;

# First order conditions
subject to KKTConditionWRTw{f in 1..D, t in 1..T}:
w[f,t] - sum{i in Nbar[t]} y[i]*alpha[t,i]*X[i,f]

+ gammaP[f,t] - gammaM[f,t] = 0;

subject to KKTConditionWRTb{t in 1..T}:
sum{i in Nbar[t]} y[i]*alpha[t,i] = 0;
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A.2 Model Selection for SV Regression

#####################################################################
# Bilevel cross-validation for support vector regression

# Data dimensions
param D; # number of dimensions
param T; # number of folds
param Ltrain; # size of training set

# Setup index sets
set N{1..T}; # indexes the validation sets
set Nbar{1..T}; # indexes the training sets

# Training data
param X{1..Ltrain, 1..D};
param y{1..Ltrain};

# Parameter Bounds
param CLower;
param CUpper;
param epsilonLower;
param epsilonUpper;
param wBarLower;
param wBarUpper;

# Tolerance for complementarity conditions
param tol;

# Outer-level variables
var C >= CLower, <= CUpper;
var epsilon >= epsilonLower, <= epsilonUpper;
var wbar{1..D} >= wbarLower, <= wbarUpper;

# Inner-level primal variables
var z{t in 1..T, i in N[t]};
var w{1..D, 1..T};
var b{1..T};
var xi{t in 1..T, i in Nbar[t]};

# Inner-level dual variables
var gammaP{1..D, 1..T};
var gammaM{1..D, 1..T};
var alphaP{t in 1..T, i in Nbar[t]};
var alphaM{t in 1..T, i in Nbar[t]};

# Outer-level Objective
minimize GeneralizationError:
(1/T) * (sum{t in 1..T, i in N[t]} (1/card(N[t])) * z[t,i]);
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# Validation errors
subject to zLowerConstraint{t in 1..T, i in N[t]}:
z[t,i] >= -sum{f in 1..D} X[i,f]*w[f,t] + b[t] + y[i];

subject to zUpperConstraint{t in 1..T, i in N[t]}:
z[t,i] >= sum{f in 1..D} X[i,f]*w[f,t] - b[t] - y[i];

# Box constraints on w[f,t]
subject to BoxNegativeComplementarity{f in 1..D, t in 1..T}:
0 <= gammaM[f,t] complements wbar[f] + w[f,t] >= 0;

subject to BoxPositiveComplementarity{f in 1..D, t in 1..T}:
0 <= gammaP[f,t] complements wbar[f] - w[f,t] >= 0;

# Tube constraints
subject to UpperHyperplaneComplementarity{t in 1..T, i in Nbar[t]}:
0 <= alphaM[t,i] complements
(sum{f in 1..D} X[i,f]*w[f,t] - b[t] - y[i] + epsilon + xi[t,i]) >= 0;

subject to LowerHyperplaneComplementarity{t in 1..T, i in Nbar[t]}:
0 <= alphaP[t,i] complements
(-sum{f in 1..D} X[i,f]*w[f,t] + b[t] + y[i] + epsilon + xi[t,i]) >= 0;

# Error Constraints
subject to ErrorComplementarity{t in 1..T, i in Nbar[t]}:
0 <= xi[t,i] complements C - alphaP[t,i] - alphaM[t,i] >= 0;

# Classifier component constraints
subject to KKTConditionwrtW{f in 1..D, t in 1..T}:
w[f, t] + (sum{i in Nbar[t]} (alphaP[t,i] - alphaM[t,i])*X[i,f])

+ gammaP[f, t] - gammaM[f, t] = 0;

# KKT with respect to b[t] constraint
subject to KKTConditionwrtB{t in 1..T}:
sum{i in Nbar[t]} (alphaP[t,i] - alphaM[t,i]) = 0;
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A.3 Missing-value Imputation for SV Regression

#####################################################################
# Bilevel missing-value imputation for support vector regression

# Data dimensions
param D; # number of dimensions
param T; # number of folds
param Ltrain; # total number of points available for crossvalidation

# Setup index sets (to be initialized in io.script)
set V ordered; # indices for all the missing data
set M{1..T}; # validation sets for missing data
set Mbar{1..T}; # training sets for missing data
set N{1..T}; # validation sets for full data
set Nbar{1..T}; # training sets for full data
set F{1..Ltrain}; # indices for the known x features
set Fbar{1..Ltrain}; # indices for missing x features

# Training data
param x{1..Ltrain, 1..D};
param y{1..Ltrain};

# Hyper-parameter Bounds
param CLower;
param CUpper;
param epsLower;
param epsUpper;
param xLower;
param xUpper;
param wLower{1..D};
param wUpper{1..D};

# Tolerance for complementarity conditions
param tol;

# Inner-level variables
var aP{t in 1..T, j in Mbar[t] union Nbar[t]};
var aM{t in 1..T, j in Mbar[t] union Nbar[t]};
var xi{t in 1..T, j in Mbar[t] union Nbar[t]};
var z{t in 1..T, i in M[t] union N[t]};
var w{t in 1..T, f in 1..D};
var b{t in 1..T};
var r{t in 1..T, j in Mbar[t], f in Fbar[j]};
var s{t in 1..T, j in M[t] union Mbar[t], f in Fbar[j]};

# Outer-level variables
var C >= CLower, <= CUpper;
var epsilon >= epsLower, <= epsUpper;
var xm{j in V, f in Fbar[j]} >= xLower[f], <= xUpper[f];
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# Objective function
minimize GeneralizationError:
sum{t in 1..T, i in M[t] union N[t]} z[t,i] / (card(M[t] union N[t]) * T);

# Constraints
subject to ValidationUpper{t in 1..T, i in N[t]}:
y[i] - sum{f in 1..D} (x[i,f]*w[t,f]) + b[t] + z[t,i] >= 0;

subject to ValidationLower{t in 1..T, i in N[t]}:
sum{f in 1..D} (x[i,f]*w[t,f]) - b[t] - y[i] + z[t,i] >= 0;

subject to ValidationUpperMissing{t in 1..T, i in M[t]}:
y[i] - sum{f in F[i]} (x[i,f]*w[t,f])

- sum{f in Fbar[i]} s[t,i,f] + b[t] + z[t,i] >= 0;

subject to ValidationLowerMissing{t in 1..T, i in M[t]}:
sum{f in F[i]} (x[i,f]*w[t,f]) +
sum{f in Fbar[i]} s[t,i,f] - b[t] - y[i] + z[t,i] >= 0;

subject to TrainingUpperComplementarity{t in 1..T, j in Nbar[t]}:
0 <= aP[t,j] complements
y[j] - sum{f in 1..D} x[j,f]*w[t,f] + b[t] + epsilon + xi[t,j] >= 0;

subject to TrainingLowerComplementarity{t in 1..T, j in Nbar[t]}:
0 <= aM[t,j] complements
sum{f in 1..D} x[j,f]*w[t,f] - b[t] - y[j] + epsilon + xi[t,j] >= 0;

subject to TrainingUpperMissingComplementarity{t in 1..T, j in Mbar[t]}:
0 <= aP[t,j] complements
y[j] - sum{f in F[j]} (x[j,f]*w[t,f])

- sum{f in Fbar[j]} s[t,j,f] + b[t] + e[t,j] + xi[t,j] >= 0;

subject to TrainingLowerMissingComplementarity{t in 1..T, j in Mbar[t]}:
0 <= aM[t,j] complements

sum{f in F[j]} (x[j,f]*w[t,f]) +
sum{f in Fbar[j]} s[t,j,f] - b[t] - y[j] + e[t,j] + xi[t,j] >= 0;

subject to MultiplierBoundsComp{t in 1..T, j in Mbar[t] union Nbar[t]}:
0 <= xi[t,j] complements (C - aP[t,j] - aM[t,j]) >= 0;

subject to KKTConditionWRTw{t in 1..T, f in 1..D}:
w[t,f]
+ sum{j in Mbar[t] union Nbar[t]:f in F[j]} (aP[t,j] - aM[t,j])*x[j,f]
+ sum{j in Mbar[t] union Nbar[t]:f in Fbar[j]} r[t,j,f] = 0;

subject to KKTConditionWRTb{t in 1..T}:
sum{j in Mbar[t] union Nbar[t]} (aP[t,j] - aM[t,j]) = 0;

subject to PrimalImputationError{t in 1..T,
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j in M[t] union Mbar[t], f in Fbar[j]}: s[t,j,f] - w[t,f]*xm[j,f] = 0;

subject to DualImputationError{t in 1..T, j in Mbar[t], f in Fbar[j]}:
r[t,j,f] - (aP[t,j] - aM[t,j])*xm[j,f] = 0;

subject to rBoundLL{t in 1..T, j in Mbar[t], f in Fbar[j]}:
r[t,j,f] >= xLower[f]*(aP[t,j] - aM[t,j])

- CUpper*xm[j,f] + CUpper*xLower[f];

subject to rBoundUU{t in 1..T, j in Mbar[t], f in Fbar[j]}:
r[t,j,f] >= xUpper[f]*(aP[t,j] - aM[t,j])

+ CUpper*xm[j,f] - CUpper*xUpper[f];

subject to rBoundLU{t in 1..T, j in Mbar[t], f in Fbar[j]}:
r[t,j,f] <= xUpper[f]*(aP[t,j] - aM[t,j])

- CUpper*xm[j,f] + CUpper*xUpper[f];

subject to rBoundUL{t in 1..T, j in Mbar[t], f in Fbar[j]}:
r[t,j,f] <= xLower[f]*(aP[t,j] - aM[t,j])

+ CUpper*xm[j,f] - CUpper*xLower[f];

subject to sBoundLL{t in 1..T, j in M[t] union Mbar[t], f in Fbar[j]}:
s[t,j,f] >= xLower[f]*w[t,f] + wLower[f]*xm[j,f] - xLower[f]*wLower[f];

subject to sBoundUU{t in 1..T, j in M[t] union Mbar[t], f in Fbar[j]}:
s[t,j,f] >= xUpper[f]*w[t,f] + wUpper[f]*xm[j,f] - xUpper[f]*wUpper[f];

subject to sBoundLU{t in 1..T, j in M[t] union Mbar[t], f in Fbar[j]}:
s[t,j,f] <= xUpper[f]*w[t,f] + wLower[f]*xm[j,f] - xUpper[f]*wLower[f];

subject to sBoundUL{t in 1..T, j in M[t] union Mbar[t], f in Fbar[j]}:
s[t,j,f] <= xLower[f]*w[t,f] + wUpper[f]*xm[j,f] - xLower[f]*wUpper[f];
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